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Abstract: The advent of autonomous vehicles has heralded a transformative era in transportation,
reshaping the landscape of mobility through cutting-edge technologies. Central to this evolution is the
integration of artificial intelligence (AI), propelling vehicles into realms of unprecedented autonomy.
Commencing with an overview of the current industry landscape with respect to Operational Design
Domain (ODD), this paper delves into the fundamental role of AI in shaping the autonomous decision-
making capabilities of vehicles. It elucidates the steps involved in the AI-powered development
life cycle in vehicles, addressing various challenges such as safety, security, privacy, and ethical
considerations in AI-driven software development for autonomous vehicles. The study presents
statistical insights into the usage and types of AI algorithms over the years, showcasing the evolving
research landscape within the automotive industry. Furthermore, the paper highlights the pivotal role
of parameters in refining algorithms for both trucks and cars, facilitating vehicles to adapt, learn, and
improve performance over time. It concludes by outlining different levels of autonomy, elucidating
the nuanced usage of AI algorithms, and discussing the automation of key tasks and the software
package size at each level. Overall, the paper provides a comprehensive analysis of the current
industry landscape, focusing on several critical aspects.

Keywords: artificial intelligence (AI); Machine learning (ML); deep learning (DL); deep neural
networks (DNNs); natural language processing (NLP); autonomous vehicles (AVs); safety;
security; ethics; emerging trends; trucks vs. cars; autonomy levels; operational design domain
(ODD); software-defined vehicles (SDVs); connected and automated vehicles (CAVs); in-vehicle
AI assistant; internet of things (IoT); generative AI (GenAI)

1. Introduction

Artificial intelligence (AI) currently plays a crucial role in the development and opera-
tion of autonomous vehicles. The integration of AI algorithms enables autonomous vehicles
to navigate, perceive, and adapt to dynamic environments, making them safer and more
efficient. Continuous advancements in AI technologies are expected to further enhance
the capabilities and safety of autonomous vehicles in the future. Autonomous system
development has been experiencing a transformational evolution through the integration
of artificial intelligence (AI). This revolutionary combination holds the promise of reshap-
ing traditional development processes, enhancing efficiency, and accelerating innovation.
AI technologies are becoming integral within numerous facets of software development
within autonomous vehicles, leading to a paradigm shift towards Software-Defined Vehicles
(SDVs) [1,2].

1.1. Benefits of AI Algorithms for Autonomous Vehicles

AI algorithms are currently influencing various stages from initial coding to post-
deployment maintenance in autonomous vehicles [3]. Some of the benefits include
the following:
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• Safety: AI can significantly reduce accidents by eliminating human error, leading to
safer roads.

• Traffic Flow: Platooning [4] and efficient routing can ease congestion and improve
efficiency.

• Accessibility: People with physical impairments or different abilities, the elderly, and
the young can gain independent mobility.

• Energy Savings: Optimized driving reduces fuel consumption and emissions.
• Productivity and Convenience: Passengers use travel time productively while delivery

services become more efficient.

AI in autonomous vehicles is poised for a bright future, shaping everyday life and
creating exciting opportunities. A glimpse of the possibilities is shown in Figure 1.

Figure 1. Benefits of AI in autonomous vehicles.

1.1.1. Technological Advancements

• Sharper perception and decision-making: AI algorithms are more adept at understanding
environments with advanced sensors and robust machine learning.

• Faster, more autonomous operation: Edge computing enables on-board AI processing for
quicker decisions and greater independence.

• Enhanced safety and reliability: Redundant systems and rigorous fail-safe mechanisms
prioritize safety above all else.

1.1.2. Education and Career Boom

• Surging demand for AI expertise: Specialized courses and degrees in autonomous ve-
hicle technology will cater to a growing need for AI, robotics, and self-driving car
professionals.

• Interdisciplinary skills will be key: Professionals with cross-functional skills bridging AI,
robotics, and transportation will be highly sought after.

• New career paths in safety and ethics: Expertise in ethical considerations, safety audits,
and regulatory [5] compliance will be crucial as self-driving cars become widespread.
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1.1.3. Regulatory Landscape

• Standardized safety guidelines: Governments will establish common frameworks for
performance and safety, building public trust and ensuring industry coherence.

• Stringent testing and validation: Autonomous systems will undergo rigorous testing
before deployment, guaranteeing reliability and safety standards.

• Data privacy and security safeguards: Laws and regulations will address data privacy and
cybersecurity concerns, protecting personal information and mitigating cyberattacks.

• Ethical and liability frameworks: Clearly defined legal frameworks will address ethical
decision-making and determine liability in situations involving self-driving cars.

Thus, the future holds immense potential for revolutionizing transportation, creat-
ing new jobs, and improving safety. However, navigating ethical dilemmas, ensuring
robust regulations, and building public trust will be crucial to harnessing this technology
responsibly and sustainably, which is discussed in Section 4.

1.2. Operational Design Domains (ODDs) and Diversity—The Current Industry Landscape

An Operational Design Domain (ODD) [6] refers to the specific conditions under
which an autonomous vehicle (AV) is designed to operate safely. These examples illustrate
the diverse evolution of Operational Design Domains (ODDs) [7] across various vehicle
types, including trucks and cars, and within different geographical locations such as the
United States, China, and Europe [8], as shown in Figure 2. The intention here is not
to cover all the companies or geographical locations but to only provide an overview of
the diversity in terms of the ODDs that are present in the current industry landscape.
Table 1 explains the complete mapping of different vehicle companies, countries, ODDs,
and the driving scenarios being covered by each vehicle company, explaining the current
autonomous vehicle industry landscape.

• Waymo Driver: [9] Can handle a wider range of weather conditions, city streets, and
highway driving, but speed limitations and geo-fencing restrictions apply.

• Tesla Autopilot: [10] Primarily for highway driving with lane markings, under driver
supervision, and within specific speed ranges.

• Mobileye Cruise AV: [11] Operates in sunny and dry weather, on highways with
clearly marked lanes, and at speeds below 45 mph.

• Aurora and Waymo Via: Wider range of weather conditions, including light rain/snow.
Variable lighting (sunrise/sunset), multi-lane highways and rural roads with good
pavement quality, daytime and nighttime operation, moderate traffic density, dynamic
route planning, traffic light/stop sign recognition, intersection navigation, maneuver-
ing in yards/warehouses, etc.

• TuSimple and Embark Trucks: [12] Sunny, dry weather, clear visibility. Temperature
range −10 °C to 40 °C, limited-access highways with clearly marked lanes, daytime
operation only, maximum speed of 70 mph, limited traffic density, pre-mapped routes,
lane changes, highway merging/exiting, platooning with other AV trucks, etc.

• Pony.ai and Einride: Diverse weather conditions, including heavy rain/snow. Vari-
able lighting and complex urban environments, narrow city streets, residential areas,
and parking lots. Low speeds (20–30 mph), high traffic density, frequent stops and
turns, geo-fenced delivery zones, pedestrian and cyclist detection/avoidance, obstacle
avoidance in tight spaces, dynamic rerouting due to congestion, etc.

