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Abstract: In the realm of medical image analysis, the cost associated with acquiring accurately
labeled data is prohibitively high. To address the issue of label scarcity, semi-supervised learning
methods are employed, utilizing unlabeled data alongside a limited set of labeled data. This paper
presents a novel semi-supervised medical segmentation framework, DCCLNet (deep consistency
collaborative learning UNet), grounded in deep consistent co-learning. The framework synergistically
integrates consistency learning from feature and input perturbations, coupled with collaborative
training between CNN (convolutional neural networks) and ViT (vision transformer), to capitalize
on the learning advantages offered by these two distinct paradigms. Feature perturbation involves
the application of auxiliary decoders with varied feature disturbances to the main CNN backbone,
enhancing the robustness of the CNN backbone through consistency constraints generated by the
auxiliary and main decoders. Input perturbation employs an MT (mean teacher) architecture wherein
the main network serves as the student model guided by a teacher model subjected to input pertur-
bations. Collaborative training aims to improve the accuracy of the main networks by encouraging
mutual learning between the CNN and ViT. Experiments conducted on publicly available datasets
for ACDC (automated cardiac diagnosis challenge) and Prostate datasets yielded Dice coefficients
of 0.890 and 0.812, respectively. Additionally, comprehensive ablation studies were performed to
demonstrate the effectiveness of each methodological contribution in this study.

Keywords: semi-supervised learning; medical image segmentation; consistent regularization;
co-training

1. Introduction

Image segmentation algorithms based on supervised learning have demonstrated
outstanding performance in a wide range of tasks [1–3], benefiting from their reliance
on large amounts of high-quality, pixel-level annotated data, enabling models to learn
precise segmentation decisions. However, the substantial demand for annotated data
is not always feasible in practical applications, especially in the field of medical image
segmentation. Due to the complexity of medical images and the high requirement for
annotation accuracy, annotation tasks must be manually performed by experienced experts,
which is not only time-consuming and labor-intensive but also costly. Therefore, in the field
of medical image segmentation, the reality often involves only a small amount of annotated
data available for use, while there is a relatively large amount of unlabeled data. Many
semi-supervised segmentation algorithms have limited learning capabilities for the features
of unlabeled data under conditions of a small amount of annotated data, resulting in low
image segmentation accuracy. In this situation, effectively utilizing limited annotated data
for training becomes a challenge in medical image segmentation.

An effective solution is to adopt semi-supervised learning methods. Currently, semi-
supervised methods proposed based on deep learning mainly include consistency learn-
ing [4], co-training [5], self-training [6], adversarial learning [7], entropy minimization [8],
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and other methods. Among these methods, consistency regularization and co-training are
widely used.

The consistency learning method is based on the assumption that the output should
not change significantly when the input data are slightly perturbed. This method encour-
ages the model to produce similar outputs for similar inputs, thereby enhancing the model’s
robustness. According to the research in [9], the co-training framework is established on
the premise that each data sample has two independent views, and each view can make
predictions independently, with one view being redundant to the other. Simultaneously,
this framework encourages the model to make consistent predictions for these two views.
Initially, a segmentation model is separately trained for each view on the labeled data, and
then the predictions of these two models for the unlabeled data are gradually introduced
into the training set for continued training. The difference between co-training and con-
sistency learning lies in that co-training utilizes pseudo-labels generated from unlabeled
data to guide the training of models other than itself, while consistency learning forces the
model’s output to remain consistent under different types of perturbations.

To address the challenges of low segmentation accuracy and inadequate generaliza-
tion ability in the medical domain under conditions of scarce labels, this chapter proposes
a semi-supervised medical image segmentation model named DCCLNet (deep consis-
tency collaborative learning UNet) based on deep consistent co-training learning. This
model combines the performance of consistency learning with both feature and input
perturbations, and effectively leverages the advantages of learning different paradigms in
co-training. The consistency learning strategy is primarily manifested by adding different
auxiliary decoders on top of the backbone network for auxiliary learning, while employing
a teacher–student architecture composed of a teacher model and the backbone network.
The teacher model guides the learning of the backbone network, with the backbone net-
work acting as the student model. Meanwhile, the co-training framework comprises two
different network architectures, CNN (convolutional neural networks) and ViT (vision
transformer), trained simultaneously and mutually learning from each other. Overall, the
main contributions of this chapter are as follows:

(1) Proposed a semi-supervised segmentation model named DCCLNet based on deep
consistent co-training learning. Inspired by the CCT (cross-consistency training)
semi-supervised method [10], this model adds different feature perturbations to
the output of the backbone network’s CNN encoder, which are then inputted into
auxiliary decoders. This encourages consistency between the outputs of the main
decoder and the auxiliary decoder, thereby enhancing the robustness of the backbone
network CNN.

(2) Added a teacher model to form an MT (mean teacher) architecture [11] with the
backbone network. Data with input perturbations are inputted into the teacher
model, and a consistency constraint is imposed between the predictions of the teacher
model and the backbone network to guide the training of the backbone network
further, thereby improving the robustness and accuracy of the backbone network
CNN. Moreover, the parameters of the teacher model are obtained from the backbone
network, effectively reducing computational complexity.

(3) Utilized the backbone network CNN and ViT to form a co-training architecture, where
CNN can better capture local features, and ViT can better capture long-range depen-
dencies. By simultaneously training from the perspectives of two different network
architectures and learning pseudo-labels generated from each other’s predictions, the
accuracy of the backbone network CNN can be improved.

