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Abstract: This work presents the study of the thickness vs. stiffness relationship for different
materials (PMMA and PEEK) in patient-specific cranial implants, as a criterion for the selection
of biomaterials from a mechanical perspective. The geometry of the implant is constructed from
the reconstruction of the cranial lesion using image segmentation obtained from computed axial
tomography. Different design parameters such as thickness and perforations are considered to obtain
displacement distributions under critical loading conditions using finite element analysis. The models
consider quasi-static loads with linear elastic materials. The null hypothesis underlying this research
asserts that both biomaterials exhibit the minimum mechanical characteristics necessary to withstand
direct impact trauma at the implant center, effectively averting critical deformations higher than
2 mm. In this way, the use of PMMA cranioplasties is justified in most cases where a PEEK implant
cannot be accessed.

Keywords: patient-specific implant; medical imaging; cranial implant; biomaterial; PMMA; PEEK;
finite element analysis

1. Introduction

Globally, cranioencephalic trauma affects an estimated 200 individuals out of 10,000,
with a higher prevalence among men in a ratio of 3:2, particularly within the age range
of 20 to 30, possibly due to increased engagement in sports and high-risk activities [1].
Industrialized nations report falls from one’s own height as the leading cause (60% of cases),
alongside traffic accidents and acts of violence, collectively contributing to a 3.4% mortality
rate [2,3]. In Latin America, head trauma is predominantly linked to traffic accidents
(motorcyclists and pedestrians) and violence (internal guerrilla conflicts) [4]. In Colombia,
limited demographic studies focus on the incidence of mild or moderate traumatic brain
injury, situations often requiring cranial implants. Research in Cali between 2003 and 2004
indicated that 52% and 30% of admitted traumatic brain injury cases were categorized
as mild and moderate, respectively [5]. The mortality rate in Colombia for the period
2010–2017 was 10.7 per 100,000 inhabitants [6].

Biomechanics is a multidisciplinary field that plays a crucial role in addressing bone in-
juries and defects, particularly in the development of orthopedic implants. These implants,
made from a variety of biomaterials, are essential for proper bone alignment and healing [7].
To enhance the interaction between these implants and bone tissue, bioinspired surface
modifications are being explored, with the aim of creating next-generation implants [8].
The biomechanics of bone fractures and fixation, including the use of implants, is a key
area of study in orthopedic trauma [9]. Orthopedic implant studies encompass design,
new materials, and physiology [10,11]. To ensure the final product effectively restores the
functionality of the missing biological structure, these disciplines must collaborate [12].
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Engineering is vital in evaluating prototype designs, identifying flaws, refining implants,
and assuring patients of improved quality of life.

For over 80 years, scientists have been investigating and evaluating various synthetic
biomaterials to address cranial defects [12], and the exploration for new materials, includ-
ing those with biodegradable features, continues [13]. Among them, we find PMMA, a
polymethylmethacrylate ceramic mixed with a liquid monomer, which passes from a liquid
system to a non-Newtonian one to end up solidifying, through an exothermic energetic
release process, in the form desired by the orthopedist. PMMA is a durable, malleable,
and relatively inexpensive biomaterial [14], very efficient in aesthetic terms for sealing
asymmetric and extensive defects, with great properties for surgical use [15]. PMMA has
demonstrated remarkable success rates exceeding 97% and boasts a notably low complica-
tion rate of less than 2.3% [16,17]. Inconveniences have also been reported due to the low
porosity of PMMA implants, since it does not favor the cell growth of osteocytes, nor does
it facilitate its vascularization, creating an inert material susceptible to infection, although
the literature reports less than 5% of infections with this biomaterial [18]. Finally, low
mechanical properties are attributed to it in terms of tensile strength (36 MPa), 4.7 times
less than cortical bone (170 MPa) [19], which raises doubts in surgeons when assessing its
mechanical strength and stiffness, especially considering that many of these patients may
be at risk of experiencing significant impacts.

