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Abstract: Ammonia, as the second most-produced chemical worldwide, serves diverse roles in the
industrial and agricultural sectors. However, its conventional production via the Haber–Bosch process
poses significant challenges, including high energy consumption and carbon dioxide emissions. In
contrast, photocatalytic nitrogen (N2) fixation, utilizing solar energy with minimal emissions, offers
a promising method for sustainable ammonia synthesis. Despite ongoing efforts, photocatalytic
nitrogen fixation catalysts continue to encounter challenges such as inadequate N2 adsorption,
limited light absorption, and rapid photocarrier recombination. This review explores how the
electronic structure and surface characteristics of one-dimensional nanomaterials could mitigate
these challenges, making them promising photocatalysts for N2 fixation. The review delves into
the underlying photocatalytic mechanisms of nitrogen fixation and various synthesis methods for
one-dimensional nanomaterials. Additionally, it highlights the role of the high surface area of
one-dimensional nanomaterials in enhancing photocatalytic performance. A comparative analysis
of the photocatalytic nitrogen fixation capabilities of different one-dimensional nanomaterials is
provided. Lastly, the review offers insights into potential future advancements in photocatalytic
nitrogen fixation.
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1. Introduction

Ammonia (NH3) is essential for sustaining life on Earth, serving as a crucial component
of nitrogen fertilizers and a primary ingredient in various chemical products such as nitric
acid and explosives. It is also valued for its high hydrogen storage capacity, making it an
eco-friendly material. With an estimated global production of approximately 15 billion
metric tons annually, the demand for ammonia is expected to rise with continuing economic
and population growth [1]. Presently, the Haber–Bosch process is widely utilized for the
synthesis of industrial ammonia. However, the Haber–Bosch process mandates operating
conditions exceeding 200 bars in pressure and temperatures surpassing 673 K. Additionally,
a substantial quantity of H2 generated by the steam reforming of fossil fuels must be
combusted. Approximately 13% of the global oil supply and 35% of the global natural
gas supply are allocated to specific regions. The feasibility of ammonia synthesis under
normal atmospheric conditions, without the use of hydrogen gas, presents an attractive
alternative for secure and environmentally sustainable production. Utilizing nitrogen
directly at normal temperature and pressure can result in substantial energy savings,
as the atmosphere contains approximately 78% nitrogen resources [2]. Under favorable
circumstances, photocatalysis has the potential to convert nitrogen gas into ammonia. The
initial investigation of photocatalytic nitrogen fixation by Schrauzer and Guth in 1977
demonstrated the reduction of nitrogen to ammonia using iron (Fe)-doped titanium dioxide
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(TiO2) [3]. Remarkably, the solar energy incident on the Earth’s surface within a single
hour is capable of satisfying global energy demands for a full year. The utilization of
photocatalytic nitrogen fixation is increasingly becoming a prominent area of interest.
Photocatalytic nitrogen fixation operates at relatively low temperatures and pressures,
utilizing solar energy to generate electrons and holes that subsequently react with water
protons to reduce N2 to NH3 [4]. Semiconductors facilitate photon absorption in the process
of photocatalysis, generating electron–hole pairs that drive oxidation–reduction reactions.
When the energy of the incident light equals or exceeds the band gap of semiconductor
nanoparticles, electrons in the valence band are compelled to transition into the conduction
band. As a result, there is a scarcity of available holes in the valence band. This phenomenon
gives rise to the generation of electron–hole pairs. Nanomaterials exhibit a multitude of
defects and dangling bonds, which have the capability to confine electrons or holes, thereby
impeding the recombination of these electrons and holes. The presence of trapped electrons
and holes on the particle surfaces leads to the generation of a robust redox potential. The
three main stages commonly observed in photocatalytic reactions are light absorption,
charge carrier separation, and surface reduction, as illustrated in Figure 1.
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Figure 1. Plausible photocatalytic nitrogen fixation mechanism by photoactive nanomaterials [1].
Copyright 2021 Royal Society of Chemistry.

Despite the potential of common photocatalysts such as titanium oxide (TiO2), zinc
oxide (ZnO), graphitic carbon nitride (g-C3N4), and bismuth halides (BiOX), their nitrogen
fixation efficiency remains low due to issues such as light absorption range and charge
carrier recombination [5–7]. Recent studies have focused on modifying these materials
to alter semiconductor band gaps, promote the separation of photogenerated electron–
hole pairs, and enhance N2 adsorption on the catalyst surface through methods such
as doping, [8] constructing heterojunctions, and increasing vacancies [9]. This review
extensively explores photocatalytic nitrogen fixation, synthesis methods of one-dimensional
(1D) nanomaterials, and their applications in photocatalytic nitrogen fixation.