• Komatsu Autonomous Haul Trucks, Caterpillar MineStar Command for Haul Trucks:
Harsh weather conditions (dust, heat, extreme temperatures). Limited or no network
connectivity, unpaved roads, uneven terrain, steep inclines/declines, autonomous
operation with remote monitoring, pre-programmed routes, high ground clearance,
obstacle detection in unstructured environments, path planning around natural haz-
ards, dust/fog mitigation, etc.

• Baidu Apollo: Highways and city streets in specific zones like Beijing and Shenzhen.
Operates in the daytime and nighttime under clear weather conditions and limited
traffic density. Designed for passenger transportation and robotaxis. Specific scenarios
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include lane changes, highway merging/exiting, traffic light/stop sign recognition,
intersection navigation, and low-speed maneuvering in urban areas.

• WeRide: Limited-access highways and urban streets in Guangzhou and Nanjing.
Operates in the daytime and nighttime under clear weather conditions. Targeted
for robotaxi services and last-mile delivery. Specific scenarios include lane changes,
highway merging/exiting, traffic light/stop sign recognition, intersection navigation,
and automated pick-up and drop-off for passengers/packages.

• Bosch and Daimler [13]: Motorways and specific highways in Germany. Operates
in the daytime and nighttime under good weather conditions. Focused on highway
trucking applications. Specific scenarios include platooning with other AV trucks,
automated lane changes and overtaking, emergency stopping procedures, and com-
munication with traffic management systems.

• Volvo Trucks: Defined sections of Swedish highways. Operates in the daytime and
nighttime under varying weather conditions. Tailored for autonomous mining and
quarry operations. Specific scenarios include obstacle detection and avoidance in
unstructured environments, path planning around natural hazards, pre-programmed
routes with high precision, and remote monitoring and control.

Table 1. ODD Characteristics distributed across cars, trucks, and different geographical locations.

Vehicle
Company Country Environment Operational

Conditions Driving Scenarios

Waymo Driver United
States

Sunny, light
rain/snow

Moderate traffic
density

Lane changes, highway merging/exiting, multi-
lane highways, rural roads (good pavement), day-
time/nighttime, dynamic route planning

Tesla Autopilot United
States Clear weather Limited traffic density,

specific speed ranges Lane markings (driver supervision required)

Mobileye
Cruise AV

United
States Sunny, dry weather Limited traffic den-

sity, below 45 mph Highways with clearly marked lanes

Aurora and
Waymo Via

United
States

Light rain/snow,
variable lighting

Moderate traffic
density

Multi-lane highways, rural roads (good pavement),
daytime, nighttime, dynamic route planning, traf-
fic light/stop sign recognition, intersection
navigation

TuSimple and
Embark
Trucks

United
States

Sunny, dry weather,
clear visibility

Limited traffic den-
sity, pre-mapped
routes, daytime only,
max speed 70 mph

Limited-access highways with clear lanes, lane
changes, highway merging/exiting, platooning

Pony.ai and
Einride China Diverse weather

(heavy rain/snow)
High traffic density,
frequent stops/turns

Narrow city streets, residential areas, parking
lots, low speeds (20-30 mph), geo-fenced delivery
zones, pedestrian/cyclist detection

Komatsu and
Caterpillar

Various
(depend-
ing on
deploy-
ment)

Harsh weather
(dust, heat, extreme
temperatures)

Limited/no network
connectivity, un-
even terrain, steep
inclines/declines

Unpaved roads, autonomous operation with re-
mote monitoring, pre-programmed routes, obsta-
cle detection (unstructured environments), path
planning around natural hazards

Baidu Apollo China Clear weather, lim-
ited traffic density Daytime, nighttime

Highways and city streets (specific zones),
lane changes, highway merging/exiting, traf-
fic light/stop sign recognition, intersection
navigation (low-speed maneuvering)

WeRide China Clear weather Daytime, nighttime

Limited-access highways and urban streets,
lane changes, highway merging/exiting, traf-
fic light/stop sign recognition, intersection
navigation, automated pick-up/drop-off

Bosch and
Daimler Germany Good weather Daytime, nighttime

Motorways and specific highways, platoon-
ing with other AV trucks, automated lane
changes/overtaking, emergency stopping
procedures, communication with traffic
management systems

Volvo Trucks Sweden Varying weather Daytime, nighttime

Defined sections of highways, obstacle detec-
tion (unstructured environments), path planning
around natural hazards, pre-programmed routes
(high precision), remote monitoring/control (au-
tonomous mining/quarry)
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Figure 2. Current industry landscape: Different vehicles from different geographical locations and
their Operational Design Domain (ODD) characteristics.

1.3. Role of Connected Vehicle Technology

Connected vehicle technology acts as a powerful enabler, providing valuable data
and facilitating better decision-making, ultimately contributing to a smoother and more
efficient path towards full autonomy. Connected vehicle technology plays a crucial role in
the development and advancement of autonomous vehicles in several ways [14]:

• Enhanced situational awareness: Real-time information exchange between connected
vehicles and infrastructures provides a broader picture of the surrounding environ-
ment, including road conditions, traffic patterns, and potential hazards, which is
crucial for autonomous vehicles to navigate safely and efficiently.

• Improved decision-making: Connected vehicles can leverage data from other vehi-
cles and infrastructures to make better decisions, such as optimizing routes, avoiding
congestion, and coordinating maneuvers with other vehicles, contributing to smoother
and safer autonomous operation.

• Faster innovation and testing: Connected vehicle technology allows for real-time
data collection and analysis of vehicle performance, enabling faster development and
testing of autonomous driving algorithms, accelerating the path to safer and more
reliable autonomous vehicles [15].

However, it is important to note that connected vehicle technology alone cannot
guarantee the complete autonomy of vehicles. Other crucial elements like robust onboard
sensors, advanced artificial intelligence, and clear regulatory frameworks are still necessary
for the widespread adoption of fully autonomous vehicles. Section 5 provides more insights
into emerging technologies such as Internet of Things (IoT) that support the concept of
connected vehicles.

Contributions of this paper: Section 1 provides an overview of the autonomous
vehicle industry landscape in different aspects. A literature survey of how the AI algorithms
are being used within autonomous vehicles is provided in Section 2. In Section 3, there
is an explanation of the AI-powered software development life-cycle for autonomous
vehicles and a discussion of the details on how to ensure software quality and security
during the development of the AI algorithms. Section 4 explains the current challenges
with using AI in autonomous vehicles and provides mitigation considerations for each
challenge. In Section 5, there is an explanation of how AI algorithms have been emerging
and evolving over time to have increasingly more decision-making capabilities without
human involvement using IoT as a future direction of expansion for autonomous vehicles
to become more connected to other actors in the driving environment. In Section 6, the
major contribution of this paper are mentioned, such as the comparative analysis of how
AI is applied in autonomous vehicles for trucks and cars. It highlights, with references,
the exponential growth in research related to AI research and applications in general. It
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identifies a gap in the research focused on autonomous trucks compared to passenger
cars. The paper then details the key differences in parameters that need to be considered
when designing AI models for autonomous trucks versus cars. Finally, it explores the
evolving role of AI algorithms and software package sizes at different levels of autonomy
for self-driving vehicles. In summary, this paper thoroughly explores various topics
concerning the integration of AI in AVs, offering a comprehensive overview of the current
industry landscape.