(4) Conducted experiments on the ACDC dataset [12] and Prostate dataset [13] under
different percentages of labeled data. Experimental results demonstrate that DCCLNet
outperforms other semi-supervised segmentation methods on the ACDC dataset and
Prostate dataset in terms of segmentation effectiveness.

The subsequent structure of the paper is as follows: Section 2 reviews the research
on semi-supervised medical image segmentation methods and prior studies related to the
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model we propose. Section 3 provides an in-depth introduction to the various modules of
the proposed model. Sections 4 and 5 delve into a thorough discussion of the experimental
results. Finally, Section 6 concludes with considerations for future directions of this research.

2. Related Works
2.1. Semi-Supervised Medical Image Segmentation

Recently, the importance of semi-supervised learning in the field of medical image
analysis has been increasing, and the use of semi-supervised semantic segmentation meth-
ods has become increasingly widespread, which is an excellent method for reducing the
cost of image annotation. For example, Bai et al. [14] proposed a semi-supervised method
for cardiac MR image segmentation. The training regimen alternates between labeled
and unlabeled datasets, with pseudo-labels generated for the unlabeled data to facilitate
segmentation of the originally labeled data. Xu et al. [15] proposed a semi-supervised
segmentation method tailored for transrectal ultrasound (TRUS) images. The method
leverages shadow consistency, which encompasses both shadow enhancement and shadow
loss, to replicate the effects of low image quality and shadow artifacts commonly found
in medical imaging. Shadow enhancement is achieved by superimposing synthetically
generated shadow artifacts onto the input images, whereas shadow loss induces neural
node degradation based on prior understanding of shadow artifacts, directly impacting
the feature map. Zhu et al. [16] introduced an asymmetric multi-modal deep co-training
framework for semi-supervised medical image segmentation, which includes two segmen-
tation networks and two image translation networks designed for cross-modality image
translation. Labeled data from one modality are utilized to train the segmentation network
of the other modality, with consistency constraints applied to minimize the discrepancy
between the two segmentation networks. Zhao et al. [17] presented a semi-supervised
segmentation method featuring an information self-integration architecture for 3D whole-
brain segmentation. The method employs various transformation strategies for unlabeled
data, with the averaged prediction outcomes serving as pseudo-labels for the unlabeled
data. Wu et al. [18] introduced a semi-supervised polyp segmentation model that leverages
two segmentation networks to learn from each other. The approach utilizes a discrim-
inator to generate confidence maps and incorporates an auxiliary discriminator to aid
the primary discriminator, which may face performance limitations due to the scarcity
of labeled data. Hou et al. [19] proposed a semi-supervised medical image segmentation
method that employs a Leaking GAN (generative adversarial network) to contaminate the
discriminator by leaking information from the generator, thereby promoting better learning
of the discriminator. Wu et al. [20] introduced a semi-supervised segmentation method that
augments the inter-class distance within the feature space by means of feature gradient
map regularization. Additionally, the method employs class consistency constraints to
alleviate the impact of noise interference on pseudo-labels. Wu et al. [21] presented a
semi-supervised nuclei segmentation method that enhances the intra-class compactness
and inter-class separability of features by aligning the feature maps of a teacher model with
those of a student network, sampling from cross-image patches and pixel-level images.
Miao et al. [22] proposed a semi-supervised medical image segmentation method with
self-correcting collaborative training, which employs a self-correcting module to enhance
the accuracy of model predictions on unlabeled data and further improves the model’s
learning capability using pixel-wise contrastive learning loss. Shen et al. [23] proposed a
UCMT (uncertainty-guided collaborative mean teacher) model for semi-supervised medical
image segmentation, where sub-networks learn from unlabeled data through collaborative
training, and uncertainty estimation strategies are applied to predictions of the teacher
network, allowing sub-networks to learn from regions of high confidence.

2.2. Consistent Learning

The consistency learning method imposes consistency on the predictions of input
images under different perturbations, where perturbations should not alter the network’s
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predictions. Various perturbations are employed in consistency learning methods, which
can roughly be categorized into input perturbations and feature map perturbations.

Input perturbation refers to applying certain perturbations to the input samples,
such as Gaussian noise, random rotation, flipping, and contrast changes, encouraging
segmentation networks to maintain consistency in predictions for unlabeled data under
different perturbations. The Π-model proposed by Sajjadi et al. [24] and the MT (Mean
Teacher) method proposed by Tarvianen et al. are similar approaches. The former applies
two versions of data perturbation to samples and adds a consistency constraint between
their predictions, while the latter improves upon the former by obtaining the weights of
the student model through training, and the weights of the teacher model are continually
updated through exponential moving average (EMA) calculation based on the weights of
the student model, imposing consistency constraints between the predictions of the teacher
and student. The ICT (Interpolation Consistency Training) [25] method introduces a training
approach based on interpolation consistency, which interpolates unlabeled data according
to the idea of mix-up [26]. Mix-up involves applying a simple linear transformation
to input data. ICT calculates consistency loss between predictions at interpolated pixel
points of unlabeled data and the predictions of those points themselves, training the
network through consistency constraints between them. Huang et al. [27] proposed a
CC-Net based on complementary consistency training for semi-supervised left atrial image
segmentation. The method utilizes two auxiliary models and introduces model-level
perturbations, enhancing the learning capability of the main model through the imposition
of consistency constraints between the auxiliary and main models. Although CC-Net
facilitates ample assistance for the backbone network’s learning through two auxiliary
models with model perturbations, employing identical encoder and decoder structures
may potentially diminish the efficacy of co-training.

