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Abstract: To assess the impact of a deep learning (DL) denoising reconstruction algorithm applied to
identical patient scans acquired with two different voxel dimensions, representing distinct spatial
resolutions, this IRB-approved prospective study was conducted at a tertiary pediatric center in
compliance with the Health Insurance Portability and Accountability Act. A General Electric Signa
Premier unit (GE Medical Systems, Milwaukee, WI) was employed to acquire two DTI (diffusion
tensor imaging) sequences of the left knee on each child at 3T: an in-plane 2.0 × 2.0 mm2 with section
thickness of 3.0 mm and a 2 mm3 isovolumetric voxel; neither had an intersection gap. For image
acquisition, a multi-band DTI with a fat-suppressed single-shot spin-echo echo-planar sequence
(20 non-collinear directions; b-values of 0 and 600 s/mm2) was utilized. The MR vendor-provided a
commercially available DL model which was applied with 75% noise reduction settings to the same
subject DTI sequences at different spatial resolutions. We compared DTI tract metrics from both
DL-reconstructed scans and non-denoised scans for the femur and tibia at each spatial resolution.
Differences were evaluated using Wilcoxon-signed ranked test and Bland–Altman plots. When com-
paring DL versus non-denoised diffusion metrics in femur and tibia using the 2 mm × 2 mm × 3 mm
voxel dimension, there were no significant differences between tract count (p = 0.1, p = 0.14) tract
volume (p = 0.1, p = 0.29) or tibial tract length (p = 0.16); femur tract length exhibited a significant
difference (p < 0.01). All diffusion metrics (tract count, volume, length, and fractional anisotropy (FA))
derived from the DL-reconstructed scans, were significantly different from the non-denoised scan DTI
metrics in both the femur and tibial physes using the 2 mm3 voxel size (p < 0.001). DL reconstruction
resulted in a significant decrease in femorotibial FA for both voxel dimensions (p < 0.01). Leveraging
denoising algorithms could address the drawbacks of lower signal-to-noise ratios (SNRs) associated
with smaller voxel volumes and capitalize on their better spatial resolutions, allowing for more
accurate quantification of diffusion metrics.

Keywords: diffusion tensor imaging; spatial resolution; denoising; pediatrics; growth; voxel size

1. Introduction

Diffusion tensor imaging (DTI) can characterize tissue microstructure and microarchi-
tecture inside a voxel of interest [1], thus providing new information previously unavailable
from conventional magnetic resonance imaging (MRI). DTI techniques have been rigor-
ously studied and well described within the fields of brain, spine, and nerve imaging [2–6].
The use of DTI in the physeal–metaphyseal complex for prediction of pediatric growth
has been studied for approximately 10 years [7]. Characterization of columns of cartilage
and newly formed bone in the physis and adjacent metaphysis through tractography has
proven useful for the determination of height gain and the evaluation of growth failure in
pediatric subjects [7–13]. Tractography is the result of tensor estimation inside each voxel;
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the tensor depicts the main direction of unrestricted water diffusion inside the columns
running perpendicular to the growth plate [2,7].

Accurate quantitative DTI metrics rely on specific acquisition parameters and the
achievement of satisfactory SNRs due to the intrinsic vulnerability of MR-DTI to artifacts
caused by diffusion gradients and motion [1]. Ample studies have used DL to optimize
DTI in the central nervous system, from basic denoising to using denoising algorithms
to minimize the diffusion weighted data requirements, and even to asses sensitivity and
specificity of the technique for classification of white matter disorders [14–18]. However,
only a few studies have investigated the effects of varying acquisition parameters on
DTI metrics in the orthopedic field, which were predominantly performed on adults
or animal models, primarily focusing on adult muscle fibers or articular structures in
rat knees [19–24]. These studies highlighted the sensitivity of knee connective tissues,
specifically ligaments, to changes in spatial resolution [24]. Surprisingly, the rat knee physes
demonstrated no significant variations in fractional anisotropy (FA) or mean diffusion
across different spatial resolutions. Furthermore, the influence of these variations on
physeal–metaphyseal tractographic diffusion metrics such as tract count, volume, and
length remains unassessed [24].

Spatial resolution plays an essential role in ensuring the quality and reliability of
DTI by influencing and modulating the occurrence of partial volume effects (PVEs) [25].
Larger voxel dimensions (associated with lower spatial resolution) offer higher SNRs but
increase the probability of PVEs. In contrast, smaller voxel dimensions provide better
spatial resolution and reduce the likelihood of PVEs at the cost of lower SNRs.