2. Review of Existing Research and Use Cases

H. J. Vishnukumar et al. [16] noted that traditional development methods like Water-
fall and Agile fall short when testing intricate autonomous vehicles and proposed a novel
AI-powered methodology for both lab and real-world testing and validation (T&V) of
ADAS and autonomous systems. Leveraging machine learning and deep neural networks,
the AI core learns from existing test scenarios, generates new efficient cases, and controls
diverse simulated environments for exhaustive testing. Critical tests then translate to real-
world validation with automated vehicles in controlled settings. Constant learning from
each test iteration refines future testing, ultimately saving precious development time and
boosting the efficiency and quality of autonomous systems. The proposed methodology
lays the groundwork for AI to eventually handle most T&V tasks, paving the way for safer
and more reliable autonomous vehicles.

Bachute, Mrinal R et al. [17] described the algorithms crucial for various tasks in
autonomous driving, recognizing the multifaceted nature of the system. It discerns spe-
cific algorithmic preferences for tasks, such as employing Reinforcement Learning (RL)
models for effective velocity control in car-following scenarios and utilizing the “Locally
Decorrelated Channel Features (LDCF)” algorithm for superior pedestrian detection. The
study emphasizes the significance of algorithmic choices in motion planning, fault diag-
nosis with data imbalance, vehicle platoon scenarios, and more. Notably, it advocates the
continuous optimization and expansion of algorithms to address the evolving challenges in
autonomous driving. This serves as an insightful foundation, prompting future research en-
deavors to broaden the scope of tasks, explore a diverse array of algorithms, and fine-tune
their application in specific areas of interest within the autonomous driving system.

Y. Ma et al. [18] explained the pivotal role of artificial intelligence (AI) in propelling
the development and deployment of autonomous vehicles (AVs) within the transportation
sector. Fueled by extensive data from diverse sensors and robust computing resources, AI
has become integral for AVs to perceive their environment and make informed decisions
while in motion, while existing research has explored various facets of AI application in
AV development. This paper addresses a gap in the literature by presenting a comprehen-
sive survey of key studies in this domain. The primary focus is on analyzing how AI is
employed in supporting crucial applications in AVs: (1) perception, (2) localization and
mapping, and (3) decision-making. The paper scrutinizes current practices to elucidate
the utilization of AI, delineating associated challenges and issues. Furthermore, it offers
insights into potential opportunities by examining the integration of AI with emerging
technologies such as high-definition maps, big data, high-performance computing, aug-
mented reality (AR), and virtual reality (VR) for enhanced simulation platforms, and 5G
communication for connected AVs. In essence, this research serves as a valuable reference
for researchers seeking a deeper understanding of AI’s role in AV research, providing a
comprehensive overview of current practices and paving the way for future opportunities
and advancements.

G. Bendiab et al. [19] mention that the introduction of autonomous vehicles (AVs)
presents numerous advantages such as enhanced safety and reduced environmental impact,
yet security and privacy vulnerabilities pose significant risks. Integrating blockchain and
AI offers a promising solution to address these concerns by leveraging their respective
strengths to fortify AV systems against malicious attacks. While existing research explores
this intersection, further investigation is needed to fully realize the potential of this amalga-
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mation in securing AVs, as outlined in the paper through a systematic review of security
threats, the recent literature, and future research directions.

M. Chu et al. [20] explains that the emergence of autonomous vehicles (AVs) has
led to the creation of a new job role called “safety drivers”, tasked with supervising and
operating AVs during various driving missions. Despite being crucial for road testing tasks,
safety drivers’ experiences are largely unexplored in the Human–Computer Interaction
(HCI) community. Through interviews with 26 safety drivers, it was found that they coped
with defective algorithms, adapted their perceptions while working with AVs, and faced
challenges such as assuming risks from the AV industry upstream and limited opportunities
for personal growth, highlighting the need for further research in human–AI interaction
and the lived experiences of safety drivers.

M. H. Hwang et al. [21] introduced a Comfort Regenerative Braking System (CRBS)
utilizing neural networks to enhance driving comfort in autonomous vehicles. By predicting
acceleration and deceleration limits based on passenger comfort criteria, the CRBS adjusts
vehicle control strategies, reducing discomfort during braking. Numerical analysis and
back propagation techniques ensure efficient regenerative braking within comfort limits.
The proposed CRBS, validated through simulations, offered effective regenerative braking
while maintaining passenger comfort, making it a promising solution for autonomous
electric vehicles.

3. The AI-Powered Development Life Cycle in Autonomous Vehicles

This section describes the key aspects involved in the AI-powered development life
cycles within autonomous vehicles, and these could be applicable to other fields as well
in general.

3.1. Model Training and Deployment

AI model training and deployment in autonomous vehicles involves a systematic
process and typically includes several stages:

Data Collection and Pre-processing: Gathering a vast amount of data from real-world
sensors, pre-existing datasets, and other sources such as synthetic datasets. Cleaning and
pre-processing the data to make them suitable for machine learning models.

Model Training: Refers to the pattern extraction models, that is, employing learning
models such as neural networks, deep learning [22], and natural language processing (NLP)
to understand patterns and structures based on the data. Training the models to a desired
level of accuracy based on each scenario or in generic abstract cases like being able to
extract the patterns during the live operation of the vehicles.

Model Generation: Refers to the decision-making models. Trained models are used
to perform a certain decision-making task, function, or modules based on learned pat-
terns. These models can use various architectures, such as decision trees, random forests,
regression trees, deep layers, ensemble learning, etc.

Code Refinement and Optimization [23]: Refine the generated code to improve its quality,
readability, and functionality. Post-generation processing ensures the code adheres to
coding standards, conventions [24], and requirements.

Quality Assessment: Evaluate the generated code for correctness, efficiency, and adherence
to the intended functionalities. This involves testing, debugging, and validation procedures.

Integration and Deployment: Integrate the model into a broader system under development
for autonomy implementation. Deploy and test the software application incorporating the new
model using multiple methods like software-in-the-loop, hardware-in-the-loop, human-in-the-
loop etc., using simulation, closed course, and limited public road environments. Some models
are trained to improve their learning even after deployment. These models need to be tested
for future directions of learning to ensure compliance to ethical considerations as explained in
Section 4 and other requirements.
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Using a systematic process like this would help build the confidence levels on each
model being developed and deployed in various subsystems of autonomous vehicles like
perception, planning, controls [25], and Human–Machine Interface (HMI) applications.

3.2. Ensuring Software Quality and Security

In autonomous vehicles, the integration of AI in various aspects of software devel-
opment and maintenance plays a crucial role in ensuring the robustness and security of
the overall system. Automated testing, powered by AI-based tools, emerges as a key
component in the testing process. These tools efficiently identify bugs and vulnerabilities,
and they ensure that the software functions as intended, contributing to the reliability of
autonomous vehicle software. Additionally, AI extends its capabilities to code analysis
and review, providing a thorough examination of the code base for quality and highlight-
ing potential issues or vulnerabilities. Predictive maintenance, facilitated by AI, becomes
essential for anticipating and addressing potential software failures, ultimately reducing
downtime and enhancing the overall operational efficiency of autonomous vehicles. More-
over, AI-driven anomaly detection and security monitoring contribute significantly to the
safety of autonomous vehicles. By continuously monitoring the software environment, AI
systems can identify abnormal patterns or behaviors, promptly responding to potential
security threats in real time. Vulnerability assessment, another application of AI tools,
is the conducting of in-depth evaluations to pinpoint weaknesses in software systems,
providing valuable insights to mitigate risks effectively. Behavioral analysis powered by AI
proves instrumental in understanding user interactions within the software. This capability
aids in detecting and preventing suspicious or malicious activities, fostering a secure and
reliable autonomous vehicle ecosystem. Finally, AI’s role in fraud detection within software
applications adds an extra layer of security, ensuring the integrity of autonomous vehicle’s
systems and safeguarding against potential security breaches. In summary, the integration
of AI in these diverse areas significantly enhances the overall safety, security, and efficiency
of autonomous vehicles.