Feature perturbation involves perturbations added to the feature maps after con-
volution of input samples. The CCT (Cross Consistency Training) method proposes a
cross-consistency approach, where unlabeled data are input into a shared encoder, and
different feature perturbations are added to the output of the shared encoder, which are
then inputted into auxiliary decoders. The network model is trained by imposing consis-
tency loss between the predictions of the auxiliary decoder and the main decoder. The RD
(Regularized Dropout) [28] method introduces a simple consistency training strategy called
R-Drop, which enforces consistency between the outputs of different sub-models through
dropout. Li et al. [29] introduced a semi-supervised segmentation approach for COVID-19
based on an uncertainty-guided dual consistency learning network (UDC-Net). UDC-Net
incorporated seven types of feature perturbations for seven additional auxiliary decoders,
necessitating that these seven predictions remain consistent with the main decoder. The
feature-level perturbations included feature noise, feature dropout, object masking, context
masking, guidance loss, intermediate boosting, and random loss. This method is very
comprehensive in its use of feature perturbations but overlooks that input perturbations
can also mislead the encoder’s feature learning during the encoding process.

2.3. Co-Training

The co-training method involves constructing two or more network models capa-
ble of representing independent perspectives. Typically, different network architectures
and specialized training methods are used to build co-training models. The CPS (Cross
Consistency Training) [30] method proposes a cross-pseudo-supervised training approach,
employing two networks that are structurally consistent but differ in initialization state.
It introduces consistency constraints to encourage these two networks to produce the
same output for the same input sample. CPS generates labels from the predictions of one
network and uses them as pseudo-labels for the predictions of the other network, and
vice versa, allowing these two networks to learn from each other’s perspective. The CTCT
(Cross Teaching between CNN and Transformer) [31] method further proposes mutual
teaching between two different networks utilizing CNN and transformer architectures,
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enabling them to observe data from two completely different perspectives and learn from
each other, thus compensating for the limitations of learning with a single CNN network
architecture. The DCT (Deep Co-Training) [32] method introduces a deep co-learning
approach, using multiple deep neural networks to observe data from multiple perspectives
and impose constraints by leveraging differences generated by adversarial samples. Wang
et al. [33] proposed a semi-supervised medical image segmentation framework, consisting
of a feature learning module composed of CNN and ViT, and a feature-guidance module
composed of a ViT teacher model. The feature learning module combines the advantages
of CNN and ViT through dual-view co-training. The feature guidance module averages
network weights using an MT architecture and considers the output of the teacher model
as the final prediction. The framework employed two different network architectures, and
to further guide the ViT, the framework did not consider the potential negative effects of
feature perturbations. Huang et al. [34] developed a semi-supervised dual cooperative
network (SD-Net) for liver CT segmentation, which adopts two cooperatively trained
models. They used adaptive mask refinement to refine the differences between predictions
for labeled data and utilized a dynamic pseudo-label-generation strategy for unlabeled
data to select better predictions as pseudo-labels. This method utilizes two networks to
collaborate and imposes constraints on the uncertain regions predicted by both networks.
However, both network architectures are CNN-based, lacking the advantage of ViT in
capturing long-range dependencies.

3. Method
3.1. The Overall Structure of the Model

The overall model architecture of DCCLNet is shown in Figure 1. The model is
primarily based on the backbone network UNet [35], with three auxiliary decoders added
on the basis of the main decoder of the UNet backbone network, each applying different
feature perturbations. Additionally, a teacher model with input perturbation is added,
which shares the same UNet network structure as the UNet backbone network, along with
Swin-UNet [36].

J. Imaging 2024, 10, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 1. Overall framework DCCLNet. where P1, P2, P3 are three different characteristic perturba-
tions. 

3.2. Auxiliary Decoder Assist 
Inspired by the CCT semi-supervised method, three different types of feature pertur-

bations are added to the output of the backbone network encoder, which are then respec-
tively inputted into the auxiliary decoders. Based on the principle of consistency learning, 
perturbing the feature maps of the decoder input should not change the output predic-
tions. By imposing consistency between the predictions of the backbone network and the 
auxiliary decoders, the generalization ability of the backbone network UNet is enhanced. 

As shown in Figure 2, the decoder structure of the auxiliary decoder is the same as 
that of the backbone network UNet, and they share an encoder. Here, P1, P2, and P3 repre-
sent three different types of feature perturbations. Unlabeled data are input into the 
shared UNet encoder, whereas the main decoder receives the direct output of the encoder, 
and the auxiliary decoders respectively add these three types of feature perturbations to 
the output feature maps of the encoder. This enables the auxiliary decoders to assist the 
backbone network in learning from feature perturbations. 

 
Figure 2. Auxiliary decoder and backbone network UNet. 

  

Figure 1. Overall framework DCCLNet. where P1, P2, P3 are three different characteristic perturbations.



J. Imaging 2024, 10, 118 6 of 17

In semi-supervised segmentation, images are typically divided into two parts: la-
beled images and unlabeled images. A dataset with N labeled images is represented as
(xl , yl) ∈ L, while a dataset with M unlabeled images is represented as (xu) ∈ U.

