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Abstract: We discuss how the interaction of electrons with an overdamped optical phonon can give
rise to a strange-metal behavior over extended temperature and frequency ranges. Although the
mode has a finite frequency, an increasing damping shifts spectral weight to progressively lower
energies so that despite the ultimate Fermi liquid character of the system at the lowest temperatures
and frequencies, the transport and optical properties of the electron system mimic a marginal Fermi
liquid behavior. Within this shrinking Fermi liquid scenario, we extensively investigate the electron
self-energy in all frequency and temperature ranges, emphasizing similarities and differences with
respect to the marginal Fermi liquid scenario.
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1. Introduction

Despite the long-standing success of Landau’s Fermi liquid theory, during the last
few decades, an increasing number of violations of this paradigm has been observed. One
of the most noticeable cases is that of high-temperature cuprate superconductors, where
many physical quantities like resistivity [1–4], optical conductivity [5,6], or specific heat [7]
display an anomalous behavior in the metallic state either above the superconducting dome
in the temperature vs. doping phase diagram, or even below it, when superconductivity
is suppressed by strong magnetic fields [8]. The attempt to explain these anomalous be-
haviors led to the formulation of the so-called marginal Fermi liquid (MFL) theory [9–14].
This theory is based on the phenomenological assumption that (a) the electrons inter-
act via a momentum-independent effective interaction with a spectral density P(ω) and
(b) the latter is flat over a sufficiently large frequency range. The form of the spectral density
can be taken as Im P(ω) = λ min(ω, kBT), where kB is the Boltzmann constant, we take the
reduced Planck constant h̄ = 1, and λ is an effective dimensionless coupling, up to a suit-
able high-energy cutoff ω0. In turn, this interaction gives rise to a momentum-independent
electron self-energy with an imaginary part of the form Im Σ(ω) = −λ max(ω, kBT) or,
more physically smoothed, Im Σ(ω) = −λ

√
ω2 + (kBT)2. The corresponding real part of

the self-energy then gives rise to a quasiparticle weight vanishing as Z∼1/ log(ω0/kBT)
for T → 0+. Within an MFL description, it is possible to correctly reproduce many of
the anomalous experimental features [9,10,12,15–18], including the linear-in-T resistivity
and the apparent logarithmic divergence of the electronic specific heat at a particular
doping level.

Generically, there are two sufficient ingredients to reproduce the linear-in-T resistivity
typical of strange metals: a low-energy scattering mechanism extending to low frequencies
(smaller than kBT) and a near isotropy of the scattering [19]. Clearly, both these features
are provided by the MFL paradigm. Recently, thanks to resonant inelastic X-ray scattering
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(RIXS) experiments performed on several cuprate compounds [20–26], it was possible to
identify new charge density collective modes; for a recent review, see Ref. [27]. While these
modes coexist with the well-known charge density waves previously predicted [28,29]
and observed in the underdoped regime, they are also present in a much wider region
of the phase diagram [30], extending to high temperatures and dopings. These collective
modes, known as charge density fluctuations (CDFs), are characterized by a finite but rather
small characteristic energy scale M and a quite small correlation length (of the order of
one to two CDF wavelengths, i.e., of six to eight lattice spacings) so that their spectral
weight is extended over a broad range in momentum space [30,31]. The widespread
presence of CDFs in the phase diagram, their relatively small characteristic energy scale,
and their weak momentum dependence triggered the proposal that CDFs provide the
scattering mechanism at the origin of the strange-metal properties of cuprates [32,33].
In particular, the two main characteristics that made CDFs suitable for this description
are the weak momentum dependence, which allows them to mediate a scattering that is
essentially isotropic on the Fermi surface (including umklapp processes required to degrade
momentum, as required to have non-vanishing conductivity at finite frequencies), and the
strong Landau damping, which allows them to reduce their characteristic energy scale
while leaving their correlation length unchanged [32,33]. By phenomenologically assuming
that the damping, as described by a dimensionless parameter γ, increases logarithmically
with lowering the temperature, in a more or less restricted doping range, a good deal of the
strange-metal phenomenology of cuprates was then accounted for.