Currently, surgeons have put their interest in PEEK (Polyether Ether Ketone), a ther-
mally stable biomaterial [20] with success rates exceeding 99% [21], as indicated by studies.
This biomaterial boasts low post-surgical complication rates ranging from 0% to 9% [16,22],
and infection-related complications are less than 6% [23,24]. Moreover, PEEK exhibits a
tensile strength of 80 MPa, two times lower than cortical bone strength. These attributes po-
sition PEEK as a promising biomaterial for surgical applications, presenting a high success
rate, low complication rates, and advantageous mechanical properties when compared to
alternative materials like PMMA.

Both biomaterials exhibit comparable clinical success rates, low complication rates,
low infection rates, and high aesthetic satisfaction reported by patients [22], making them
seemingly suitable for shielding the brain from mechanical trauma. However, they diverge
in mechanical properties and costs, with PMMA being approximately 55% more economi-
cal than PEEK (USD 2702 vs. USD 4684, approximate value for an implant in Colombia
without osteosynthesis material). In [25], the authors proposed an integrative surgery man-
agement system for cranial reconstructions using patient-specific implants made of PMMA
as an accessible and cost-effective solution for low-income countries. This cost differential
underscores a significant economic consideration in choosing between the two materi-
als for neurosurgical implants while maintaining comparable clinical effectiveness and
patient satisfaction.

The digitization of medical implants and their subsequent analysis using compu-
tational mechanics, such as finite element (FE) analysis, has significantly advanced the
exploration and investigation of implant design [26,27]. These tools allow engineers to
evaluate various parameters, including thickness, geometrical features, thermal properties,
materials, and applied boundary conditions. This enables the creation of more customized
implants from a mechanical perspective, blending the most favorable attributes to ensure
prolonged implant durability [28]. Computational modeling and simulation play a crucial
role in the total product life cycle of implants, analyzing both surgical procedures and
devices, taking into account the topics of both hard and soft tissue mechanics.

Research using FE analysis has been reported applied to cranial implants evaluating
the variable thickness vs. type of material, where it has been concluded that the thickness
factor is more relevant to stresses than the material used for its manufacture. However,
the situation differs when it comes to deformation, and the elastic modulus of the material
significantly affects the displacement field. In another set of experiments, researchers
evaluated the stress–strain behavior of two types of cranial implants, titanium (Ti) and
PEEK, under axial loading [29]. Special interest has been given to the geometric shape
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of the system of miniplates that hold the implant–skull interface and how these react
to different types of loads [30,31]. In general, there has been a surge in research within
the literature employing FE approaches to evaluate cranial implants [32–35], driven by a
heightened interest in the subject. In [32], the authors employed finite element analysis
to assess implant behavior under varied intracranial pressure conditions, considering
the influence of fixation points, for different materials. The study in [33] models cranial
implants with meshless methods, comparing solid and porous structures, for titanium
alloy (Ti6Al4V) and PEEK, indicating titanium’s overall superiority, while PEEK excels in
weight and osseointegration. In [35], evaluation of von Mises stresses and deformations in
a customized PMMA-based cranial implant with the fixation system demonstrated effective
protection without physiological harm or anchoring failures.

This work presents the study of the thickness vs. stiffness relationship for different
materials (PMMA and PEEK), as a criterion for the selection of biomaterials from a me-
chanical perspective. Our null hypothesis is that the two biomaterials offer the minimum
mechanical characteristics to withstand a direct impact trauma in the geometric center of
the implant, e.g., as a result of a ball impact, and avoid critical deformations greater than
2 mm. In this way, the use of PMMA cranioplasties is justified in most cases where a PEEK
implant cannot be accessed. First, the subject for the study is presented. Leveraging a
computed tomography (CT) scan, we extract essential spatial and topological data, forming
the foundation for precise model identification. Next, we continue with the design of
a patient-specific implant, tailoring the solution to the individual’s unique anatomical
characteristics. Finally, the structural integrity of the implant is assessed through finite
element analysis, providing comprehensive insights into its performance under varying
conditions, including material, topology, and thickness.