Our study aims to assess the impact of a deep learning (DL) denoising reconstruction
algorithm applied to identical patient scans acquired with two different voxel dimensions,
representing distinct spatial resolutions. We hypothesize that the denoising reconstruction
algorithm will have a more pronounced effect on the smaller voxel dimensions, given their
inherently lower SNR and consequent higher level of noise, which can be more effectively
eliminated through the algorithm. Through this study, we hope to obtain valuable insights
into the potential benefits of employing the denoising reconstruction technique in the
context of varying spatial resolutions in DTI of the growth plate.

Our research presents a novel application of a deep learning (DL) denoising algorithm
to DTI data of the knee growth plate. This application has not previously been explored
or validated. The commercial software provided by the manufacturer was designed for
denoising clinical structural images such as 2D T1 and T2 weighted scans. However, we
will utilize a prototype denoising reconstruction algorithm applied to diffusion EPI scans,
which is not yet commercially approved or tested for DTI scans. Our study will evaluate
the effectiveness of this prototype denoising reconstruction in evaluating microstructural
diffusion metrics, possibly demonstrating its potential to enhance the spatial resolution of
DTI scans and offering novel insights into more reliable growth plate DTI metric changes
over time.

2. Materials and Methods
2.1. Subjects

A prospective study was conducted at our tertiary pediatric center, in compliance with
the Health Insurance Portability and Accountability Act and approved by the institutional
review board, to evaluate growth using DTI of the knee. Healthy girls (8–15 years old)
and boys (10–16 years old) (14 girls, 13 boys) during the pubertal and adolescent expected
growth spurt, were recruited between August 2022 and November 2023. Informed consent
and assent were provided by every parent/legal guardian and child, respectively before
they participated in the study. The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of Columbia University
Irving Medical Center (AAAS9882).
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2.2. MRI

We performed two DTI sequences of the left knee on each child at our pediatric center
at 3T. We used a multi-band DTI acquisition with a fat-suppressed single-shot spin-echo
echo-planar sequence (20 non-collinear directions; b-values of 0 and 600 s/mm2). Slice-
selective gradient reversal was used for fat suppression. Two voxel dimensions were
acquired on each subject, an in-plane 2.0 × 2.0 mm2 with section thickness of 3.0 mm
and a 2 mm3 isovolumetric voxel, both without inter-section gap. We used a General
Electric Signa Premier unit (GE HealthCare, Waukesha, WI, USA) with an 18-channel knee
coil (Quality Electrodynamics, Mayfield Village, OH, USA). Parameters: repetition time
(TR)/echo time (TE); 3000/51.7 ms; bandwidth 1953.12 Hz/pixel; parallel imaging factor, 2;
signal averages, 5 for 600 b-value scans; matrix 128 × 128; field of view, 256 × 256 mm.

2.3. Intra-Voxel Tensor Visualization at Different Spatial Resolutions

To illustrate how acquisition at different spatial resolution (smaller versus larger 3D
voxels) influences diffusion tensor direction, we employed MRtrix3 3.0.4 [26]. This software
package is commonly used in diffusion imaging to visualize intravoxel tensors. The
diffusion tensor is a mathematical model that characterizes the diffusion properties within
a voxel, capturing the directionality and magnitude of water diffusion in three-dimensional
space [27]. MRtrix3 uses the acquired MR-DTI data to estimate the diffusion orientation
at each voxel [26], making it a useful tool to visualize and examine fiber tractography in
the physes.

A diffusion-weighted image was selected as input for MRtrix3—2 mm × 2 mm × 3 mm
volume. The volume was resampled into 2 mm3 image using MRtrix3’s regrid command.
Confirmed successful resampling was achieved with the mrinfo command from MRtrix3
toolbox. Both the original and resampled images were saved into separate folders along
with their corresponding .bval and .bvec files. For each corresponding image, the Dhollan-
der algorithm was employed [28]. This method is instrumental in creating basis functions
essential for estimating fiber orientation distributions (FODs) derived from the diffusion
signal. Consequently, a model was established to project how the diffusion signal changes
in different orientations and with varying diffusion gradients applied. The outputs from
this algorithm provided the corresponding voxels used to build the basis function. Sub-
sequently, the dwi2fod command from MRtrix3 toolbox was utilized to apply this basis
function to each voxel in the input volume [29]. Finally, the mrcat command was used to
concatenate these into a single volume, enabling the visualization of tensor ellipsoids that
are representative of the fiber orientation directions.