All the above obviously motivates an analysis of electrons interacting through a
dispersionless optical phonon with a substantial Landau damping due to its Holstein-like
coupling to the local electron density. Note that this does not reflect the coupling to real
phonons in cuprates, which can acquire a strongly anisotropic character, cf., e.g., Ref. [34],
but for the interaction with local CDFs, such momentum dependence should be much
weaker. The model we are going to propose always exhibits a standard Fermi liquid
behavior at low enough temperature, but the range of validity of the Fermi liquid regime
shrinks when the Landau damping γ is assumed to increase with decreasing temperature.
Henceforth, we will refer to this model as a shrinking Fermi liquid (SFL). As we shall
see, this model displays features both of standard Fermi liquid and of MFL systems,
and it could be suitable for the description of some of the most prominent hallmarks of
strange metals.

2. Self-Energy from a Simple Local Propagator

We consider the retarded propagator of a local (i.e., momentum independent) over-
damped collective mode

DR(ω) =
1

M− iγω− ω2

Ω

, ImDR(ω) =
1
γ

ω(
M
γ
− ω2

γΩ

)2

+ ω2

. (1)

Since we are going to describe a massive (non-critical) collective mode, we consider
M as a fixed parameter of our theory. The generic expression for the imaginary part of
a self-energy due to the above collective mode within the first-order approximation (see
Figure 1) is given by [35,36]:

Im ΣR(ω, T) = −g2
∫ +∞

−∞
ImD(ξ −ω)

[
f (ξ) + b(ξ −ω)

]
N(ξ)dξ

= − g2N0

2γ
cosh

(βω

2

) ∫ ∞

−∞

ξ −ω[
M
γ
− (ξ −ω)2

γΩ

]2

+ (ξ −ω)2

× 1

cosh
(βξ

2

)
sinh

(β(ξ −ω)

2

) dξ,

(2)



Condens. Matter 2024, 9, 14 3 of 13

where g is the coupling between the electrons and the collective mode, and f (ω) and b(ω)
are the Fermi and the Bose functions, respectively. We also assumed a nearly constant
density of states N(ξ) ≈ N0. A word is in order here about the high-frequency behavior
of this expression. If we consider an infinite electron bandwidth and an infinite collective
mode high-energy scale Ω, Im ΣR(ω, T) ∼ log ω for ω → ∞. This behavior changes when
Ω is finite, because ImΣR(ω, T)→ constant at large ω, thereby reproducing the standard
behavior of Holstein phonons [37], as the damped character of our collective mode becomes
immaterial at frequencies much larger than its characteristic energy scales. On the other
hand, as soon as a finite fermion bandwidth is considered, Im ΣR(ω, T) → 0 at high
frequencies, since the phase space for the scattered electrons is reduced. This high-energy
effect of a finite bandwidth can be mimicked by introducing an ultraviolet cutoff in the
integral of Equation (2), which must be comparable with the bandwidth itself (this is an
order of magnitude of a few hundred meV in cuprates). For the sake of clarity, and to keep
the number of parameters in the theory as small as possible, we shall take this high-energy
cutoff as infinity.

Figure 1. Self-energy diagram in the first-order approximation.

Equation (2) can be taken as the starting point for the deduction of all quantitative
aspects of our model. Unfortunately, the integral which appears in this expression cannot
be analytically solved for any frequency and temperature. However, not only it is quite
simple to obtain numerically the self-energy in the general cases, but it is quite instructive
and physically interesting to investigate suitably restricted physical regimes.

2.1. Zero Frequency

We first explore the temperature dependence of the self-energy at fixed ω = 0:

Im ΣR(ω = 0, T) = −λ
M
γ

∫ +∞

−∞

ξ(
M
γ
− ξ2

γΩ

)2

+ ξ2

1
sinh(βξ)

dξ.