2. Materials and Methods
2.1. Model Identification

The subject of analysis in this study was the 3D reconstruction of a 32-year-old male
patient’s cranium, originally from Ibagué, Colombia, who experienced a fracture and
subsequent loss of bone tissue. The spatial and topological characteristics of the cranial
defect were derived from a computed tomography (CT) scan of the cranial bones, as
depicted in Figure 1. The relevant data were encoded in a DICOM (Digital Imaging and
Communications in Medicine) extension file, with spatial slices at 0.625 mm and a gap
of 0.625 mm between cuts, with a Gantry at 0◦. The CT scan utilized a General Electric
Dual HiSpeed scanner (General Electric, Chicago, IL, USA) with 250 slices, a pixel size of
0.124 mm, and implemented the B70s algorithm. This comprehensive imaging approach
provided detailed insights into the structural alterations resulting from the injury.
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2.2. Design of the Patient-Specific Implant (PSI)

For the personalized design of the implant based on the anatomy of the patient, a
geometric and topological symmetry was assumed with respect to the sagittal axis, which
was conveniently taken from the crista galli eminence and the anterior nasal spine of the
patient [36]. Once this area was reflected on the defect, the thickness was calculated from
the bone tables, and the customized implant was constructed using the CAD software
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Mimics v13 (Materialise, Leuven, Belgium). We have checked that the edges of the implant
had a smooth continuity with the edges of the bone defect and were consistent with
the anatomy of the patient. Figure 1 shows part of the defect and the patient-specific
implant solution.

2.3. Finite Element Model

To evaluate the deformations of the implant under loading conditions, we use a
standard Galerkin finite element numerical model to solve the elasticity problem. This
method has been commonly used to evaluate the mechanical response in biomechanical
applications [35,37,38]. Using a variational formulation of the elasticity problem and
the finite element approximation of displacements, the following system of equations is
obtained:

KU = f (1)

where K is the stiffness matrix, U is the vector of nodal displacements and f is the load
vector. Finite element analysis involves defining analysis type, boundary conditions,
material model, and mesh generation. Post-processing evaluates results, followed by an
analysis of their implications. To ensure the reliability and accuracy of the analysis, a
mesh independence test is conducted, verifying the convergence of displacement solutions,
considering that our quantity of interest is the total deformation. This iterative process
ensures the robustness of the finite element method and the consistency of results, providing
a comprehensive understanding of the studied phenomena.

For the problem under consideration, a linear static structural analysis with a direct
solver is suitable to evaluate the behavior of the bone tissue, under the imposed boundary
conditions. In a compression test, the bone tissue experiences loading that is applied
slowly or at a constant rate, and the response of the material is observed under this quasi-
static condition. For a linear analysis, the displacements are solved under the following
assumptions: The stiffness matrix K is essentially constant, such that the materials have
linear elastic behavior and small deformations theory is used. The load vector f is statically
applied, i.e., no time-varying forces are considered, and no inertial effects are included.

The geometry of both the cranial implant (CI) and the skull base were exported in
an IGES format, to generate a 3D model that is discretized to represent the geometric
characteristics of the patient. The modeling software used was Ansys Workbench 2023
R1 (ANSYS Inc., Canonsburg, PA, USA). This FE tool allows an approximation of the
differential equations that govern the stress–strain behavior of the elasticity problem,
providing in a non-invasive way results that closely resemble real-world scenarios [39].

The research methodology focused on a 2k factorial design of experiments (DOE)
with k factors corresponding to three key input variables of interest: (i) implant thickness,
(ii) biomaterial, and (iii) uniformly distributed perforations. The choice of a 2k factorial
design is motivated by its efficiency in exploring the effects of multiple factors simultane-
ously while requiring a relatively small number of experimental runs. This design allows
for the systematic investigation of main effects and interaction effects, providing a com-
prehensive understanding of variable relationships. The statistical simplicity of analysis,
resource savings, and the ability to efficiently screen factors make the 2k factorial design an
advantageous choice. Table 1 provides details on the uncoded variables, where the design
typically involves only two levels for each factor.

Table 1. Input variables for the factorial design of the experiment.