2.4. AIRTM Recon DL Algorithm (GE Healthcare, Waukesha, WI)

The MR vendor provided a commercially available DL model with 75% noise reduction
settings (Recon DL strength: High) applied. This model was applied on the same subject
DTI sequences acquired at two different spatial resolutions (isovolumetric 2 mm3 and
2 mm × 2 mm × 3 mm).

2.5. Segmentation

Using fiber tract reconstruction software, Diffusion Toolkit v. 0.6.4 (trackvis.org,
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA,
USA) and Trackvis (FACT algorithm), the brightest voxel inside the physes was used as
the reference point to locate the physes. A region of interest (ROI) was drawn intersecting
the distal femoral and proximal tibial growth plates perpendicular to the long axis of the
bone on every slice. ROIs were manually drawn in the AIRTM Recon DL reconstructed
scans (n = 54 DL reconstructed scans) over the distal femur and proximal tibia physes. The
same ROIs were applied to non-denoised scans (n = 54 non-denoised scans) for consistency.
Diffusion metrics (tract count, tract volume, tract length, and fractional anisotropy (FA))
were obtained from the resultant tractography.
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2.6. Signal-to-Noise Ratio Measurements

The signal-to-noise ratio (SNR) serves as an important metric when assessing the
quality of DTI data. Enhanced SNR results in more dependable tensor estimation, conse-
quently boosting the reliability and clarity of DTI-derived metrics, like FA, mean diffusivity,
tract length etc. In MRI data, particularly DTI, noise can vary spatially due to elements
like multi-channel coil sensitivity profiles, parallel imaging, and susceptibility artifacts.
Traditional methodologies might not effectively capture this noise variance. To tackle
this, SNR was calculated using the validated single-image set method applied by Wang
et al. for the assessment of SNR in muscle diffusion tensor imaging [30]. Imaged volumes
were paired with others that had proximally aligned diffusion encoding directions. We
performed a subtraction of each DWI to yield initial noise image volumes. Each slice was
transformed to k-space using 2D Fourier transformation, followed by Butterworth filtering
and 2-D inverse transformation to image space, resulting in the final noise image volumes.
Finally, the average noise variance was calculated from the same local ROI for both b0 and
b600 images.

2.7. Statistical Analysis

We compared the tract count, volume, length and FA, derived from both reconstructed
scans and non-denoised scans for femur and tibia, at each spatial resolution. Differences
between spatial resolutions were evaluated using Wilcoxon-signed ranked test and Bland–
Altman plots. All statistical analysis was performed on JMP®, Version <17>. SAS Institute
Inc., Cary, NC, USA, 1989–2023.

3. Results

Twenty-seven subjects (14 girls, 13 boys) were included in the study; each subject had
2 DTI sequences to which a DL reconstruction algorithm was applied (n = 27 subjects, n = 54
non-denoised DTI scans, n = 54 DL reconstructed scans). In all subjects, isovolumetric
2 mm3 DTI scans exhibited a visibly higher quantity of tensor ellipsoids compared to
the 2 mm × 2 mm × 3 mm acquisition, a more defined diffusion direction was observed
in the smaller voxel size, as shown in Figure 1. Fiber tract count, volume, and length
were consistently larger in both the femur and tibia physes when using the isovolumetric
2 mm3 voxel size in both the DL reconstructed scans and non-denoised scans, as shown in
Tables 1 and 2.
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Figure 1. Same subject DTI acquisition using voxel sizes of (A) 2 mm3 and (D) 2 mm × 2 mm × 3 mm. 
The image quality is visibly beĴer when DL reconstruction is applied in the 2 mm3 voxel size (A), 
with sharper bone contours and an increase in fiber tracts on both the femur and tibia. Conversely, 
in the 2 mm × 2 mm × 3 mm voxel size, both the non-denoised and DL denoise images (D) appear 
equally pixelated, and there are minimal changes in tractography. The tensor ellipsoid representa-
tion of intravoxel eigen vectors is substantially larger and more numerous in the 2 mm3 voxel size 
(B,C) compared to the 2 mm × 2 mm × 3 mm voxel size (E,F). 

Table 1. Denoised AIr Recon DL DTI metrics: 2 mm3 versus 2 mm × 2 mm × 3 mm. 