This integral cannot be evaluated analytically, but it is possible to separately consider
the two regimes in which the temperature is, respectively, smaller or larger than M/γ:

Im ΣR(ω = 0, T) ' −π2λ
M
2γ

(γkBT
M

)2
, for kBT�M/γ,

Im ΣR(ω = 0, T) ' −πλkBT, for kBT�M/γ,
(3)

where λ := g2N0/M is a dimensionless coupling constant. For instance, it was shown in
Ref. [31] that λ ≈ 0.3− 0.5 in the case of slightly overdoped cuprates and, since this is a
quite moderate value, the perturbative approach does not seem unreasonable at least in that
case. It is most remarkable that Im ΣR(ω = 0, T) displays a crossover between a quadratic
(i.e., Fermi liquid like) and a linear (i.e., of the MFL form) regime around a temperature scale
of the order of M/γ (see Figure 2). It is important to notice that the linear-in-T behavior
has a quite simple physical explanation: when the temperature becomes of the order of, or
larger than, the intrinsic energy scale M/γ of the collective modes, these acquire a (nearly)
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classical statistical weight with the Bose function becoming ∼kBT/ω. Therefore, the linear-
in-T behavior of the resistivity simply arises from this linear statistical dependence on
T. The same commonly occurs in standard (not overdamped) electron–phonon systems
when the temperature is above the Bloch–Grüneisen regime kBT ' ωD/5 (where ωD is the
Debye frequency).

Figure 2. Temperature dependence at ω = 0 of both the exact form given by Equation (8) (solid
line) and of the approximate form given by Equation (8) (dotted line). The vertical red line indicates
the crossover temperature from Fermi liquid to linear-in-T regime. Values of the parameters are
M = 10 meV, γ = 1, Ω = 30 meV.

Also notice that the slope of the linear regime does not depend on γ. As it will be
discussed in the last section, this feature is particularly interesting in the light of a possible
explanation of the linear-in-T resistivity in strange metals, when the superconducting
critical temperature is lowered by magnetic fields, thereby extending the linear-in-T regime
of the resistivity down to lower and lower temperatures.

2.2. Zero Temperature

According to Equation (2), the zero temperature expression for the self-energy is
given by

Im ΣR(ω, T = 0) = −λ
M
2γ

log
[

1 +
(γω

M

)2
]

, (4)

which, for selected parameters, is plotted in Figure 3 by the solid gray line. This expression
is obtained in the simpler case of Ω→ ∞, whereas the expression becomes more involved
when Ω is finite,

Im ΣR(ω, T = 0) = −λ

2
M
γ

∫ ω2

0

1(
M
γ
− x

γΩ

)2
+ x

dx,

and the corresponding result is shown by the solid black curve in Figure 3. In the Ω→ ∞
case, Im ΣR(ω, T = 0) grows logarithmically (of course, until the electron bandwidth is
eventually reached), while when ω > Ω and for γΩ > 4M/γ, it saturates to a finite value,

Im ΣR(ω → ∞, T = 0) = −λ
M
γ

γΩ√
γ2Ω2 − 4MΩ

log

(
γΩ +

√
γ2Ω2 − 4MΩ

γΩ−
√

γ2Ω2 − 4MΩ

)
. (5)

Notice that the ω�M/γ limit leads to a quadratic dependence in ω, which is in
agreement with a standard Fermi liquid behavior. Due to the constant or weakly diver-
gent behavior at high frequencies, ImΣR(ω) never displays a truly linear-in-ω behavior,
characteristic, e.g., of the MFL state; rather, it switches from a quadratic to a logarithmic
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or constant regime so that an approximately linear dependence in the crossover region
of the inflection point occurs between the two regimes. However, the linear regime is
quite extended, and for the parameters used in Figure 3, it comprises an energy interval
of ∼15 meV around the inflection point where the relative difference between exact and
linearized Im ΣR(ω) is below 5%. One can also notice that the slope of the approximately
linear regime of this function does not depend on γ. This regime is clearly visible around
the inflection point of Im ΣR(ω, T = 0), which occurs around a frequency

ωinfl =

√√
(γ2Ω2 − 2MΩ)2 + 12M2Ω2 − (γ2Ω2 − 2MΩ)

6
. (6)

Notice also that the location of this inflection point, marking the approximately linear
regime, depends on the strength of the dissipation parameter γ. In particular, in the
strongly dissipative regime, γ� 1, ωinfl ∼ M/γ, while in the propagating regime γ� 1,
ωinfl ∼

√
MΩ.