Factors
Coded Level

−1 +1

Implant thickness (A) 3 mm 5 mm
Biomaterial (B) PEEK PMMA
Perforations (C) No Yes

Source. Own elaboration.
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In a 2k factorial design of experiments with three factors, the effects represent the
influence or impact of each factor and their interactions on the response variable. The
general equation for calculating the main effects of each factor in a 2k factorial design is
as follows:

Ei =
1

2k−1

(
∑2k−1

j=1 Yi1 − ∑2k−1

j=1 Yi2

)
(2)

where Ei denotes the effect of the i-th factor, Yi1 and Yi2 are the average responses at the
high and low levels of the i-th factor, respectively. Additionally, for interaction effects
between two factors, the equation reads:

Eij =
1

2k−2

(
∑2k−2

j=1 Yi1j1 + Yi2j2 − ∑2k−2

j=1 Yi1j2 + Yi2j1

)
(3)

where Eij represents the interaction effect between the i-th and j-th factors, Yi1j1 are the
average responses at the high levels of the i-th and j-th factors, Yi2j2 are the average
responses at the low levels of the i-th and j-th factors, and the remaining terms represent
the coupled responses.

The properties of bone and alloplastic material were assumed and modeled under
a continuous homogeneous isotropic approach, with a linear elastic model governed by
the elastic modulus and Poisson’s ratio, which has shown a very good correlation for
stress–strain analysis in human bones [40,41]. The mechanical properties of the linear
elastic material models of the two biomaterials, PEEK and PMMA, are listed in Table 2,
together with those of the cranial bone [42–44].

Table 2. Mechanical properties of the biomaterial PEEK, PMMA, and cranial bone.

Material Elastic Modulus (MPa) Poisson’s Ratio

PEEK 4000 0.38
PMMA 3000 0.38

Cranial bone 15,000 0.3
Source. Own elaboration.

A load of 700 N was applied at the central apex of the implant as a remote force
to avoid stress concentration effects, as previously used in [45], Figure 2. We did not
consider the internal cranial hydrostatic pressure (15 mmHg) on the implant [45,46]. In the
clinical procedure, patients are previously subjected to mechanical devices that regulate
the intracranial pressure. Moreover, in [47], the authors measured the forces due to brain
pulsation and indicated that they resulted in stresses one order of magnitude lower than
the yield stress of the cranioplasty material. We measured the subarachnoid space in
the CT scan for a maximum displacement of 2 mm, which is in agreement with values
reported [48]. Cranial implants may incorporate holes or perforations to enable suturing
for secure attachment to the skull, promote tissue integration and vascularization, facilitate
drainage and fluid management, allow customization for individual patient needs, reduce
weight for improved comfort, and provide diagnostic access or monitoring options when
necessary. Thus, the implants were also drilled in a symmetrical pattern of 3 rows, with
holes spaced at 1 cm and a diameter of 1.7 mm, as shown in Figure 3, since it was a factor
to be evaluated.

A fixed boundary condition at the level of the flat edge of the cranial remnant was
assumed, and the contact between the implant and the portion of the skull was defined as
a non-separation condition, Figure 4. On the other hand, the center for the reference frame
was located at the apex of the implant with a k-direction perpendicular to the surface at
this point (Figure 2a). Convergence tests of the solution in displacements were performed
to validate mesh independence using four meshes, with a final variation of 0.2% in the last
mesh, as shown in Table 3, for a final element size of 1 mm, and a total of 1,521,702 elements.
Skewness measure of the mesh was evaluated for element quality, with values below 0.95.
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Finally, meshes of second-order tetrahedral elements, considering the parameters in Table 4,
were produced for the bone tissue and the implants, as shown in Figure 5.
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Table 3. Mesh independence test for total normal displacement.

Number of Elements Max. Total Displacement (mm)

224,302 0.28775632
399,475 0.29616231
761,202 0.29734957

1,521,702 0.29806294
Source. Own elaboration.

Table 4. Mesh parameters for the implant and bone solids.