DTI METRIC 
AIr Recon DL AIr Recon DL p-Value 

Isovolumetric 2 mm3  2 mm × 2 mm × 3 mm  

femur tract count 753.03 ± 409.17 410.37 ± 308.29 <0.0001 * 
femur tract volume 12.47 ± 7.05  9.52 ± 7.17 <0.0006 * 
femur tract length 8.83 ± 2.48 9.07 ± 3.93  0.9 

femur FA 0.29 ± 0.04 0.25 ± 0.02  <0.0001 * 
tibia tract count 341.62 ± 187.3 137.44 ± 177.31 <0.0001 * 

tibia tract volume 5.34 ± 2.7 4.50 ± 8.36 0.0005 * 
tibia tract length 5.36 ± 0.84  6.81 ± 2.42 0.002 * 

tibia FA 0.34 ± 0.05 0.24 ± 0.03  <0.0001 * 
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*). 

Table 2. Raw Data DTI metrics: 2 mm3 versus 2 mm × 2 mm × 3 mm. 

DTI METRIC  
Raw Data  Raw Data  p-Value  

Isovolumetric 2 mm3  2 mm × 2 mm × 3 mm   
femur tract count 576.85 ± 257.21 388.62 ± 274.57  <0.0001 * 

femur tract volume 9.3 ± 4.45 9.03 ± 6.4  0.13 
femur tract length 6.11 ± 1.39 7.96 ± 3.25 0.001 * 

femur FA 0.31 ± 0.04 0.26 ± 0.03 0.0001 * 
tibia tract count 277.22 ± 133.89 123.44 ± 112.03  0.0001 * 

tibia tract volume 4.33 ± 1.99 2.74 ± 2.2  0.0001 * 

Figure 1. Same subject DTI acquisition using voxel sizes of (A) 2 mm3 and (D) 2 mm × 2 mm × 3 mm.
The image quality is visibly better when DL reconstruction is applied in the 2 mm3 voxel size (A),
with sharper bone contours and an increase in fiber tracts on both the femur and tibia. Conversely,
in the 2 mm × 2 mm × 3 mm voxel size, both the non-denoised and DL denoise images (D) appear
equally pixelated, and there are minimal changes in tractography. The tensor ellipsoid representation
of intravoxel eigen vectors is substantially larger and more numerous in the 2 mm3 voxel size (B,C)
compared to the 2 mm × 2 mm × 3 mm voxel size (E,F).

Table 1. Denoised AIr Recon DL DTI metrics: 2 mm3 versus 2 mm × 2 mm × 3 mm.

DTI METRIC
AIr Recon DL AIr Recon DL p-Value

Isovolumetric 2 mm3 2 mm × 2 mm × 3 mm

femur tract count 753.03 ± 409.17 410.37 ± 308.29 <0.0001 *
femur tract volume 12.47 ± 7.05 9.52 ± 7.17 <0.0006 *
femur tract length 8.83 ± 2.48 9.07 ± 3.93 0.9

femur FA 0.29 ± 0.04 0.25 ± 0.02 <0.0001 *
tibia tract count 341.62 ± 187.3 137.44 ± 177.31 <0.0001 *

tibia tract volume 5.34 ± 2.7 4.50 ± 8.36 0.0005 *
tibia tract length 5.36 ± 0.84 6.81 ± 2.42 0.002 *

tibia FA 0.34 ± 0.05 0.24 ± 0.03 <0.0001 *
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*).
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Table 2. Raw Data DTI metrics: 2 mm3 versus 2 mm × 2 mm × 3 mm.

DTI METRIC
Raw Data Raw Data p-Value

Isovolumetric 2 mm3 2 mm × 2 mm × 3 mm

femur tract count 576.85 ± 257.21 388.62 ± 274.57 <0.0001 *
femur tract volume 9.3 ± 4.45 9.03 ± 6.4 0.13
femur tract length 6.11 ± 1.39 7.96 ± 3.25 0.001 *

femur FA 0.31 ± 0.04 0.26 ± 0.03 0.0001 *
tibia tract count 277.22 ± 133.89 123.44 ± 112.03 0.0001 *

tibia tract volume 4.33 ± 1.99 2.74 ± 2.2 0.0001 *
tibia tract length 4.26 ± 0.62 6.43 ± 1.75 0.0001 *

tibia FA 0.36 ± 0.06 0.26 ± 0.04 0.0001 *
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*).