2. Overview of Semiconducting Nanomaterials for Photocatalytic N2 Fixation

Materials with thickness and width on the nanoscale, such as nanorods, nanowires,
nanoribbons, nanotubes, etc., are referred to as 1D nanostructures. They may have a length
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of several microns or greater [10]. One-dimensional nanostructures with a high aspect
ratio facilitate photogenerated carrier separation and transit more quickly, hence enhancing
photocatalytic activity. Consequently, significant research has been conducted on how
the design of 1D nanostructures affects photocatalytic nitrogen fixation. Photocatalytic
nitrogen fixation, the process of utilizing a photocatalyst to reduce N2 into ammonia under
solar light irradiation, has garnered significant interest, with publications on the subject
increasing 90-fold in just seven years [11]. For instance, the significance of the rutile phase
of TiO2 in photocatalytic N2 reduction has been attributed to its strong chemisorption of
N2 on its surface [12]. The decline in photocatalytic N2 reduction activity can be linked to
the loss of Ti–OH groups and active sites within the rutile phase, particularly when the
rutile-to-anatase phase ratio exceeds 23:77. Researchers have also examined the impact of
incorporating metal oxides, such as Fe, Co, Mo, and Ni-based oxides, on the photocatalytic
reduction of N2 [13,14]. They found that the most favorable outcome in terms of ammonia
generation occurred when Fe2O3 was added at a mass loading of 0.2 weight percent.

In 2017, Hirakawa et al. made a significant assertion that TiO2, with a substantial
number of surface oxygen vacancies, exhibits catalytic activity in the conversion of N2 to
NH3 under UV light, attributed to the creation of Ti3+ states. This leads to a remarkable
enhancement in the efficiency of solar-to-chemical energy conversion in the photocatalytic
N2 reduction system, reaching 0.02%. This achievement establishes it as the most efficient
photocatalytic N2 reduction system to date [15]. In an intriguing study, Wang et al. gen-
erated self-assembled, 5 nm diameter Bi5O7Br nanotubes that exhibited high efficiency
and stable N2 photo fixation without requiring the use of a sacrificial agent [16]. It has
been demonstrated that N2 can be captured and activated by oxygen vacancies (OVs)
on the surface of bismuth oxybromide-based photocatalysts, but these OVs are quickly
oxidized. The process of synthesis and the mechanism of development of the Bi5O7Br
nanotubes involved creating ordered bismuth-bromine-oleylamine (Bi-Br-OA) complexes.
Initially, Bi and Br ions were coordinated in a pure oleylamine solution. Subsequently, the
Bi-Br-OA compounds slowly hydrolyzed and self-assembled into a nanotube structure
upon the gradual addition of water. The N2 photo fixation of 5 nm Bi5O7Br nanotubes is
divided into four steps: (i) Some oxygen atoms escape from the surface in the form of O2
molecules to create abundant surface oxygen vacancies (OVs) under visible light; (ii) N2 is
chemisorbed and activated at the OV sites; (iii) The photogenerated electrons are injected
into the activated N2 molecule and reduced to NH3; (iv) Finally, light-induced OVs can be
easily restored to their original, stable OV-free state by adsorbing oxygen atoms from water
and refilling them. To facilitate the emergence of unsaturated metal atoms and oxygen
vacancy (OV) defects, which may be utilized as sites for N2 chemisorption and electron
transfer, Xiong’s research group used W18O49 ultrathin nanowires as a model photocatalyst
for complex Mo doping [17].

In addition to titanium dioxide, various other metal oxides, including iron (III) oxide
(Fe2O3), zinc oxide, tungsten trioxide (WO3), vanadium pentoxide (V2O5), and zirconium
dioxide (ZrO2), have demonstrated exceptional photocatalytic properties for nitrogen
fixation. Additionally, certain metal sulfides, such as cadmium sulfide (CdS), have also
exhibited promising catalytic capabilities in this regard [18,19]. Nevertheless, due to the
susceptibility of the majority of these compounds to photodegradation, their production
of ammonia is rather limited. Additionally, catalysts based on bismuth have exhibited
noteworthy levels of activity in the process of photocatalytic reduction of N2 [20,21]. The
metastability of trapped photogenerated electrons on oxygen vacancies is crucial for the con-
version of NH3, as it enables access to the π antibonding orbitals of activated N2 molecules.
Comprehending the intricate mechanisms governing nitrogen fixation is pivotal for optimiz-
ing its efficiency, offering invaluable insights into the underlying principles of the process.
Presently, nitrogen fixation encompasses three primary mechanisms, collectively contribut-
ing to four recognized pathways: dissociative, distal associative, alternate associative, and
enzymatic routes [22]. The dissociative pathway depicted in Figure 2a employs significant
energy to effectively cleave the triple bonds present in nitrogen molecules. This process