Figure 3. Frequency dependence at T = 0 of both the exact Equation (2) (solid line) and of the
approximate form Equation (A2) (dotted line). The values of the parameters are M = 10 meV, γ = 1,
Ω = 30 meV. The solid gray curve reports the case with Ω = ∞.

A numerical inspection of Im ΣR(ω, T) at various temperatures shows that the behav-
ior outlined at T = 0 persists up to physically reasonable temperatures.

At fixed T = 0, the real part of the self-energy can be exactly computed by means of
the Kramers–Kronig relation, obtaining the simpler expression for the Ω→ ∞ case,

Re Σ(ω, T = 0) = − g2N0

γ
arctan

(γω

M

)
.

In the case in which Ω is finite, the calculation is considerably more complicated, even
when T = 0. However, since we are only interested in the quasiparticle weight, we can
use the Kramers–Kronig relation to directly calculate the derivative of Re Σ(ω, T = 0) at
zero frequency:

∂ Re ΣR(ω, T = 0)
∂ω

∣∣∣∣
ω=0

=
∫ ∞

0

1
ω

[
∂ Im ΣR(ω

′, T = 0)
∂ω′

∣∣∣∣
ω′=ω

+

−∂ Im ΣR(ω
′, T = 0)

∂ω′

∣∣∣∣
ω′=−ω

]
dω

π
= −λ

∫ ∞

−∞

M
γ

1(
M
γ
− ω2

γΩ

)2

+ ω2

dω

π
= −λ.
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Given this result, one can easily compute the quasiparticle weight:

Z :=
(

1− ∂ Re Σ(ω, T = 0)
∂ω

∣∣∣
ω=0

)−1

=
1

1 + λ
. (7)

This result shows that the quasiparticle weight at zero temperature is independent
of γ and that the associated quasiparticle mass enhancement stays finite, m∗/m = 1 + λ
(obviously, the mass parameter of the collective mode, M, should not be confused with the
quasiparticle mass m∗), as long as the dimensionless coupling stays finite. In particular, this
would imply that the electron-specific heat is not renormalized by γ at low temperature
and that the specific heat coefficient CV/T for the electrons always stays finite (non-critical).
This is a consequence of the fact that the low-frequency behavior of Im ΣR(ω, T = 0)
is quadratic in ω, unlike the MFL case, for which we obtain instead a logarithmically
vanishing quasiparticle weight. As seen in Appendix A, from the expression at finite Ω,
the effect of this ultraviolet cutoff introduces weak γ-dependent corrections to Z of order
M/(γΩ).

3. Discussion and Conclusions
3.1. The Main Features of the Overdamped Optical Phonon Model

In light of what has been shown so far, we now discuss the most remarkable aspects
and physical consequences of the model considered here. First of all, there is a characteristic
energy scale M/γ that separates the asymptotic regimes both in frequency and in temper-
ature. Below this scale, the system is a standard Fermi liquid, which displays the usual
T2 and ω2 behavior of the imaginary part of the fermion self-energy. The quasiparticle
mass renormalization at zero temperature only depends on the dimensionless parameter
g2N0/M, and there is no γ dependence.

On the other hand, for kBT > M/γ, the system displays a linear-in-T behavior in
Im ΣR. The same does not hold as far as the frequency dependence is concerned, since
the seemingly linear-in-ω behavior only arises in an extended range around an inflection
point in Im ΣR(ω) separating the ω2 regime at low frequency and the log(ω) or constant
regime at high frequency. It is quite important to stress that the different temperature and
frequency behaviors stem from completely different physical mechanisms. In contrast to an
MFL, where the underlying ω-independent spectral density leads to a linear-in-ω behavior
of Im ΣR(ω) down to kBT, the frequency dependence in the SFL scenario arises from the
dynamical range of the collective mode. This range extends down to low frequency because
of the damping and extends up to high frequencies when the overdamped character of
the mode persists because of a large Ω, before the collective mode turns into a nearly
propagating mode, at ω > Ω. In passing, we notice the smoother shape of Im ΣR(ω)
in Figure 3 with respect to the usual step-like shape in undamped Einstein phonons [37].
Instead, the truly linear-in-T behavior of Im ΣR(T) arises from the classical statistical weight
of the collective modes mediating the quasiparticle scattering. Owing to this different origin,
there is no reason to expect any ω/T scaling in the present model (notice that the other usual
mechanism for scaling—namely, the divergence of some correlation length near criticality—
is ineffective here, because the collective modes are massive and non-critical). Nevertheless,
as a matter of fact, a seeming scaling can be obtained because Im ΣR(ω, T) can be fitted
remarkably well over a sizable temperature and frequency range by an approximate form
that is described in detail in Appendix B, and it can be further simplified, for the sake of
exemplification, in the form