Applying the reconstruction algorithm led to an increase in femorotibial tract count,
volume, and length in both DL reconstructed voxel dimensions compared to non-denoised
scans (Tables 3 and 4). DTI metrics showed a greater increase in scans acquired using
isovolumetric 2 mm3 compared to the scans acquired with 2 mm × 2 mm × 3 mm voxel
dimensions (p = 0.04). Diffusion metrics (tract count, volume, and length) derived from the
DL reconstructed scans were significantly higher from the non-denoised scan DTI metrics
in both the femur and tibial physes using the 2 mm3 voxel dimension (p < 0.001 (Table 3,
Figures 2 and 3).

Table 3. Raw data versus DL denoised DTI metrics: 2 mm3.

DTI METRIC
Raw Data AIr Recon DL p-Value

Isovolumetric 2 mm3 Isovolumetric 2 mm3

femur tract count 576.85 753.03 <0.0001 *
femur tract volume 9.3 12.47 <0.0001 *
femur tract length 6.11 8.83 <0.0001 *

femur FA 0.31 0.29 <0.0001 *
tibia tract count 277.22 341.62 0.013 *

tibia tract volume 4.33 5.34 0.001 *
tibia tract length 4.26 5.36 <0.0001 *

tibia FA 0.36 0.34 0.005 *
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*).

Table 4. Raw data versus DL denoised DTI metrics: 2 mm × 2 mm × 3 mm.

DTI METRIC
Raw Data AIr Recon DL p-Value

2 mm × 2 mm × 3 mm 2 mm × 2 mm × 3 mm

femur tract count 388.62 410.37 0.1
femur tract volume 9.03 9.52 0.14
femur tract length 7.96 9.07 0.001 *

femur FA 0.26 0.25 0.017 *
tibia tract count 123.44 137.44 0.14

tibia tract volume 2.74 4.5 0.29
tibia tract length 6.43 6.81 0.16

tibia FA 0.26 0.24 <0.0001 *
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*).
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Figure 2. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs be-
tween DL reconstructed-and non-denoised (Non-DL) image DTIs. The horizontal axis represents 
the mean of the two methods and the vertical axis, the difference between them. The solid line (red) 
shows the mean difference (close to zero) and the dashed lines show the 95% limits of agreement. 

Figure 2. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs between
DL reconstructed-and non-denoised (Non-DL) image DTIs. The horizontal axis represents the mean
of the two methods and the vertical axis, the difference between them. The solid line (red) shows the
mean difference (close to zero) and the dashed lines show the 95% limits of agreement.
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When comparing DL versus non-denoised diffusion metrics in femur and tibia using 
the 2 mm × 2 mm × 3 mm voxel dimension there were no significant differences between 
tract count (p = 0.1, p = 0.14) tract volume (p = 0.14, p = 0.29), or tibial tract length (p = 0.16); 
femur tract length exhibited a significant difference (p < 0.01) (Table 4, Figures 4 and 5). 
DL reconstruction resulted in a significant decrease in femorotibial fractional anisotropy 
(FA) for both voxel dimensions (p < 0.01) (Figures 3 and 5). Figure 6A,B show DTI tractog-
raphy changes in non-denoised and denoised 2 mm3 versus non-denoised and denoised 
2 mm × 2 mm × 3 mm in a 9-year-old girl and a 10-year-old boy. 

Figure 3. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs between
DL-reconstructed and non-denoised (non-DL) image DTIs. The horizontal axis represents the mean
of the two methods and the vertical axis, the difference between them. The solid line (red) shows the
mean difference (close to zero) and the dashed lines show the 95% limits of agreement.

When comparing DL versus non-denoised diffusion metrics in femur and tibia using
the 2 mm × 2 mm × 3 mm voxel dimension there were no significant differences between
tract count (p = 0.1, p = 0.14) tract volume (p = 0.14, p = 0.29), or tibial tract length (p = 0.16);
femur tract length exhibited a significant difference (p < 0.01) (Table 4, Figures 4 and 5).
DL reconstruction resulted in a significant decrease in femorotibial fractional anisotropy
(FA) for both voxel dimensions (p < 0.01) (Figures 3 and 5). Figure 6A,B show DTI tractog-
raphy changes in non-denoised and denoised 2 mm3 versus non-denoised and denoised
2 mm × 2 mm × 3 mm in a 9-year-old girl and a 10-year-old boy.
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Figure 4. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs be-
tween DL reconstructed and non-denoised (non-DL) DTIs. The zero value is indicated by the red 
line. The horizontal axis represents the mean of the two methods and the vertical axis, the difference 
between them. The solid line (red) shows the mean difference (close to zero) and the dashed lines 
show the 95% limits of agreement. The mean is very close to zero for most cases, indicating liĴle 
difference between the methods, and the range of LoA is relatively small indicating a good numer-
ical agreement in the methods among the majority of patients for the 2 mm × 2 mm × 3 mm voxel 
size. 