4. Challenges in AI-Driven Software Development for Autonomous Vehicles

The success of autonomous vehicles hinges on balancing their potential benefits with
addressing the challenges through collaborative efforts in technological development,
regulation, and public communication. Some of the challenges include the following:

• Safety and Reliability: Ensuring flawless AI performance in all scenarios is paramount.
• Cybersecurity: Protecting against hacking and unauthorized access is essential.
• Regulations and Law: Clear standards for safety, insurance, and liability are needed.
• Public Trust and Acceptance: Addressing concerns about safety, data privacy, and ethical

dilemmas is crucial.
• Addressing Edge cases: Being able to handle unforeseen scenarios is challenging as those

scenarios are rare and could be hard to imagine in some cases.
• Ethical Dilemmas: Defining AI decision-making in ambiguous situations raises

moral questions.

To address some of these challenges, understanding and addressing these concerns are
crucial for building responsible and fair AI-driven software for autonomous vehicles. The
following are some of the existing challenges and their mitigation for AI-driven software
for autonomous vehicles:

1. Safety and Reliability:

• Challenge: Sensor failures can lead to the misinterpretation of the environment.

– Mitigation: Use diverse sensors (LiDAR, cameras, radar) with redundancy
and robust sensor fusion algorithms.

• Challenge: Cybersecurity vulnerabilities can be exploited for malicious control.

– Mitigation: Implement strong cybersecurity measures, penetration testing,
and secure communication protocols.
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• Challenge: Limited real-world testing data can lead to unforeseen scenarios.

– Mitigation: Utilize simulation environments with diverse and challenging
scenarios, combined with real-world testing with safety drivers.

• Challenge: Lack of clear regulations and legal frameworks can hinder the devel-
opment and deployment.

– Mitigation: Advocate for clear and adaptable regulations that prioritize
safety and innovation.

2. Cybersecurity:

• Challenge: Vulnerable software susceptible to hacking and manipulation.

– Mitigation: Implement secure coding practices, penetration testing, and
continuous monitoring.

• Challenge: AI models can be vulnerable to adversarial attacks, posing security risks.

– Mitigation: Robust testing against adversarial scenarios, incorporating secu-
rity measures, and regular updates to address emerging threats.

3. Regulations and law:

• Challenge: Lack of clear legal liability in case of accidents involving au-
tonomous vehicles.

– Mitigation: Develop frameworks assigning responsibility to manufacturers,
software developers, and operators.

• Challenge: Difficulty in adapting existing traffic laws to address the capabilities
and limitations of autonomous vehicles.

– Mitigation: Establish new regulations that prioritize safety, consider ethical
dilemmas, and update with technological advancements.

4. Public Trust and Acceptance:

• Challenge: Public concerns regarding safety and a lack of trust in AI decision-making.

– Mitigation: Increase transparency in testing procedures, demonstrate safety
through rigorous testing and data, and prioritize passenger safety in design.

5. Addressing Edge Cases:

• Challenge: Rare or unexpected scenarios that confuse the AI’s perception.

– Mitigation: Utilize diverse and comprehensive testing data, including sim-
ulations of edge cases, and develop robust algorithms that can handle the
unexpected. Furthermore, include new scenarios as they are seen in the
field from collected data as a continuous feedback loop as shown in Figure 3

6. Ethical Dilemmas [26]:
Data Bias:

• Challenge: AI models learn from historical data, and if the training data are
biased [27], the model can perpetuate and amplify existing biases.

– Mitigation: Rigorous data pre-processing, diversity in training data, and
continuous monitoring for bias are essential. Ethical data collection practices
must be upheld.

Algorithmic Bias:

• Challenge: Algorithms may inadvertently encode biases present in the training
data, leading to discriminatory outcomes.

– Mitigation [28]: Regular audits of algorithms for bias, transparency in algo-
rithmic decision-making, and the incorporation of fairness metrics during
model evaluation.

Fairness and Accountability:
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• Challenge: Ensuring fair outcomes [29] and establishing accountability for AI
decisions is complex, especially when models are opaque.

– Mitigation: Implementing explainable AI (XAI) techniques, defining clear
decision boundaries, and establishing accountability frameworks for AI-
generated decisions.

Inclusivity and Accessibility:

• Challenge: Biases in AI can result in excluding certain demographics, reinforcing
digital divides.

– Mitigation: Prioritizing diversity in development teams, actively seeking user
feedback, and conducting accessibility assessments to ensure inclusivity.

Social Impact:

• Challenge: The deployment of biased AI systems can have negative social impli-
cations [30], affecting marginalized communities disproportionately.

– Mitigation: Conducting thorough impact assessments, involving diverse
stakeholders in development process, and considering societal consequences
during AI development.

Figure 3. AI-Powered Development Life Cycle.

7. Ethical Frameworks and Guidelines [31]:

• Challenge: The absence of standardized ethical frameworks can lead to inconsis-
tent practices in AI development.

– Mitigation: Adhering to established ethical guidelines, such as those pro-
vided by organizations like the ISO, IEEE, SAE, government regulatory
boards, etc., and actively participating in the development of industry-wide
standards.

8. Explainability and Transparency:

• Challenge: Many AI models operate as “black boxes”, making it challenging to
understand how decisions are reached. AI safety is another challenge that needs
to be addressed in safety-critical applications like autonomous vehicles.
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– Mitigation: Prioritizing explainability [32] in AI models, using interpretable
algorithms, and providing clear documentation on model behavior.

9. User Privacy: [33]

• Challenge: AI systems often process vast amounts of personal data, raising
concerns about user privacy.

– Mitigation: Implementing privacy-preserving techniques, obtaining in-
formed consent, and adhering to data protection regulations (e.g., GDPR
[34]) to safeguard user privacy.

10. Continuous Monitoring and Adaptation:

• Challenge: AI models may encounter new biases or ethical challenges as they
operate in dynamic environments.

– Mitigation: Establishing mechanisms for ongoing monitoring, feedback
loops, and model adaptation to address evolving ethical considerations.

Out of all of these challenges, addressing ethical considerations and bias in AI-driven
software development in autonomous vehicles is more challenging and requires a holistic
and proactive approach [35]. It involves a commitment to fairness, transparency, user
privacy, and social responsibility throughout the AI development life cycle. As the field
evolves, continuous efforts are needed to refine ethical practices and promote responsible
AI deployment.