Im ΣR(ω, T) ' −λ

√(M
γ

)2
+ ω2 + (πkBT)2 − M

γ

. (8)

This expression captures the main features of Im ΣR(ω, T) at all temperatures and at
small/moderate frequencies, and it allows us to see how our model might display seeming
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scaling properties over a sizable range were it not for the presence of a finite mass term
M/γ. It is interesting to note that it may be precisely a mass term M/γ of order 10 meV
that accounts for the small scaling violations at low frequencies in optical experiments in
slightly overdoped cuprates [6].

Moreover, this expression makes it clear that for frequencies and temperatures much
larger than M/γ, the imaginary part of the fermion self-energy bears strong similari-
ties with the MFL model, where the fermion self-energy takes the form Im ΣR(ω, T) =
−λ
√

ω2 + (kBT)2.
Equation (8) also makes it clear that in the linear regimes (both in temperature and in

frequency), the slopes are independent of γ and M. This has an important consequence:
for kBT, ω � M/γ, an approximate ω/T scaling is obtained. This should be clear from the
fact that within this limit, our approximate fitting form provided by Equation (8), reduces
to the MFL form.

3.2. Connection with the Shrinking Fermi Liquid Scenario

We now propose a straightforward connection of the presently studied model with the
SFL model as a possible explanation for the strange metallicity of many physical systems.
In this regard, we first notice that since the overdamped optical phonons mediating the
inter-particle interaction have no momentum dependence, then the quasiparticle scattering
rate coincides with the transport scattering rate. Moreover, owing to the momentum inde-
pendence of the scattering mechanism, scattering processes obviously include also umklapp
processes, which are responsible for momentum dissipation and non-zero conductivity at
finite frequencies. Therefore, the linear regime of Im ΣR(ω = 0, T) would coincide with
a regime of linear-in-T resistivity, which is the most famous and prominent feature of
strange metals.

According to our analysis, the linear-in-T behavior stops below a Fermi liquid tem-
perature scale M/γ. In the strange metals, like, e.g., slightly overdoped superconducting
cuprates, this linear resistivity is observed down to the superconducting critical tempera-
ture (of order of 101–102 K). This is of the same order of M/γ, which in cuprates is estimated
from RIXS experiments [30,38]. The comparison between the static and dynamical spectral
densities of the CDF allows one to estimate M to be of order 10 meV and γ to be of order
one. Therefore, the linear-in-T resistivity would be nicely accounted for by quasiparticles
being scattered by CDF (as characterized by RIXS experiments [31]) which, being weakly
momentum dependent, are also reasonably well described by the present model. The same
occurs as far as the linear-in-ω behavior is concerned, as schematized by the solid-line
curves in Figure 4a, where the (approximate) linear-in-ω behavior of Im ΣR(ω) at various
fixed temperatures occurs above the M/γ = 10 meV scale. On the other hand, the solid
lines at low temperature become substantially different from the dotted lines representing
the MFL behavior, which we plot as a benchmark.

A similar failure arises when the linear-in-T behavior in the d.c. resistivity is shown
to persist down to T ∼ 2 K, as found in transport experiments under strong magnetic
fields [3,8], which is obviously smaller than M/γ if γ does not depend on temperature. To
solve this difficulty, the possibility was considered in Refs. [32,33,36] that γ increases with
lowering the temperature when superconductivity is suppressed.