Figure 4. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs between
DL reconstructed and non-denoised (non-DL) DTIs. The zero value is indicated by the red line. The
horizontal axis represents the mean of the two methods and the vertical axis, the difference between
them. The solid line (red) shows the mean difference (close to zero) and the dashed lines show the
95% limits of agreement. The mean is very close to zero for most cases, indicating little difference
between the methods, and the range of LoA is relatively small indicating a good numerical agreement
in the methods among the majority of patients for the 2 mm × 2 mm × 3 mm voxel size.
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tween DL reconstructed and non-denoised (non-DL) DTIs. The zero value is indicated by the red 
line. The horizontal axis represents the mean of the two methods and the vertical axis, the difference 
between them. The solid line (red) shows the mean difference (close to zero) and the dashed lines 
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Figure 5. Bland–Altman plots regarding the difference in DTI metrics for same physeal ROIs between
DL reconstructed and non-denoised (non-DL) DTIs. The zero value is indicated by the red line. The
horizontal axis represents the mean of the two methods and the vertical axis, the difference between
them. The solid line (red) shows the mean difference (close to zero) and the dashed lines show the
95% limits of agreement. The mean is very close to zero for most cases, indicating little difference
between the methods, and the range of LoA is relatively small indicating a good numerical agreement
in the methods among the majority of patients for the 2 mm × 2 mm × 3 mm voxel size.
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Figure 6. (a). 2 mm × 2 mm × 3 mm (A) non-denoised (left) and 2 mm × 2 mm × 3 mm denoised 
(right) versus 2 mm3 (B) non-denoised (left) and denoised (right) in a 9-year-old girl. There is an 
evident increase in fiber tract on the denoised images acquired with a 2 mm3, while denoised and 
non-denoised images are very similar using 2 mm × 2 mm × 3 mm voxel size. (b). 2 mm × 2 mm × 3 
mm (C) non-denoised (left) and denoised (right), versus 2 mm3 (D) non-denoised (left) and de-
noised (right) in a10 year-old boy. There is an evident increase in fiber tract on the denoised images 
acquired with a 2 mm3, while denoised and non-denoised images are very similar using 2 mm × 2 
mm × 3 mm voxel size. 

SNR values were significantly higher in the non-denoised femur and tibia ROIs in 
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(right) versus 2 mm3 (B) non-denoised (left) and denoised (right) in a 9-year-old girl. There is an
evident increase in fiber tract on the denoised images acquired with a 2 mm3, while denoised and non-
denoised images are very similar using 2 mm × 2 mm × 3 mm voxel size. (b). 2 mm × 2 mm × 3 mm
(C) non-denoised (left) and denoised (right), versus 2 mm3 (D) non-denoised (left) and denoised
(right) in a10 year-old boy. There is an evident increase in fiber tract on the denoised images acquired
with a 2 mm3, while denoised and non-denoised images are very similar using 2 mm × 2 mm × 3 mm
voxel size.

SNR values were significantly higher in the non-denoised femur and tibia ROIs in the
2 mm × 2 mm × 3 mm voxel dimension compared to the 2 mm3 voxel size (p < 0.0001),
a pattern observed both before and after applying DL-denoising (Table 5). Following the
application of DL-denoising, the femur and tibia ROI SNR on b0 exhibited a 39% and
41% increase in the 2 mm3 voxel dimension, respectively, in contrast to the 37% and 38%
increase in the 2 mm × 2 mm × 3 mm (Table 5). Moreover, the SNR for the femur and
tibia ROI on b600 experienced a 39% and 40% increase in the 2 mm3 voxel size, whereas a
more pronounced increment of 40% and 42% was observed in the 2 mm × 2 mm × 3 mm
(Table 6).



Tomography 2024, 10 515

Table 5. SNR values in the non-denoised femur and tibia ROIs: 2 mm × 2 mm × 3 mm voxel
dimension compared to 2 mm3 voxel size.