5. AI’s Role in the Emerging Trend of Internet of Things (IoT) Ecosystem for
Autonomous Vehicles

Artificial Intelligence (AI) plays a crucial role in shaping and enhancing the capabilities
of the Internet of Things (IoT). Here is an overview of how AI contributes to the IoT
ecosystem for autonomous vehicles (Figure 4).

Figure 4. AI’s role in the Internet of Things (IoT) ecosystem for autonomous vehicles.
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In the realm of Connected and Autonomous Vehicles (CAVs), AI and IoT [36] converge
to create a seamless network of intelligence and connectivity, transforming the driving
experience. Vehicles become intelligent agents, processing sensor data in real-time to make
informed decisions, predicting traffic patterns, optimizing routes, detecting anomalies, and
even adapting to changing road conditions with dynamic adjustments. This intelligent
ecosystem extends beyond individual vehicles, interconnecting with infrastructure and
other vehicles to optimize traffic flow, anticipate potential hazards, and personalize the
driving experience.

Key AI-powered IoT capabilities in CAVs include the following:

• Real-time data processing and analysis for insights into traffic, road conditions, and
vehicle health.

• Predictive analytics for proactive maintenance, efficient resource allocation, and in-
formed decision-making.

• Enhanced automation for autonomous driving tasks, adaptive cruise control [37], and
dynamic route optimization.

• Efficient resource management for optimizing energy consumption, bandwidth usage,
and load balancing.

• Security and anomaly detection for identifying potential threats and preventing
cyberattacks [38].

• Personalized user experience through customized settings, preferences, and
tailored insights.

• Edge computing for real-time decision-making, reducing latency and improving
responsiveness.

The challenges to address include ensuring data privacy, security, interoperability, and
overcoming resource constraints in connected vehicles. The seamless integration of AI and
IoT holds the potential to revolutionize transportation, leading to safer, more efficient, and
sustainable [39] mobility solutions.

Enhancing User Experience

Personalization and recommendation systems in-cabin: AI-driven personalization
and recommendation systems in autonomous vehicles use machine learning models to
analyze user behavior and preferences, creating personalized recommendations for tools,
libraries, and vehicle maneuvers. They collect and pre-process user data, create individ-
ual profiles, generate tailored suggestions, and continuously adapt based on real-time
interactions, aiming to enhance user experience and developer productivity.

Natural Language Processing (NLP) in-cabin: NLP enables software to comprehend
and process human language. This includes chat bots, virtual assistants, and voice recogni-
tion systems that understand and respond to natural language queries in vehicle cabins. It
allows the vehicle’s subsystems to analyze and derive insights from user requirements and
structuring requirements effectively to create responses and certain vehicle maneuvers.

Generative Artificial Intelligence (Gen AI): This technology uses machine learning
algorithms to produce new and original outputs based on the patterns and information it
has learned from training data. In the context of vehicles, generative AI can be applied to
various aspects, including natural language processing for in-car voice assistants, content
generation for infotainment systems, and even simulation scenarios for testing autonomous
driving systems. Large Language Models (LLMs) are a specific class of generative AI
models that are trained on massive amounts of text data to understand and generate human-
like language. In vehicles, LLMs can be employed for natural language understanding and
generation, allowing for more intuitive and context-aware interactions between the vehicle
and its occupants. This can enhance features like voice-activated controls, virtual assistants,
and communication systems within the vehicle.
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6. AI Algorithms’ Statistics for Autonomous Vehicles

There are multiple sub-divisions of AI, such as machine learning (ML), deep learn-
ing (DL), and generative AI (Gen AI), as shown in Figure 5. ML is a bigger subset of
AI, which focuses on deciphering patterns within datasets and adapting to the evolving
circumstances. DL is a subset of ML that operates through intricate neural networks,
handling larger datasets and performing more complex computations. DL algorithms
primarily employ supervised learning methods, particularly deep neural networks, en-
abling learning from unstructured data. Gen AI is a subset of DL that helps in emulating
human interaction through sophisticated models like Generative Adversarial Networks
(GANs) [40] and Generative Pre-trained Transformers (GPTs). GANs engage in a perpetual
learning cycle between generator and discriminator models to enhance their capabilities
until they become indistinguishable from authentic examples. GPT frameworks focus on
generative language modeling, facilitating tasks such as text generation, code creation, and
conversational dialogue.

This section extends the analysis of artificial intelligence (AI) algorithms in autonomous
vehicles, building upon previous work as described in Section 5. The focus is on providing
additional statistical insights into the following:

− Evolution of different types of AI algorithms over the years,
− Research trends in the application of AI in all fields vs. autonomous vehicles,
− Creation of a parameter set crucial for autonomous trucks versus cars,
− Evolution of AI algorithms at different autonomy levels, and
− Changes in the types of algorithms, software package size, etc., over time.

Figure 5. A comparative view of AI, ML, deep learning, and Gen AI and some of their use cases
in AVs [41].

6.1. Stat1: Trends of Usage of AI Algorithms over the Years

Today, a vehicle’s main goal is not limited to transportation, but also includes comfort,
safety, and convenience. This has led to extensive research on improving vehicles and
incorporating technological breakthroughs and advancements.
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As per prior work carried out for the development of architectures and the ADAS
technology, it is evident the research still has limitations. These limitations are pertaining
either to the authors’ elaboration of their knowledge or not having proper sources. Thus, it
is a good exercise to take a look at the trends over the years. This is because our capabilities
to develop these ML models have improved. Access to better computing units [42,43] has
led to the evolution of better algorithms. In Table 2, we summarize different modeling
algorithms for various standard components of the ADAS algorithm. The second column
presents the technologies that exist today, and the third column predicts potential future
developments that are more efficient than the current state.

Table 2. Autonomous driving: Key technologies’ evolution.

Technology Developed over the Years Future

Environmental
perception

DL for object detection, YOLOv3, K-means
clustering

Very challenging. Needs more research to better
detect objects in blurry, extreme, and rare condi-
tions in real time.

Pedestrian detection PVANET and RCNN model for object detection
in blurry weather

OrientNet, RPN, and PredictorNet to solve occlu-
sion problem.

Path planning DL algorithm based on CNN
Multisensor fusion system, along with an INS, a
GNSS, and a LiDAR system, would be used to im-
plement a 3D SLAM.

Vehicles’ cybersecurity Security testing and TARA Remote control of AV deploying IoT sensors.

Motion planning Hidden Markov model Q-Learning algorithm Grey prediction model utilizing an advanced
model predictive control for effective lane change.

Below, we create a series of plots pertaining to research publications in AI (artificial
intelligence) with a focus on ML (machine learning), incorporating DNN (Deep Neural
Network) domains. Brief explanations are provided above to understand what topics come
under these domains.

AI (Artificial Intelligence)

• Expert Systems: Rule-based systems that mimic human expertise in decision-
making [44].

• Decision Trees: Hierarchical structures for classification and prediction. One good
example is prognostics areas.

• Search Algorithms: Methods for finding optimal paths or solutions, such as A* search
and path planning algorithms.

• Generative AI: To create scenarios for training the system and for balancing data in
high severity accident/non-accident cases. (CRSS dataset). Create a non-existent
scenario dataset. Supplement the real datasets. Simulation testing.

• NLP: AI Assistant (Yui, Concierge, Hey Mercedes, etc.,)—LLMs.