The value of γ at low temperatures can be extracted from specific heat experiments.
Indeed, it is quite natural that the boson collective modes contribute to the specific heat
CV if their energy is low enough. It is then found [32,33] that the bosonic contribution to
CV/T is proportional to the damping coefficient γ, and this could in turn be assumed to
increase logarithmically in T to match the experimental growth of CV/T [7]. It is worth
emphasizing that in this scenario, the logarithmic divergence of CV/T arises from the
boson (collective-mode) contribution and not from the fermions, which behave as Fermi
liquid quasiparticles, with a finite mass (see Equation (7)). While a full microscopic model
for this increase is still missing, a simplified model based on the interplay between CDF
and diffusion modes of the electrons was also proposed in Ref. [36] for two-dimensional
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systems, accounting for a logarithmic-in-T increase of γ with decreasing T. Then, assuming
γ(T) = log[20 mev/(kBT)], the whole Fermi liquid scale M/γ(T) shrinks so that the region
of Fermi liquid behavior is correspondingly reduced at lower temperatures. This behavior
is reported in Figure 4b. Here, it is evident that the Fermi liquid scale M/γ(T) shrinks with
decreasing T, in such a way as to keep the solid lines, reporting the numerical evaluation
of Im ΣR(ω, T), which is close to the MFL dotted curves even at low temperatures. In
order to have a better quantitative comparison between the two scenarios, we chose to
use Equation (A2) (rather than the more schematic Equation (8)) as a fitting expression for
Im ΣR(ω, T). As discussed in Appendix B, this expression shares all the qualitative aspects
of Equation (8) discussed so far, but in addition, it also more precisely reproduces the slope
of the linear part in ω at T = 0.

Figure 4. Solid lines: Frequency dependence at various temperatures (kBT = 1 meV (blue curves),
kBT = 3 meV (magenta curves) and kBT = 5 meV (red curves)) of the approximate Equation (A2)
in comparison with the MFL expression (dotted lines) at the same temperatures. The values of the
parameters are M = 10 meV, γ = 1 in (a); γ(T) = log[20 mev/(kBT)] in (b); Ω = 30 meV.

One could also wonder whether a T-dependent γ might alter the linear-in-T behavior
of Im ΣR(ω = 0, T) (hence, of the d.c. resistivity ρ(T)). The fact mentioned above, that the
slope of Im ΣR(ω = 0, T) does not depend on γ, comes in handy by allowing us to keep
the slope of ρ(T) unchanged while the Fermi liquid scale is progressively reduced at lower
and lower temperatures.

Hence, our overdamped optical phonon model, once it is equipped with the additional
feature of a γ(T) increasing logarithmically with lowering T, gives rise to an SFL scenario.
By (phenomenologically) assuming this temperature dependence of γ(T), to fit the experi-
mentally measured CV/T, this scenario, although ultimately based on a Fermi liquid state
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at T = 0, mimics quite well (and it is, to any practical purpose, indistinguishable from) the
MFL behavior without invoking an unnecessary ω/T scaling in the boson spectrum.
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Appendix A

In order to find an interpolating expression for our self-energy valid at any frequency
and temperature, it is convenient to approximate the Bose and Fermi functions with
piecewise polynomial functions, as it is customary:

f (ω) '


1, for ω < −2kBT,
1
2
− ω

4kBT
, for − 2kBT≤ω≤ 2kBT,

0, for ω > 2kBT;

b(ω) '


−1, for ω < −2kBT,
kBT
ω
− 1

2
, for − 2kBT≤ω≤ 2kBT,

0, for ω > 2kBT.

By using these approximations, and by considering only the case Ω→ ∞, the integral
in Equation (2) becomes fully analytical. Since our approximated forms for f (ω) and b(ω)
become exact at T = 0, we expect to recover Equation (4) at zero temperature. At ω = 0,
this approximation reproduces the correct expression at high temperature, but it gives an
incorrect expression for a factor 3π2/16 at low temperature due to the fact that the integral
of f (ξ)− b(ξ−ω) in dξ changes by that factor if the exact or approximate expression is used.
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By correcting this discrepancy by hand, we obtain the following smoothly interpolating
expression for the self-energy:

Im ΣR(x, y) = −α

4
log

[(
1 + (x + cy)2)(1 + (x− cy)2)(

1 + (cy)2
)2

]
− 2αy arctan(cy)+

+
2α

c

[
1− arctan(x + cy)− arctan(x− cy)

2cy
− x

4cy
log
(

1 + (x + cy)2

1 + (x− cy)2

)]
,

(A1)

where we have introduced the following definitions:

α :=
g2N0

γ
, x :=

γω

M
, y :=

γkBT
M

, c :=
3π2

8
.