Voxel Size Comparison of ROI SNRs for b0 and b600 DTI with and without DL

2 mm3 DL Non-DL p-value

femur_b0 44.2 31.7 <0.0001 *

femur_b600 18.9 13.7 <0.0001 *

tibia_b0 36.4 25.8 <0.0001 *

tibia_b600 16.6 11.9 <0.0001 *

2 mm × 2 mm × 3 mm DL Non-DL p-value

femur_b0 67.1 49.0 <0.0001 *

femur_b600 29.6 20.9 <0.0001 *

tibia_b0 54.1 39.3 <0.0001 *

tibia_b600 25.4 17.9 <0.0001 *
Wilcoxon signed rank test; p-value < 0.05 was considered significant (*).

Table 6. SNR Increase.

SNR Increase
(Mean Difference SNR/Non-DL SNR) 2 mm3 2 mm × 2 mm × 3 mm

femur_b0 0.39 0.37

tibia_b0 0.41 0.38

femur_b600 0.39 0.42

tibia_b600 0.4 0.42

4. Discussion

Voxel dimension is one of the factors that influences fiber tracking and the degree of
PVEs [25]. Larger voxel sizes can contain more than one dominant diffusion orientation,
thereby causing possible errors in estimating the primary tensor direction which ultimately
impacts fiber tracking and the resultant diffusion metrics [1,25]. This may explain the
markedly smaller tensor ellipsoid representations inside a voxel with a less defined direc-
tion observed in the larger voxel dimension (which results in lower microscopic resolution)
compared to the smaller isotropic voxel size used (2 mm3). The relationship between voxel
resolution and image quality is evident in Figure 1, where the knee bones and physes are
more sharply defined on the isotropic 2 mm3 voxel size [31].

The use of larger voxels resulted in smaller fiber tract diffusion metrics. Larger 3D
voxels can cover the entire field of view (FOV) and thickness with fewer voxels overall
at a lower spatial resolution, the opposite is true when using smaller voxel sizes, hence
fewer tensors overall are calculated on bigger voxels (as more area is covered by one 3D
voxel and a single dominant tensor is calculated per voxel) accounting for lower tract count,
length, and volume when using a larger voxel size.

We hypothesize the significant increase in both femur and tibia fiber tract count,
volume, and length after denoising isovolumetric 2 mm3 scans is due to the removal of
intrinsically increased noise by the applied reconstruction algorithm. Diffusion metrics on
the bigger voxel size in same subject scans, however, had better SNR and lower microscopic
resolution, which was not improved with the reconstruction algorithm. This may possibly
explain the small changes in tract count and volume in both physis after reconstruction
algorithm application, which were not significant. The change in femoral tract length after
denoising the 2 mm × 2 mm × 3 mm voxel size was small yet statistically significant,
suggesting tract length is more sensitive to small SNR changes when compared to tract
volume and tract count. In previous femur and tibia physeal DTI studies evaluating growth,
tract length results have been variable: showing poor interobserver reliability compared to
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other fiber tract diffusion metrics (count, volume, length, and FA) evaluated in the same
specimens [8], and it also did not show the expected change with age in animal models [8],
which could suggest tract length is susceptible to small changes.

FA is the measurement of the degree of restricted water diffusion, calculated from the
eigen value of the diffusion tensor [32]. In brain white matter, FA has been seen to decrease
steadily after 20 years of age. Previous studies on the knee physes, have shown increasing
FA with age as the closing physes, now ossified cartilage, show greater water diffusion
restriction [7,9]. FA contrasts the principal eigenvalues of diffusivity and is considered
to be limited by noise, making it susceptible to voxel size effects [33]. A previous study
evaluating FA in brain white matter fiber tracts in different subjects using increasing voxel
sizes found voxel size to significantly affect FA with smaller voxels giving higher FA values
and reporting the impact was strongest at the highest spatial resolutions [33]. These mirrors
our findings where same subject mean femur and the tibia FA values were 0.34 and 0.36
(2 mm3) and 0.26 for both femur and tibia (2 mm × 2 mm × 3 mm).