Parameter Implant Bone

Edge length (mm) 1 1
Minimum edge length (mm) 0.5 1

Smooth transition Yes Yes
Bend angle 7.5◦

Number of elements 576,596 749,866
Tetrahedra Yes Yes

Source. Own elaboration.
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Following this, the study assesses outcomes by modeling implants using both PEEK
and PMMA biomaterials on cranial cortical bone. Under identical load conditions and
constraints, the study aims to gauge the mechanical performance of both materials based
on deformation parameters. This comparative analysis provides insights into how PEEK
and PMMA perform in simulated conditions, aiding in the evaluation and selection of
these biomaterials for cranial applications.

3. Results

In our study, a 23 factorial experiment was undertaken to examine the impacts of
material type (PEEK and PMMA), implant thickness (3 mm and 5 mm), and the presence of
perforations for suturing (with and without) on cranial implant performance. This design
resulted in eight experimental runs, encompassing all possible combinations of these factors.
The response variable, indicating the primary outcome (i.e., maximum displacement), was
measured for each experimental run. Employing statistical analysis, we assessed the main
effects and potential interactions among these factors, aiming to discern the influence of
material choice, thickness variations, and the presence of perforations on the properties
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of cranial implants. The findings contribute valuable insights into optimizing cranial
implant design based on these critical factors. The results of the eight experiments are
presented in Table 5, which shows the maximum total displacements for different implant
configurations.

Table 5. Average results of the 23 factorial experiment.

Experiment A B C
Outlet (mm)

ξ

1 − − − 0.787
2 − − + 0.811
3 − + − 1.089
4 − + + 1.125
5 + − − 0.225
6 + − + 0.237
7 + + − 0.300
8 + + + 0.316

Source. Own elaboration.

Figures 6 and 7 show the total displacements for the implants under a load of 700 N
applied on the apex of the implant for two experiments of the different configurations of
biomaterial, thickness, and perforations.
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The effect that each one of the factors studied has on the normal displacements
of the surface is presented in Table 6. The results of our study revealed several key
findings regarding the main effects and interactions of factors on our experimental outcome.
Regarding the main effects, implant thickness exhibited a notable negative effect with a
coefficient of −0.684 (±0.01), indicating that increasing implant thickness was associated
with a decrease in the observed outcome. Conversely, the choice of biomaterial showed
a positive effect of 0.193 (±0.01), suggesting that certain biomaterials, i.e., PMMA, were
associated with higher outcomes. Perforations, as a main effect, had a minimal effect with
a coefficient of 0.022 (±0.01). In terms of two-factor interactions, the interaction between
thickness and biomaterial showed a negative effect of −0.116 (±0.01), suggesting that the
combination of certain thicknesses and biomaterials led to a reduction in the outcome.
The interactions between thickness and perforations (−0.008 ± 0.01) and biomaterial and
perforations (0.004 ± 0.01) had relatively minor effects on the observed outcome. These
results provide insights into the complex interplay between implant characteristics and
their impact on our experimental outcome.

Table 6. Calculated effects and standard errors for the factorial design.

Main Effects Effect Standard Error

Thickness −0.684 ±0.01
Biomaterial 0.193 ±0.01
Perforations 0.022 ±0.01

Two-factor interactions

Thickness × Biomaterial −0.116 ±0.01
Thickness × Perforations −0.008 ±0.01

Biomaterial × Perforations 0.004 ±0.01
Source. Own elaboration.

The perforations or holes variable does not seem to have a noticeable influence on
the deformations of the implant when the biomaterial is PMMA. Otherwise, when the
biomaterial is PEEK, and the thickness is 3 mm, this combination seems to influence the
displacements. In the configuration of change of thickness and biomaterial, it is observed
that for thicknesses of 3 mm the biomaterial influences, but for thicknesses of 5 mm, it is not
significant. The largest deformation was observed in the combination of 3 mm thickness,
PMMA biomaterial, and holes with a displacement of 1.125 mm. In consideration of the
influence of thickness, we have included data corresponding to thickness values of 4 mm
and 6 mm. This addition is intended to facilitate a comprehensive understanding of the
relationship between displacement and thickness increment. The influence of the thickness
on the normal displacements to the surface in different combinations of biomaterials is
presented in Figure 8. Comparing the displacement values between PMMA and PEEK
implants at each thickness level, it appears that PEEK generally exhibits lower displacement
values than PMMA, and the difference diminishes as we increase the thickness. The dis-
placement decreases non-linearly with thickness for both materials, and when considering
displacement as proportional to the elastic modulus, these findings align with the ratio of
their respective elastic moduli. These findings can inform clinical decisions regarding the
selection of implant materials and thicknesses based on desired mechanical performance
and patient-specific factors such as bone quality and surgical requirements.
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4. Conclusions