The labeled data are only received by the backbone networks UNet and Swin-UNet,
while the unlabeled data are received by all networks in the framework. For the labeled
data, the predictions generated by DCCLNet are compared only to the ground truth labels
and continually learned from them. For the unlabeled data, DCCLNet guides the backbone
network UNet with different levels of perturbation by adding auxiliary decoders with
feature perturbation and a teacher model with input perturbation. Consistency constraints
are imposed by the differences between their predictions and those of the backbone network
UNet. Additionally, DCCLNet employs a collaborative training approach using two
different network architectures, UNet and Swin-UNet, to learn from each other.

3.2. Auxiliary Decoder Assist

Inspired by the CCT semi-supervised method, three different types of feature perturba-
tions are added to the output of the backbone network encoder, which are then respectively
inputted into the auxiliary decoders. Based on the principle of consistency learning, per-
turbing the feature maps of the decoder input should not change the output predictions. By
imposing consistency between the predictions of the backbone network and the auxiliary
decoders, the generalization ability of the backbone network UNet is enhanced.

As shown in Figure 2, the decoder structure of the auxiliary decoder is the same as that
of the backbone network UNet, and they share an encoder. Here, P1, P2, and P3 represent
three different types of feature perturbations. Unlabeled data are input into the shared
UNet encoder, whereas the main decoder receives the direct output of the encoder, and the
auxiliary decoders respectively add these three types of feature perturbations to the output
feature maps of the encoder. This enables the auxiliary decoders to assist the backbone
network in learning from feature perturbations.
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3.2.1. Characteristic Perturbation

Feature Noise: Uniformly sample a noise tensor N~U(-3,3) with the same size as the
feature map h, then multiply this noise tensor with h, injecting the noise into h, resulting in
the perturbed result h′ = (h ◦ N) + h. The injected noise is proportional to each activation.

Feature Dropout: Uniformly sample a threshold value γ~U(0.6,0.9), perform channel-

wise summation and normalization on the feature map h to obtain
∧
h, generate a mask

Fdrop = {h < γ}, and use this mask to add perturbation to h, resulting in h′ = Fdrop ◦
∧
h,

effectively masking the most active regions of h by 10% to 40%.
Dropout: Use Dropout [37] for feature map h generation as random perturbations.
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3.2.2. Characteristic Perturbation Loss

For the unlabeled dataset (xu) ∈ U, let the output of the backbone network be
represented as fU(xu), and the output of the auxiliary decoder Aux be represented as
f i
A(xu), i = 1, 2, 3. The difference between the predictions of the backbone network UNet

and the auxiliary decoder Aux is constrained by the unsupervised loss Lu−a
unsup constructed

by mean squared error (MSE):

Lu−a
unsup =

1
3
×

3

∑
i=1

MSE
(

fU(xu), f i
A(xu)

)
(1)

3.3. Teacher Model Guidance

Addition of the teacher model forms the MT architecture with the backbone network
UNet, where the backbone network acts as the student model. Perturbations are added
to the inputs of the teacher model based on the principle that perturbations should not
alter the model’s output. Consistency constraints are imposed between the predictions
of the backbone network and the teacher model, further enhancing the robustness of the
backbone network.

As shown in Figure 3, both the teacher model and the backbone network are UNet
networks. The parameters of the teacher model are directly obtained from the backbone
network UNet through exponential moving average (EMA), effectively reducing the com-
putational cost of the model. Unlabeled data are directly input into the backbone network
UNet, while after adding noise, it is input into the teacher model. This enables the teacher
model to guide the backbone network in learning from input perturbations.
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3.3.1. Teacher Model Parameter Update

The study in [11] indicates that averaging model weights during training often results
in models that are more accurate than those directly using the final weights. Therefore, the
EMA method is utilized to update the parameters of the teacher model. Let θs denote the
parameters of the student model, and the update calculation for the parameters θt of the
teacher model is as follows:

θt = λθt−1 + (1 − λ)θs (2)

where λ is the decay coefficient used to control the updating rate of EMA, and t denotes
the updating round.

3.3.2. Input Disturbance Loss

For the unlabeled dataset (xu) ∈ U, let the data with added input perturbation be
denoted as xnoi

u , and the output of the teacher model for the unlabeled data is represented
as fT

(
xnoi

u
)
. The discrepancy between the predictions of the main network and the teacher

model is computed through the unsupervised loss Lu−t
unsup, which is based on the mean

square error.
Lu−t

unsup = MSE
(

fU(xu), fT

(
xnoi

u

))
(3)
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3.4. CNN and ViT Collaborative Training
3.4.1. Collaborative Training Process

In reference [31], a semi-supervised segmentation method was proposed, which in-
volves the cross-teaching of UNet and Swin-UNet, yielding impressive segmentation
results. Consequently, this paper utilizes a collaborative training framework composed
of the CNN-based UNet and the Transformer-based Swin-UNet, which are trained con-
currently. Through the observation of data by two different network architectures and
mutual learning during the training process, the advantages of each are leveraged to com-
pensate for shortcomings, effectively enhancing the segmentation accuracy of the main
network UNet.