High noise levels can bias DTI measurements, which can consequently produce
errors in estimation of fiber tract parameters [34]. Low SNR can cause overestimation and
underestimation of the largest and smallest eigenvalues, respectively [35]. A previous study
evaluating DL noise reduction effects on FA in CNS structures in 20 patients, performed
one image acquisition (NAQ1) versus five image acquisitions (NAQ5), and compared FA
values after DL denoising was applied in NAQ1 [36]. They found FA to be overestimated
when the number of image acquisitions was one (NAQ1), and after denoising NAQ1′s FA
decreased and came closer to that of NAQ5 [36]. In our study, a similar decrease in FA
values on both spatial resolutions after application of the DL reconstruction occurred likely
due to noise elimination and the resultant increased signal, with greater signal achieved
in the intrinsically noisier 2 mm3 spatial resolution explaining the greater drop in FA in
the smaller voxel size (non-denoised versus denoised FA for the femur, 0.31 and 0.29, and
the tibia, 0.36 to 0.34). This finding is also consistent with previous studies that low SNR
leads to overestimation of FA on skeletal muscle [37], and the positive bias in FA values on
peripheral nerve was removed after denoising [18].

We observed that the ROI SNR values for both the femur and tibia were higher when
utilizing the larger voxel size (2 mm × 2 mm × 3 mm), irrespective of denoising. This
aligns with the acknowledged trade-off between spatial resolution and SNR. Initially we
anticipated a higher increase in SNR after denoising the smaller voxel dimensions (2 mm3).
The signal-to-noise ratio (SNR) quantitatively increased slightly more for the b600 images
in the 2 mm × 2 mm × 3 mm voxel size than for the 2 mm3. The 2 mm × 2 mm × 3 mm
demonstrated higher SNR before denoising and the subsequent increase in SNR did not
impact the metrics as observed in the smaller, noisier voxel dimensions.

The children imaged in this study are part of an ongoing longitudinal cohort, focusing
on predicting growth in healthy children using DTI of the physeal–metaphyseal complex.
As a standard practice, the left knee was chosen for imaging as it was more likely to be the
non-dominant knee and less prone to injury, ensuring consistency and reducing potential
confounding factors for analysis. No differences are predicted in the equally healthy right
contralateral extremity in terms of SNR or imaging acquisition that would alter the findings
on this study.

This study is limited by the small sample size used. To address this, the methods
could be replicated in a bigger subject population to determine if the effects observed are
consistent. The data can also be compared in groups of children in the clinical setting,
with musculoskeletal disease for example and/or adult population. This study provides
information to support the leveraging of denoising algorithms, such as AIRTM Recon DL,
on DTI acquisition with smaller voxel volumes. The noise is reduced while preserving the
higher spatial resolution, allowing for more accurate quantification of diffusion metrics.

This approach could address the drawbacks of lower SNR associated with smaller
voxel volumes and capitalizes on their better spatial resolutions. This allows clinicians a
clearer view of growth plate tissue microstructures without sacrificing signal. In addition, it



Tomography 2024, 10 517

may be possible to take advantage of better image resolution without a greater acquisition
time which is essential when imaging pediatric subjects. In cases where there will be
various same subject acquisitions, FA values are more reliable when they are denoised than
when they are not.

Recognizing DTI’s inherent sensitivity to noise, which significantly impacts the relia-
bility of metrics such as fractional anisotropy (FA) and tract count, our discussion delves
into the effectiveness of the DL denoising algorithm. This pretrained prototype is adept
at generating noise-tolerant, reliable DTI metrics, a critical advancement for interpreting
complex microstructures like the knee growth plate in the context of skeletal growth. This
capability to reduce noise while preserving essential diffusion signals is pivotal, especially
for the knee growth plate, where precise visualization and accurate tract counts and other
diffusion metrics are crucial for assessing prediction of post-imaging growth and growth
plate closure as well as positive and negative effect of treatments like growth hormone
administration for potential growth disorders in pediatric patients. The significant im-
provements in DTI metrics following denoising underscore the impact of DL techniques in
addressing DTI’s traditional challenges. Given its fixed pretrained parameters, this infer-
ence network seamlessly translates across different body parts for DTI scans, negating the
need for retraining. This characteristic is helpful in clinical and research settings, offering a
stable, reliable tool to enhance DTI data quality.

5. Conclusions

A DL reconstruction algorithm may lead to significant increase in femorotibial DTI
metrics (tract count, volume, and length) when applied on smaller voxel sizes, while
causing a significant decrease in FA regardless of voxel dimension, larger cohorts should
be used to asses validation.

Leveraging denoising algorithms could address the drawbacks of lower SNR associ-
ated with smaller voxel volumes and capitalizes on their better spatial resolutions, allowing
for more accurate quantification of diffusion metrics.
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