ML (Machine Learning)

• Supervised Learning: Algorithms that learn from labeled data to make predictions,
such as the following:

– Linear Regression: For predicting continuous values.
– Support Vector Machines (SVMs): For classification and outlier detection.
– Decision Trees: For classification and rule generation.
– Random Forests: Ensembles of decision trees for improved accuracy.

• Unsupervised Learning: Algorithms that find patterns in unlabeled data, such as
the following:

– Clustering Algorithms (K-means, Hierarchical): For grouping similar data points.
– Dimensionality Reduction (PCA, t-SNE): For reducing data complexity.

DNN (Deep Neural Networks)

• Convolutional Neural Networks (CNNs): For image and video processing, used for
object detection, lane segmentation, and traffic sign recognition.
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• Recurrent Neural Networks (RNNs): For sequential data processing, used for trajec-
tory prediction and behavior modeling.

• Deep Reinforcement Learning (DRL): For learning through trial and error, used for
control optimization and decision-making.

Specific Examples in Autonomous Vehicles

• Object Detection (DNN): CNNs like YOLO [45], SSD [46], and Faster R-CNN are used
to detect objects around the vehicle.

• Lane Detection (DNN): CNNs are used to identify lane markings and road boundaries.
• Path Planning (AI): Search algorithms like A* and RRT are used to plan safe and

efficient routes.
• Motion Control (ML): Regression models [47–49] are used to predict vehicle dynamics

and control steering, acceleration, and braking.
• Behavior Prediction (ML): SVMs or RNNs are used to anticipate the behavior of other

vehicles and pedestrians.

As shown in Figure 6, we evaluated the papers from [50,51] and found the trends to be
as shown. One can observe that in year 2013, the number of algorithms in DNN surpassed
that in generic AI and ML. This shows more research on deep neural networks and the
traction it received in the AI community. However, the main takeaway from the graph is
the exponential upward trend in the number of algorithms developed over the years for
AI applications.

Figure 6. Trends of usage of AI algorithms over the years.

Research was performed by considering platforms like IEEEXplore, SAE Mobilus,
MDPI, and Science Direct to find out the published research in AI/ML and also particularly
in autonomous vehicles.

When filtering the MDPI journals and articles, one can observe that there is an ad-
ditional filter relating to Data that pops up after 2021. This indicates that pre-2020, not
many papers related to data handling and analysis were published, as the collected data
were not large. One also observes that the year 2020 (year of the COVID-19 pandemic),
for MDPI, saw minimal papers on autonomous technology. While several factors may
contribute to the rise in model deployments observed in 2021, a possible explanation is the
limited opportunity for previous models to undergo real-world testing through vehicle
deployment. Notably, the number of deployed models surged to 737 in 2021, representing
nearly a twofold increase compared to earlier years.
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From the IEEE publications, one can see that although effective research in AI/ML in-
creased over time, not much research has been published towards autonomous
vehicle technology.

Shifting Trends in IEEE Publications: Interestingly, post 2021, the upward trend in
LMM and DNN publications (identified through filters aligned with our previous analysis)
appears to plateau. This suggests a potential shift in research focus within Computer Vision
(CV) following the emergence of Generative AI (GenAI) and other advanced technologies.
While LMM and DNN remain foundational, their prominence as primary research subjects
within classic CV might be declining.

Considering CVPR Publications: Initially, we considered including CVPR publications
in our analysis. However, we ultimately excluded them due to a significant overlap with
the IEEE dataset. As a significant portion of CVPR papers are subsequently published
in IEEE journals, including both sets would introduce redundancy and potentially skew
the analysis.

Figure 7 focuses on all AI/ML publications related to IEEEXplore [52], MDPI (Multidis-
ciplinary Digital Publishing Institute) [53], and SAE (Society Of Automotive
Engineers) [54]. Figure 8 focuses on the trend changes in publications on autonomous
vehicles. Figure 9 focuses on Science Direct [55], where we see that the publications are in
thousands, with autonomous vehicles having very little presence. This is an indication of
how AI applications have surpassed engineering and are used everywhere from medicine
to defense.

From the graphs, we see comparatively few publications in the years 2014–2018. There
is a huge surge in 2018, where we see that autonomous vehicles with advanced self-driving
features gained traction. From the trend, we expect, in the future, a similar exponential rise.
However, we do expect additional parameters (for example, data being introduced) to be
in the list. With AI applications coming up in every industry along with the automotive
industry, the future for research in the area is promising.

Figure 7. No. of publications related to AI algorithms in all fields.



Big Data Cogn. Comput. 2024, 8, 42 17 of 25

Figure 8. No. of publications related to AI algorithms for autonomous vehicles.

Figure 9. No. of publications related to AI algorithms for autonomous vehicles vs. all fields in
Science Direct.

The analysis focuses on the quantitative aspect of AI research, specifically the number
of related papers published in reputable journals like IEEE, MDPI, SAE, and Science Direct.
This approach provides a solid foundation for understanding the overall research trends
in AI and its subsequent evolution. Although there have been valuable contributions
of qualitative research and development in the field, it falls outside the scope of this
particular analysis.
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6.2. Stat2: Parameters for AI Models (Trucks vs. Cars)

As per the American Trucking Associations (ATA), there will be a shortage of over
100,000 truck drivers in the US by 2030, which could potentially double by 2050 if current
trends continue. The Bureau of Labor Statistics (BLS stats), while not explicitly predicting a
shortage, projects a slower-than-average job growth for truck drivers through 2030, indi-
cating potential challenges in meeting future demand. The aging work force, demanding
job conditions, and regulatory hurdles are few of the reasons which contribute towards
the same. The above two results give a good business case for driverless trucks in com-
parison to driverless cars. This is also contradictory to the belief that truck drivers may
lose their jobs over the self-driving technology. As mentioned in [56,57], driverless trucks
can drastically reduce the driver costs, increase truck utilization, and improve truck safety.
In spite of this, one can see that not enough research has been conducted on the impacts
of self-driving trucks compared to passenger transport [58]. There is a need to ensure
that road freight transport is aligned with its current operations that retain its value chain.
One cannot think of cost reductions by taking out the driver from the cabin completely, as
most self-driving technology-developing trucking companies are focusing on hub-to-hub
transport and, unlike passenger cars, not from source to destination. One would still need
a driver at the start and at the end of the journey. This refocuses our attention on the
statement above regarding the need for truck drivers in the future but eliminates the other
drawbacks of long-haul freight transport.

In fact, as mentioned in [59–61], the concept of heterogenous traffic flow is explored.
It concerns utilizing different car–truck, truck–truck, and car–car combination effects to
develop pragmatic cross-class interaction rules. This model generalizes the classical Cell
Transmission Model (CTM) to three types of traffic regimes in general, i.e., free flow, semi-
congestion, and full congestion regimes. The unique combination of traffic scenarios in
different geographical areas has been explored. This also helps in collecting data for non-
lane-based traffic in countries like India and Indonesia. It helps in better tuning the training
models discussed earlier in our paper.

Considering the cost aspects for the autonomous feature development of trucks and
cars, ref. [62] talks about how, in Sweden, this technology is found to save a lot of money
from the driver costs of trucks. For car drivers, the study found the technology to save a lot
of time in travel. Much capital is saved in terms of subsidies. As per [63], a case study was
conducted in South Korea, where an autonomous truck pilot project has been running for
several years now. The findings of this study indicate that autonomous trucks would attain
substantial operational cost savings for freight transport operators across all scenarios,
ranging from the most pessimistic to the most optimistic.