As illustrated in Figure 4, when inputting labeled data, the predictions of the main
network UNet and Swin-UNet are constrained by the ground truth labels. When inputting
unlabeled data, the labels generated by Swin-UNet are utilized to guide the predictions of
UNet. Simultaneously, the labels generated by UNet are used to guide the predictions of
Swin-UNet. Thus, the objective is achieved where UNet and Swin-UNet mutually learn
and progress together.
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3.4.2. Co-Training Loss

For the labeled dataset (xl , yl) ∈ L, let the outputs of the main network UNet be
denoted as fU(xl) and the outputs of Swin-UNet be denoted as fSU(xl). The differences
between them and the ground truth labels are calculated using the supervised losses
constructed by the cross-entropy loss function (CE) and the Dice loss function, denoted as
Lu

sup and Lsu
sup, respectively:

Lu
sup =

1
2
(CE( fU(xl), yl) + Dice( fU(xl), yl)) (4)

Lsu
sup =

1
2
(CE( fSU(xl), yl) + Dice( fSU(xl), yl)) (5)

For the unlabeled dataset (xu) ∈ U, let the predictions of the main network UNet be
denoted as fU(xu) with generated labels yU(xu) = argmax( fU(xu)), and the predictions of
Swin-UNet be denoted as fSU(xu) with generated labels ySU(xu) = argmax( fSU(xu)). On
one hand, the predictions fU(xu) of the main network and the labels ySU(xu) generated by
Swin-UNet are used to compute the loss. On the other hand, the predictions fSU(xu) of
Swin-UNet and the labels yU(xu) generated by the main network are used to compute the
loss. The differences between them are calculated by the unsupervised loss Lu−su

unsup:

Lu−su
unsup = Dice( fU(xu), ySU(xu)) + Dice( fSU(xu), yU(xu)) (6)
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3.5. Overall Loss Function

The loss of the semi-supervised framework consists of the supervised loss Lsup and
the unsupervised loss Lunsup. In the overall framework of DCCLNet proposed in this
paper, the training of the auxiliary decoder, the main network UNet, the teacher model,
and Swin-UNet are conducted simultaneously. Therefore, the overall loss function Ltotal of
DCCLNet is composed of all the aforementioned loss functions:

Lu−su
unsup = Dice( fU(xu), ySU(xu)) + Dice( fSU(xu), yU(xu)) (7)

In this equation, λ represents the weight of the unsupervised loss. Different weights are
used for consistency learning and collaborative training in this paper, where λ1 is the weight
factor for the consistency loss of the main UNet network, λ1 = 0.01 × e−5×(1−t/tmax)

2
; λ2 is

the weight factor for the collaborative training loss of the main UNet network, λ2 = u × λ1;
and u is a scaling factor. t denotes the current iteration round, updated every 150 iterations
and gradually increased during training [38], allowing the model to focus on labeled images
during initialization and gradually shift the focus to unlabeled images. The overall loss
Ltotal is the final training objective of this framework.

4. Experiments
4.1. Data Preparation

ACDC dataset: The semi-supervised segmentation method proposed in this paper is
evaluated on the MICCAI 2017 ACDC (Automated Cardiac Diagnosis Challenge) dataset
to demonstrate its effectiveness and compare it with other baseline methods. The ACDC
dataset consists of 200 short-axis cardiac cine MRI scans from 100 patients, each containing
four segmentation classes: left ventricle, right ventricle, left ventricular myocardium and
background. Among the 100 patients, 70 were selected as training samples, 10 as validation
samples, and 20 as testing samples.

PROMISE12 dataset: Similar experiments to those on the ACDC dataset are con-
ducted on the PROMISE12 (Prostate MR Image Segmentation Challenge) dataset. The
PROMISE12 dataset comprises 50 MRI scans from patients, with 35 patients used for train-
ing, 5 for validation, and 10 for testing, each containing two segmentation classes: prostate
and background.

4.2. Experimental Setup

To ensure fair comparison among all methods, all comparative methods and ablation
experiments in this study were conducted under the same conditions. The experiments
were performed using an NVIDIA GeForce RTX 2080 Ti GPU (NVIDIA, Dalian, China)
with retraining in PyTorch 3.9. The datasets were normalized and resized to 224 × 224, and
data augmentation techniques such as random rotation and flipping were applied. An SGD
(stochastic gradient descent) optimizer was used during training with an initial learning
rate of 0.01, and the Poly learning rate policy was employed to update the learning rate
continuously. The training process consisted of 30,000 iterations, with a batch size of 16,
including 8 labeled data and 8 unlabeled data per batch. The scaling factor u of DCCLNet
was set to 15. The optimal weights of the backbone network in DCCLNet were used to
generate the final predictions.

4.3. Evaluation Index

This paper evaluates the performance of the proposed model using three standard
evaluation metrics: Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and
average symmetric surface distance (ASD). The formulas for calculation are as follows:

DSC =
2TP

FN + 2TP + FP
(8)
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DSC mainly measures the similarity between two segmentation maps, where TP is
true positive, FP is false positive, TN is true negative, and FN is false negative. DSC ranges
from [0, 1], with values closer to 1 indicating better segmentation results.

HD95 = max
t2

(
max

t1

(√
T2 − P2

))
× 0.95 (9)

HD represents the maximum distance measure between the surface point sets of
the predicted result and the ground truth label. Since the Hausdorff distance metric is
affected by noisy points, the 95th percentile of the Hausdorff distance is used to measure
the segmentation result, where T is the boundary of the label region and P is the boundary
of the segmented region predicted by the model.

ASD =
1

S(A) + S(B)

 ∑
sA∈S(A)

d(sA, S(B))+ ∑
sB∈S(B)

d(sB, S(A))

 (10)

ASD represents the average distance between the surface point sets of the predicted
result and the ground truth label, where S(A) represents the surface voxels in set A, and
d(v, S(A)) represents the shortest distance from any voxel to S(A); HD95 and ASD measure
the segmentation model’s ability to predict edges, with smaller values indicating that the
segmented edges are closer to the edges of the ground truth label.