In this study, we investigated the relationship between implant thickness and de-
formation, focusing on patient-specific cranial implants constructed from two different
biomaterials, PMMA and PEEK. Our goal was to assess their mechanical performance
under quasi-static loads, particularly in terms of maximum total deformation. While the
paper explores readily accessible techniques, its main objective is to address the cost-benefit
aspects of employing PMMA implants in clinical applications, particularly in comparison
to more expensive alternatives, an aspect that has not been previously explored in the
literature. Our experience indicates that this matter lacks clarity for practitioners, and its
relevance is notably significant in developing countries. Achieving a comprehensive grasp
of the materials and their mechanical performance is relevant in this context. The outcomes
of this research shed light on several crucial aspects of implant design and selection. As
expected, the choice of biomaterial significantly impacts the deformation characteristics
of cranial implants. We observed that PMMA and PEEK exhibit different levels of normal
displacements due to their different elastic moduli. Generally, biomaterials with higher
elastic moduli experience less deformation under equivalent stress conditions.

Our study adds a practical dimension to existing research [49] by considering implant
perforations as an important factor in surgical procedures. Moreover, we did not consider
implants thinner than 3 mm because the fabrication of these implants, generally by the
biomaterial injection technique, are difficult to perform for clinical use. In comparison to
previous literature, our findings diverge in terms of deformation outcomes. Díaz et al. [38]
report displacements of 0.3 mm in PEEK biomaterial for a cranioplasty in the upper part of the
cranial vault, although the implant thickness is not reported. Ridwan-Pramana et al. [50] report
displacements less than 0.03 mm in specific configurations of several plates and positive
contact angles between implant and skull; we understand that the other configurations
are idealized and do not represent, in many cases, the real topological conditions of these
defects in surgery. Finally, it is known that the perpendicular distance between the cranial
tissue and the bone plate is around 2 mm [48,51]. For this reason, a deformation of the
material close to this length would be critical. This deformation is closely linked to the
thickness and material of the implant [49]. Thus, it is necessary for future research to
include geometric variables, such as the radius of curvature of the implant. This will
allow for a more precise standardization of results, catering to specific implant geometries
and providing a more comprehensive understanding of implant performance. The finite
element models employed in this study recreated real-life implant conditions under direct
impacts, although the osteosynthesis system was not included.
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This research validates the null hypothesis that both PMMA and PEEK biomaterials
are suitable for withstanding deformation in the normal direction. Furthermore, we found
that by adjusting the thickness variable in PMMA biomaterial, deformation levels com-
parable to those of PEEK can be achieved. These results suggest the potential for PMMA
implants, particularly 4 mm thick with perforations, to serve as an effective alternative to
PEEK implants, offering a cost-effective solution while maintaining the desired mechanical
performance in cranial implants. However, further research and validation are essential to
confirm the feasibility and clinical implications of these findings.

While the study enhances understanding of cranial implant performance, limitations
exist. Focusing on quasi-static loads excludes dynamic conditions, and implants thinner
than 3 mm were omitted. Idealized assumptions about perforations may oversimplify sur-
gical scenarios. Future research should explore geometric variables, incorporate dynamic
conditions, explore thinner implants, and integrate osteosynthesis systems for a more
realistic analysis. Clinical validation is crucial to confirm practical implications. Despite
these limitations, the study suggests the potential of cost-effective PMMA implants as
comparable alternatives to PEEK implants, emphasizing the need for further research and
validation in clinical settings.
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