As mentioned in [57] above, according to Daimler’s ex-CEO Zetsche, future vehicles
need to have four characteristics: they need to be connected, autonomous, shared, and
electric, the so-called CASE vehicles. Nevertheless, each of these points has the potential
to turn the industry upside down. The paper is clearly backed up by a study that Level 4
automation will be reached by 2030 followed by Level 5 in 2040. Based on the interview
results conducted in [56] and the delphi-based scenario study with projections for the next
10 years, it is evident that one needs to seriously consider the impact of automation on
trucks. Lots of research revolves around passenger cars with many competitors in the
market. We found that not much data exist for self- driving trucks.

This parameter set, as shown in Table 3, serves as a starting point for understanding
the key differences in how AI is applied to autonomous trucks and cars. Each parameter can
be further explored and nuanced based on specific scenarios and applications. Currently,
the autonomous trucking industry has been expanding in four major categories, such as
Highway Trucking ODD (Operational Design Domain), Regional Delivery ODD, Urban
Logistics ODD, and Mining and Off-Road ODD. There are also three different categories
based on the different stages of logistics to handle the movement of goods for autonomous
trucking like Long Haul, Middle Mile, and Last Mile. Understanding these categorizations
and how the trucking industry has been evolving to deliver more autonomous vehicles is
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very important for the future of logistics to help optimize and streamline the entire supply
chain, ensuring the efficient and timely delivery of goods to their final destination.

Table 3. Parameter set for differences in using AI in autonomous trucks and cars.

Parameter Sub-Class Trucks Cars

Environment Traffic
Density

Operate on highways with predictable
traffic patterns

Encounter diverse, often congested,
urban environments

Road
Infrastructure

Navigate primarily on well-maintained
highways

Deal with varied road conditions and potentially
unmarked streets

Weather
Conditions

May prioritize stability and visibility for
cargo safety

May prioritize maneuverability for
passenger comfort

Vehicle
characteristics Size and Weight Larger size and weight present different sensor

ranges and dynamic response complexities
Smaller size and weight in comparison
to trucks

Cargo Handling
and Safety

Require AI to manage cargo weight distribution
and potential shifting of cargo This is not a concern for cars

Fuel Effi-
ciency and
Emissions

Truck AI prioritizes efficient fuel consumption
due to long-distance travel

Car AI may prioritize smoother acceleration
and deceleration for passenger comfort

Operational
considerations

Route Plan-
ning and
Optimization

Require long-distance route planning with con-
siderations for infrastructural limitations, rest
stops, and cargo delivery schedules

Generally focus on shorter, dynamic routes
with real-time traffic updates

Communication
and Connec-
tivity

May rely on dedicated infrastructure for com-
munication (platooning, V2X) Primarily use existing cellular networks

Legal and
Regulatory
Landscape

Regulations regarding automation and liability
are tight

Regulations impacting AI and deployment
are different than those of trucks

AI algorithm
and hard-
ware needs

Perception
and Sensor
Fusion

May prioritize radar and LiDAR for long-range
detection

Benefit from high-resolution cameras for
near-field obstacle avoidance

Decision-
Making and
Planning

AI focuses on safe, fuel-efficient navigation and
traffic flow optimization

AI prioritizes dynamic route adjustments,
pedestrian/cyclist detection, and passenger
comfort

Redundancy
and Safety
Protocols

May have stricter fail-safe measures due to
cargo risks Have safety protocols with redundant systems

Additional
factors

Public Percep-
tion and Ac-
ceptance

Public trust in truck automation might be
slower to build due to size and potential
cargo risks

Public trust in car automation is higher due
to fewer risks

Economic
and Business
Models

Automation models may involve fleet manage-
ment and logistics optimizations

Automation may focus on ride-sharing and
individual ownership

6.3. Stat3: Usage of AI Algorithms at Various Levels of Autonomy

Autonomous vehicles operate at various levels of autonomy, from Level 0 to Level 5,
each presenting unique challenges and opportunities. This section explores the diversity
and evolution of AI algorithms across different levels of autonomous vehicle capabilities.
Autonomous vehicles are categorized into different levels based on their autonomy, with
increasing complexity and diversity of AI algorithms as autonomy levels progress. The
six levels [64] of AV autonomy define the degree of driver involvement and vehicle au-
tomation. At lower levels (L0–L2), driver assistance systems primarily utilize rule-based
and probabilistic methods for specific tasks like adaptive cruise control or lane depar-
ture warning. Higher levels (L3–L4) rely heavily on machine learning and deep learning
algorithms [65,66], particularly for perception tasks like object detection and classification
using convolutional neural networks (CNNs). Advanced sensor fusion techniques combine
data from cameras, LiDAR (Light Detection and Ranging), radar, and other sensors to create
a comprehensive understanding of the environment. Furthermore, reinforcement learning
and probabilistic roadmap planning algorithms contribute to complex decision-making
and route planning in L3–L4 AVs. L5 (full automation) requires robust sensor fusion, 3D
mapping capabilities, and deep reinforcement learning approaches for adaptive behavior
prediction and high-level route planning.

Some industry-relevant examples are illustrated below:
Kodiak

• Status: Kodiak currently operates a fleet of Level 4 autonomous trucks for commercial
freight hauling on behalf of shippers.

• Recent Developments:

– Kodiak is focusing on scaling [59] its autonomous trucking service as a model,
providing the driving system to existing carriers.
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– The company recently secured additional funding to expand its operations and
partnerships.

– No immediate news about the deployment of driverless trucks beyond current
operations.

Waymo

• Status: Waymo remains focused on Level 4 autonomous vehicle technology, primarily
targeting robotaxi services in specific geographies [67].

• Recent Developments:

– Waymo is expanding its robotaxi service in Phoenix, Arizona, with plans to
eventually launch fully driverless operations.

– The company’s Waymo Via trucking division continues testing autonomous
trucks in California and Texas.

– No publicly announced timeline for nationwide deployment of driverless trucks.

Overall:

• Both Kodiak and Waymo are making progress towards commercializing Level 4
autonomous vehicles but are primarily focused on different segments (trucks vs.
passenger cars).

• Driverless truck deployment timelines remain flexible and dependent on regulatory
approvals and further testing as discussed previously.

Key AI Components across Levels

• Perception:

– L0–L2: Basic object detection and lane segmentation using CNNs.
– L3–L4: LiDAR-based object detection, advanced sensor fusion algorithms for

robust object recognition.
– L5: 3D object mapping, robust sensor fusion, and interpretation.

• Decision-Making:

– L0–L2: Rule-based algorithms for lane change assistance, adaptive cruise control.
– L3–L4: Probabilistic roadmap planning (PRM), decision-making models for

route selection.
– L5: Deep reinforcement learning for adaptive behavior prediction, high-level

route planning.

• Control:

– L0–L2: PID controllers [49] for basic acceleration and braking adjustments.
– L3–L4: Model Predictive Control (MPC) [68] for complex maneuvers, trajectory

tracking algorithms.
– L5: Multi-task DNNs for real-time coordination of all driving actions.