4.4. Comparative Experimental
4.4.1. ACDC Dataset Comparative Experimental Analysis

As shown in Table 1, this paper utilized two different percentages of labeled datasets
from the ACDC training set, namely 5% and 10%, and conducted experiments with other
semi-supervised segmentation methods for these two scenarios. The proposed framework
DCCLNet achieved better performance on most metrics.

When using 5% labeled samples, consistency-based methods like CCT, MT, and ICT
performed poorly on all three metrics. This is because these three consistency methods
only employ a single network architecture. CCT solely assists the main network in learning
from unlabeled data by adding auxiliary decoders with feature perturbations; MT also
only utilizes a teacher model with the same architecture to guide the student model, where
the teacher model’s input is perturbed; ICT uses interpolation to train on perturbed data.
UAMT, building upon MT, incorporates uncertainty estimation to select more reliable
pseudo-labels for guiding the student model. However, when the labeled data volume
is 5%, the available labeled data for training after selection is too scarce, resulting in
inferior performance compared to MT. URPC generates multi-scale predictions through
a pyramid framework, to which consistency loss and uncertainty correction are applied.
EM improves pseudo-label quality by reducing the entropy of pseudo-labels, but due to
the scarcity of labels and a single network, the effect is poor. DAN also performs poorly as
adversarial training is not applicable in this scenario. CPS supervises the pseudo-labels of
each other through two networks with the same architecture, which enhances label quality
with acceptable performance. DCT increases adversarial sample loss by adding noise
to generate adversarial samples, but the accuracy of labels corresponding to adversarial
samples is insufficient due to the use of a single network for label generation. RD trains
the network using only a regularization loss, resulting in the worst performance. CTCT
exhibits excellent performance, employing cross-teaching between CNN and Transformer,
effectively improving segmentation accuracy by mutual learning from two different nework
architectures. Compared to CTCT, the proposed method DCCLNet shows signifcant
improvements in all metrics. Specifically, DSC, HD95, and ASD increased by 7.8%, 1.5 mm,
and −1.0 mm, respectively, indicating that DCCLNet can maintain good performance with
fewer labeled data.
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Table 1. Different segmentation algorithms compare results on ACDC 5% and 10% labeled data.

Labeled
Data Method

RV Myo RV Mean

DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD

5% MT [11] 0.425 60.1 16.8 0.586 32.4 7.2 0.625 46.3 11.5 0.545 46.3 11.5
3/70 EM [39] 0.415 40.5 11.5 0.573 20.4 4.6 0.671 25.8 6.2 0.553 29.3 7.4

DAN [24] 0.492 44.6 17.8 0.527 37.6 9.6 0.601 38.0 8.0 0.540 40.1 11.8
UAMT [40] 0.417 44.0 14.2 0.557 29.5 6.8 0.613 31.1 7.3 0.529 34.9 9.4

ICT [21] 0.436 29.2 11.2 0.573 21.6 5.5 0.623 25.2 7.2 0.544 25.3 8.0
URPC [41] 0.387 38.9 15.5 0.441 25.7 7.2 0.545 32.9 11.7 0.458 32.5 11.5
CPS [25] 0.425 33.8 8.5 0.569 20.2 4.6 0.653 23.1 3.5 0.549 25.7 6.2
CCT [10] 0.467 34.4 12.0 0.539 18.9 4.7 0.639 21.1 5.8 0.548 24.8 7.5
DCT [27] 0.374 40.3 12.7 0.494 22.5 6.0 0.553 25.3 7.4 0.473 20.4 1.7
RD [23] 0.376 36.0 11.8 0.437 23.7 5.4 0.501 26.2 6.3 0.438 28.6 7.8

CTCT [26] 0.677 17.6 5.1 0.642 12.6 3.0 0.750 14.1 3.4 0.690 14.7 3.9
Ours 0.734 14.8 3.5 0.738 15.6 3.0 0.832 9.3 2.1 0.768 13.2 2.9

10% MT 0.791 15.5 2.7 0.764 33.3 4.8 0.832 20.0 3.9 0.796 22.9 3.8
7/70 EM 0.743 3.9 1.1 0.798 7.8 1.4 0.849 11.0 2.0 0.797 7.6 1.5

DAN 0.799 8.8 1.4 0.795 6.3 1.1 0.845 11.6 2.1 0.813 8.9 1.5
UAMT 0.772 8.3 1.3 0.796 11.5 1.8 0.849 15.7 2.7 0.806 11.8 2.0

ICT 0.815 5.1 1.1 0.809 10.7 1.6 0.850 16.5 2.8 0.825 10.8 1.8
URPC 0.817 8.7 1.9 0.812 8.3 1,4 0.886 11.7 2.3 0.838 9.6 1.9
CPS 0.831 3.9 0.8 0.826 6.6 1.3 0.871 13.1 2.3 0.843 7.9 1.5
CCT 0.837 5.1 0.9 0.820 6.4 1.2 0.878 11.3 1.8 0.845 7.6 1.3
DCT 0.757 5.9 1.3 0.762 36.1 5.8 0.855 17.8 2.6 0.792 19.9 3.2
RD 0.814 6.6 1.3 0.810 7.4 1.2 0.869 11.0 2.0 0.831 8.4 1.5