It is quite straightforward to show that Equation (A1) correctly reproduces
Equations (3) and (4) in the appropriate domains of validity. Note that this expression has
the form:

Im ΣR(ω, T) = − g2N0

M
M
γ

F
(

γω

M
,

γkBT
M

)
,

where the dimensionless positive-definite function F(γω/M, γkBT/M) is fully defined
through Equation (A1). Notice that it is a scaling function separately between ω and
M/γ and between kBT and M/γ but not between ω and kBT. This is another important
difference between the standard MFL and our SFL.

Appendix B

Once the above simplified expressions of b(ω) and f (ω) are used, the integral which
appears in Equation (2) has an exact expression in terms of elementary functions. However,
the full expression does not enlighten the physics behind it. It is instead interesting
to observe the behavior of this expression in appropriate regimes. There are only two
energy scales involved in the qualitative behavior of Im ΣR(ω, T = 0), one of which is the
aforementioned ωinfl, while we denote the other by ωsat. In order to have a more compact
description, it is convenient to introduce the dimensionless parameter φ := γ2Ω/M. We
can therefore express these two energy scales as shown below:

ωinfl :=
M
γ

√
φ

√
(φ− 2)2 + 12− (φ− 2)

6
, ωsat := max

(
M
γ

φ , ωinfl

)
.

Notice that both these scales can be expressed as the product of M/γ and a dimension-
less function of φ. As we mentioned, the function Im ΣR(ω, T = 0) goes as ω2 at small ω
and saturates to a constant value at large ω. The two limiting regimes are connected by an
extended inflection region, and the frequency scale ωinfl is defined precisely as the inflection
point. The scale ωsat is instead the approximate scale beyond which the saturation regime
is observed:

Im ΣR(ω, T = 0) '



−λ

2
M
γ

(γω

M

)2
, for ω � ωinfl,

−λ
Λφ

2
ω, for ω ' ωinfl,

Im ΣR(ω → ∞, T = 0), for ω � ωsat,

where Λφ is a dimensionless parameter that establishes the correct slope of Im ΣR(ω, T = 0)
at its inflection point, and it is defined as
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Λφ =

2

√
φ

√
(φ− 2)2 + 12− (φ− 2)

6(
1−

√
(φ− 2)2 + 12− (φ− 2)

6

)2

+ φ

√
(φ− 2)2 + 12− (φ− 2)

6

This is a monotonically decreasing function of φ which approaches 1 in the limit
φ→ ∞ and goes as 2/

√
φ for φ→ 0. The simplest fitting expression that can preserve the

correct features of Im ΣR(ω, T = 0) for ω ≤ ωinfl is the following:


Im ΣR(ω, T = 0) ' −λ

M
γ


√√√√1 +

(
4 + Λ2

φ

4Λφ

γω

M

)2

−

√√√√1 +

(
4−Λ2

φ

4Λφ

γω

M

)2
,

1 ≤ Λφ ≤ 2.

Given this expression, it is possible to exhibit an even more general fitting expression
that can also take the temperature dependence into account:

Im ΣR(ω, T) ' −λ


√√√√(M

γ

)2
+

(
4 + Λ2

φ

4Λφ
ω

)2

+ (πkBT)2 −

√√√√(M
γ

)2
+

(
4−Λ2

φ

4Λφ
ω

)2
, (A2)

which is only valid under these two constraints:

1 ≤ Λφ ≤ 2 ∧ kBT <
4Λφ

√
2(16 + Λ4

φ)

π(4−Λ2
φ)

2
M
γ

.

The second constraint ensures that the fitting expression we have proposed is always
an increasing function of ω, and that its behavior at low ω is quadratic. For reasonable
values of M, γ and Ω, Λφ is quite close to 1; however, as long as 1 ≤ Λφ ≤ 2 holds, there
are no important qualitative changes in the fitting expression. This expression has all the
qualitative features of Equation (8); in particular, the latter is reproduced exactly when
ω = 0 or Λφ = 2.
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