The following Table 4 provides examples of AI algorithms used at different autonomy
levels, from L0 to L5, highlighting key techniques and applications. We consider the
percentage of systems using AI algorithms, algorithm types, examples of AI algorithms at
each level, and the key tasks being automated at each level of autonomy. Please note that
at L0, the extent to which AI or learning algorithms are being used is very minimal, and
so they are not complete algorithms in themselves, although there could be some partial
techniques being used like data processing or detecting an object on the road.
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Table 4. Statistics on AI algorithms in autonomous vehicles based on levels of automation.

Level of
Autonomy

% of Systems
Using AI
Algorithms

Algorithm Types Key AI Algorithms Key Tasks Automated No. of AI
Algorithms

SW Pack
Size

L0 (No
Automation) 0% N/A N/A N/A 0 Few MB

L1 (Driver
Assistance) 50–70% Rule-based and Decision

Trees

Adaptive Cruise Con-
trol, Lane Departure
Warning (LDW), Au-
tomatic Emergency
Braking (AEB)

Sensing, basic alerts
and interventions 3–5 100 s

of MB

L2 (Partial
Automation) 80–90%

Rule-based, Decision
trees, Reinforcement
Learning (RL), and
Support Vector
Machines (SVM)

Traffic Sign Recogni-
tion, Highway Au-
topilot (ACC + lane
centering), Traffic Jam
Assist

Navigation, lane
control, stop-and-go,
limited environmental
adaptation

5–10 100 s MB to
Few GBs

L3
(Conditional
Automation)

90–95% Deep Learning (DL),
Schochastic, Guassian

Urban Autopilot,
Valet Parking

Full control under
specific conditions,
dynamic environ-
ment adaptation,
complex decision-
making

10–15
Few GB
to 10 s
of GB

L4 (High
Automation) 95–99%

Advanced DL (e.g.,
Generative Adversarial
Networks, Transformer
Models, etc.), Multi-agent
RL, Sensor Fusion

City Navigation,
Highway Chauffeur

Full control in spe-
cific environments,
high-level navi-
gation, complex
traffic scenarios

15–20
10 s of GB
to 100 s
of GB

L5 (Full
Automation) 100%

Hybrid Algorithms
(combining various
types), Explainable AI
(XAI) for Advanced
DL, Multi-agent RL

Universal Autonomy

Full control in all
environments, self-
learning and adap-
tation, human-like
decision-making

20+ 100 s of GB
to TBs

The level of autonomy in an AV directly correlates with the size of its software package.
Imagine a pyramid, with Level 0 at the base (smallest size) and Level 5 at the peak (largest
size). Each level adds functionalities and complexities, reflected in the increasing size of
the pyramid [69].

Challenges and Implications:

• Limited Storage and Processing Power: The existing onboard storage and processing
capabilities might not yet be sufficient for larger Level 4 and 5 software packages [63].

• Download and Update Challenges: Updating these larger packages may require
longer download times and potentially disrupt vehicle operation.

• Security Concerns: The more complex the software, the higher the potential vulnera-
bility to cyberattacks, necessitating robust security measures.

AV software package size is a major challenge for developers like Nvidia and Qual-
comm, as larger packages require the following:

• Increased processing power and memory: This translates to higher hardware costs
and potentially bulkier systems.

• Slower download and installation times: This can be frustrating for users, especially
in areas with limited internet connectivity.

• Security concerns: Larger packages offer more attack vectors for potential hackers.

Here is how Nvidia and Qualcomm are tackling these challenges:
Nvidia:

• Drive Orin platform: Designed for high-performance AV applications, Orin features a
scalable architecture that can handle large software packages.

• Software optimization techniques: Nvidia uses various techniques like code com-
pression and hardware-specific optimizations to reduce software size without
sacrificing performance.

• Cloud-based solutions: Offloading some processing and data storage to the cloud can
reduce the size of the onboard software package [42].

Qualcomm:

• Snapdragon Ride platform: Similar to Orin, Snapdragon Ride is a scalable platform
built for the efficient processing of large AV software packages.
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• Heterogeneous computing: Qualcomm utilizes different processing units like CPUs
(Central Processing Units), GPUs (Graphics Processing Units), and NPUs (Neural
Processing Units) to optimize performance and reduce software size by distributing
tasks efficiently.

• Modular software architecture: Breaking down the software into smaller, modular
components allows for easier updates and reduces the overall package size [2].

Additional approaches:

• Standardization: Industry-wide standards for AV software can help reduce duplication
and fragmentation, leading to smaller package sizes.

• Compression algorithms: Advanced compression algorithms can significantly reduce
the size of data and code without compromising functionality.

• Machine learning: Using machine learning to optimize software performance and
resource utilization can help reduce the overall software footprint.

The battle against the size of AV software packages is ongoing, and both Nvidia and
Qualcomm are at the forefront of developing innovative solutions. As technology advances
and these approaches mature, we can expect to see smaller, more efficient AV software
packages that pave the way for a wider adoption of self-driving vehicles.

Here is a deeper dive, as shown in Table 4, into this relationship [70].
The level of autonomy directly influences the size of an AV’s software package. While

higher levels offer greater convenience and potential safety benefits, they come with
the challenge of managing increasingly complex and computationally intensive software
packages that would require large storage spaces that the current processors cannot ac-
commodate. Hence, the transformation towards zonal-based architectures [71] is desirable,
with multiple but a small number of processors that are tasked to accomplish a particular
function or task providing the ample storage space needed for moving towards Level 5
along with supporting connected and automated vehicle concepts.

7. Conclusions

This paper provides a thorough examination of the significance of AI algorithms in
autonomous vehicles, addressing shifts from rule-based systems to deep neural networks
driven by enhanced model capabilities and computing power. It delineates the distinct
requirements for trucks and cars, highlighting trucks’ focus on route optimization and
fuel efficiency in contrast to cars’ emphasis on passenger comfort and urban adaptability.
The progression from basic object detection to 3D mapping and adaptive behavior predic-
tion is discussed, alongside challenges like limited storage, processing power, software
updates, and security vulnerabilities at higher levels of autonomy. Key conclusions em-
phasize AI’s pivotal role in achieving varying levels of autonomous vehicle functionality,
necessitating advanced techniques such as Deep Learning and Reinforcement Learning
for complex decision-making. As autonomy levels increase, the software package size
grows, which poses challenges for storage, processing, and updates, underscoring the need
for efficient architectures and robust security measures. Despite the promising business
potential, further research is urged on self-driving trucks to optimize logistics and address
driver shortages.

While certain aspects like emerging technologies (e.g., quantum AI, transfer learning,
meta-learning) fall beyond this paper’s scope, their potential integration within vehicles
for tasks like edge computing or human behavior learning through transfer learning has
been acknowledged. Although trends in artificial intelligence are discussed, this paper
acknowledges the existence of other platforms like NeurIPS [72] with potentially more
publications. The exclusion of discussions on emerging trends is intentional to narrow the
scope and present relevant studies for drawing meaningful conclusions. This helped us
to maintain focus and present relevant studies, offering a clear picture of AI’s evolving
landscape in autonomous vehicles and proposing future research directions for stakeholders
invested in modern transportation dynamics.
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