CTCT 0.861 5.0 1.1 0.841 6.3 1.0 0.895 13.5 1.8 0.866 8.3 1.3
Ours 0.888 6.8 1.3 0.861 4.8 1.0 0.921 6.5 1.4 0.890 6.0 1.2

When using 10% of the samples, CCT and CPS performed relatively well, indicating
that the potential of cross-pseudo-supervision and feature perturbation methods can be
better utilized with more labeled data. CTCT still outperformed other semi-supervised
segmentation methods without ViT. Compared to CTCT, DCCLNet showed improvements
in DSC, HD95, and ASD by 2.4%, −2.3 mm, and −0.1 mm, respectively, indicating that
DCCLNet learns more effectively from unlabeled data, and the feature perturbation and
input perturbation added in the framework also achieved certain effects. In Figure 5, the
final results of all methods trained and tested with 10% labeled samples are visualized.
It can be seen from Figure 5 that DCCLNet’s segmentation performance has notable
improvements in both boundary and overall accuracy compared to other methods.
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the right ventricle, blue denotes the myocardium, and green denotes the left ventricle.

4.4.2. Prostate Dataset Comparative Experimental Analysis

As shown in Table 2, this paper utilized two different percentages of labeled datasets
from the Prostate training set, namely 10% and 20%. On this dataset, DCCLNet achieved
the best results in terms of DSC, HD95, and ASD.
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Table 2. Compare the results of different segmentation algorithms on Prostate 10% and 20% la-
beled data.

Labeled Data Method Mean
DSC HD95 ASD

10% 4/35 MT 0.424 94.5 25.7
EM 0.491 85.3 22.2

DAN 0.568 96.6 23.5
UAMT 0.490 91.2 26.7

ICT 0.623 65.9 16.2
URPC 0.317 65.1 24.5
CPS 0.324 60.0 15.8
CCT 0.409 57.3 21.4
DCT 0.410 85.6 24.3
RD 0.432 57.6 22.3

CTCT 0.764 25.2 7.8
Ours 0.792 21.2 7.3

20% 7/35 MT 0.635 35.1 11.6
EM 0.620 41.6 13.2

DAN 0.695 64.9 13.5
UAMT 0.639 30.2 10.7

ICT 0.734 26.5 9.2
URPC 0.642 35.3 12.7
CPS 0.602 47.1 13.6
CCT 0.572 87.7 21.9
DCT 0.659 36.1 12.1
RD 0.633 39.6 12.8

CTCT 0.783 26.9 8.4
Ours 0.812 19.3 6.4

When using 10% labeled samples, it is evident that the segmentation performance of
the majority of semi-supervised segmentation methods is poor, even when segmenting
only the prostate organ. This indicates that when labeled data is extremely scarce, the
segmentation results from single-network architectures are subpar. URPC and CPS methods
performed extremely poorly, with DSC values even below 0.35. The segmentation results
of the CTCT method were relatively good, suggesting that even with very few labeled
data, decent results can be obtained through the use of CNN and ViT, two drastically
different learning paradigms. Compared to CTCT, DCCLNet showed improvements in all
metrics, with DSC, HD95, and ASD values increasing by 2.9%, −7.6 mm, and −2.0 mm,
respectively. This demonstrates that the deep integration of consistency regularization
methods and CNN-ViT collaborative training methods can enhance model performance.
Figure 6 visualizes the segmentation results of the DCCLNet method and other semi-
supervised methods on the Prostate dataset.
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4.5. Ablation Experiment

The ablation study results of DCCLNet on the ACDC dataset using 10% labeled
data are presented in Table 3, while those on the Prostate dataset with 20% labeled data
are shown in Table 4. As DCCLNet employs the UNet network as its backbone, the
experimental results of UNet are used as the baseline to assess the effectiveness of the
proposed improvements in this study.

Table 3. Comparison of ACDC 10% labeled data network structure ablation results.

Method RV Myo LV Mean

DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD DSC HD95 ASD

UNet 0.673 16.3 3.6 0.785 10.0 1.7 0.874 13.8 2.6 0.778 13.8 2.6
UNet + Aux 0.791 15.5 2.7 0.764 33.3 4.8 0.832 20.0 3.9 0.796 22.9 3.8
UNet + Tea 0.837 5.1 1.9 0.820 6.4 1.2 0.878 11.3 1.8 0.845 7.6 1.3
UNet + ViT 0.861 5.0 1.1 0.841 6.3 1.0 0.895 13.5 1.8 0.866 8.3 1.3

UNet + Tea + Aux 0.801 10.1 2.0 0.808 10.2 1.7 0.871 21.3 3.2 0.826 13.9 2.3
UNet + Tea + ViT 0.870 7.4 1.5 0.857 7.1 1.2 0.913 11.7 2.0 0.880 8.7 1.6
UNet + Aux + ViT 0.880 6.8 1.4 0.860 4.1 1.0 0.910 9.4 1.6 0.884 6.8 1.3

DCCLNet 0.888 6.8 1.3 0.861 4.8 1.0 0.921 6.5 1.4 0.890 6.0 1.2

Table 4. Comparison of Prostate 20% labeled data network structure ablation results.

Method Mean
DSC HD95 ASD

UNet 0.563 95.3 24.6
UNet + Aux 0.572 87.7 21.9
UNet + Tea 0.635 35.1 11.6
UNet + ViT 0.783 26.9 8.4

UNet + Tea + Aux 0.695 33.2 10.1
UNet + Tea + ViT 0.794 24.6 7.9
UNet + Aux + ViT 0.807 21.0 7.2

DCCLNet 0.812 19.3 6.4

For the results of the ablation experiments on these two datasets, the study first inves-
tigated the segmentation performance when only a single component was added to UNet,
namely UNet + Aux, UNet + Tea, and UNet + ViT. All three architectures exhibited better
experimental results compared to the baseline, indicating that adding feature perturbation
or input perturbation, as well as using different network architectures for co-training, can
enhance the learning of the backbone network for unlabeled data. Subsequently, experi-
ments were conducted by combining any two components, all of which yielded excellent
results, indicating that both the combination of perturbations and the combination of
perturbations with co-training can further improve the learning ability of the backbone
network. However, it was also observed that the improvement achieved by the co-training
architecture of CNN with ViT was significant, outperforming the direct addition of pertur-
bations. This is because medical image perturbations lead to significant data variations, and
a single UNet network architecture is insufficient to learn enough knowledge for correction.
Finally, applying all components to the backbone network yielded better results than all
previous scenarios.

The experimental data in Table 3 demonstrate that for the DSC evaluation metric,
DCCLNet outperformed the baseline by 11.2 percentage points, and for the HD95 and ASD
evaluation metrics, it improved by −7.8 mm and −1.4 mm, respectively. Compared to
the framework with only perturbations added (UNet + Aux + Tea), DCCLNet improved
by 2.4 percentage points in DSC score and by −2.3 mm and −0.1 mm in HD95 and ASD
distances, respectively. Compared to the framework with only co-training architecture used
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(UNet + ViT), DCCLNet improved by 6.4 percentage points in DSC score and by −7.9 mm
and −1.1 mm in HD95 and ASD distances, respectively.

The experimental data in Table 4 indicate that for the DSC evaluation metric, DCCLNet
outperforms the baseline by 24.9 percentage points, while for the HD95 and ASD evaluation
metrics, it improves by −76 mm and −18.2 mm, respectively. Compared to the framework
that only adds perturbations (UNet + Aux + Tea), DCCLNet achieves an increase of
11.7 percentage points in DSC score, and improvements of −13.9 mm and −3.7 mm in HD95
and ASD distances, respectively. Compared to the framework using only collaborative
training (UNet + ViT), DCCLNet shows an increase of 2.9 percentage points in DSC score,
with improvements of −7.6 mm and −2.0 mm in HD95 and ASD distances, respectively.

5. Discussion

In response to the challenges and issues in current semi-supervised medical image
segmentation tasks, this paper proposes a semi-supervised medical image segmentation
model called DCCLNet based on deep consistent co-training learning. The model combines
the performance of consistency learning with feature perturbation and input perturbation,
effectively leveraging the advantages of learning from different paradigms in co-training.
When applied to various medical datasets, the segmentation results are outstanding even
with limited annotated data. Although this study has made some progress, there are
also shortcomings.

Firstly, although the semi-supervised learning method proposed in this study can
fully learn the feature information of unlabeled data and enhance network generalization
ability, there is still room for improvement in segmentation performance compared to
supervised learning algorithms. Therefore, future research will focus on further developing
semi-supervised segmentation algorithms to make their performance approach that of fully
supervised methods.

Secondly, this study introduced feature perturbation and input perturbation from the
perspective of perturbations to help the backbone network learn knowledge from unla-
beled data and enhance its robustness. Additionally, from the standpoint of co-training, the
combination of CNN and ViT architectures mutually learned from each other, effectively
improving the accuracy of the backbone network. Although the improved semi-supervised
segmentation model further enhances the accuracy of medical image segmentation, it
also requires more computational resources. Future work could focus on more efficiently
combining CNN and ViT with fewer computational requirements to improve model perfor-
mance and reduce parameter count.

Moreover, this study involves setting numerous hyperparameters, including learning
rates and weights of unsupervised losses, which need to be explored through continu-
ous experimentation. Hence, future research directions could explore more automated
hyperparameter optimization strategies.

6. Conclusions

Supervised image segmentation algorithms have demonstrated outstanding perfor-
mance in a wide range of tasks, owing to their reliance on large amounts of high-quality,
pixel-level annotated data, which allows models to learn precise segmentation decisions.
However, this heavy reliance on annotated data is not always feasible in practical appli-
cations, especially in the field of medical image segmentation. Due to the complexity of
medical images and the high requirement for annotation accuracy, the annotation task must
be manually performed by experienced experts, which is not only time-consuming but
also costly. Therefore, in medical image segmentation, the reality often involves having
only a small amount of labeled data available, while there is a relatively large amount of
unlabeled data. Many semi-supervised segmentation algorithms have limited ability to
learn features from unlabeled data under the condition of a small amount of labeled data,
leading to low accuracy in image segmentation.
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To address the above issues, a semi-supervised medical image segmentation model
based on deep consistency collaborative learning, named DCCLNet, is proposed. This
model combines the consistency learning performance of feature perturbation and input
perturbation and effectively utilizes the advantages of different paradigms learning in
collaborative training. The consistency learning strategy is mainly reflected in the addition
of different auxiliary decoders on the basis of the main network, enabling the auxiliary
main network to learn. Meanwhile, the MT architecture, consisting of a teacher model and
the main network, is used, with the teacher model guiding the main network’s learning,
whereas the main network acts as the student model. The collaborative training frame-
work consists of two different network architectures, CNN and ViT, which are trained
simultaneously and learn from each other.
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