Nitrogen 2024, 5 352

subsequently leads to hydrogenation and the synthesis of ammonia [23]. The dissociative
pathway is the mechanism through which ammonia is generated in the Haber process. The
hydrogenation process exhibits distinct variations in the two associative pathways due
to the gradual dissociation of the N≡N bond. The process of hydrogenation initiates at
the nitrogen atom that is located at the greatest distance from the catalyst, as depicted in
the distal associative pathway illustrated in Figure 2b. Subsequently, the second nitrogen
atom undergoes a hydrogenation process, resulting in the liberation of the first ammonia
molecule. In the alternate associative approach depicted in Figure 2c, the hydrogenation of
the two nitrogen atoms occurs simultaneously. Hydrogenation commonly occurs inside
nitrogenases and other catalyst-mediated reactions in the enzymatic pathway, as depicted
in Figure 2d. In contrast to the aforementioned approaches, the adsorption of the nitrogen
molecule occurs on the nitrogenases or catalysts situated along the periphery of each atom,
as opposed to being confined to a single atom’s surface. In this process, the hydrogenation
of each nitrogen atom occurs concurrently.
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In 2019, Ling et al. proposed a novel method for nitrogen reduction, termed surface
hydrogenation, which is postulated to occur on the surface of metal catalysts based on
noble metals Figure 3 [25]. The first phase of this mechanism involves the conversion of
H+ into *H with minimal energy. This is hypothesized to have potentially served as the
rate-determining step. Subsequently, nitrogen molecules promptly undergo a reaction with
hydrogen (H) to produce a more energetically favorable species, namely dinitrogen hydride
(N2H2). Ammonia is formed by the reaction of N2H2, H+, and electrons (e−). Increasing
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the concentration of alkali-metal cations can potentially serve as a viable way to accelerate
the nitrogen fixation process, as they exhibit analogous behaviour to H+ in activating N2.
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(NRR). Potential determination begins with H+ reduction into *H. N2 molecules can overcome a high
energy barrier to react with surface *H to form *N2H2 intermediates as *H coverage increases. This
stage is crucial for establishing the overall process rate. *N2H2 spontaneously reduces to NH3 after
formation [25]. Copyright 2019 American Chemical Society.

Mechanism of Photocatalytic N2 Fixation

The photocatalytic nitrogen fixation process manifests through two distinct pathways:
the nitrogen reduction reaction (NRR) and the nitrogen oxidation reaction (NOR). The
process of N2 reduction involves several sequential steps, which are delineated as follows:
Initially, upon exposure to sunlight, photons generate electrons that become excited to
the conduction band (CB), creating vacancies in the valence band (VB). Simultaneously,
the formation of additional photo-induced holes (h+) during electron–hole recombination
catalyzes the oxidation of water, yielding H+ and O2 (Equation (1)). Subsequently, the ener-
getic electrons facilitate the reduction of N2, yielding NH3 (Equation (2)). NH3 synthesis
then occurs under standard temperature and pressure through the combination of water
and N2, with sunlight serving as the primary energy source (Equation (3)).

Step 1: 2H2O + 4H+ → O2 + 4H+ (1)

Step 2: N2 + 6H+ + 6e− → 2NH3 (2)

Overall: 2N2 + 6H2O → 4NH3 + 3O2 (3)

In the aforementioned illustration, it has been established that the photocatalytic
process of N2 oxidation adheres to the mechanism of photogenerated-hole oxidation. This
process involves the following stages: First, when exposed to sunlight, electrons generated
by photons get excited and move to the conduction band, creating holes in the valence
band. The described behavior occurs within the nitrogen reduction reaction scenario. In
this process, N2 is oxidized to NO by the photogenerated h+ in the presence of water
(Equation (4)). At the same time, photoexcited electrons convert O2 to H2O (Equation (5)).
Additionally, NO undergoes further oxidation to form nitrates, which serve as the final
product (Equation (6)). Generally, the synthesis of nitric acid involves the combination
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of water, oxygen (O2), and nitrogen (N2) under standard temperature and pressure. This
process is facilitated by the utilization of sunlight as an energy input, as represented by
(Equation (7)).

Step 1: N2 + 2H2O + 4H+ → 2NO + 4H+ (4)

Step 2: O2 + 4H+ + 4e− → 2H2O (5)

Step 3: 4NO + 3O2 + 2H2O → 4HNO3 (6)

Overall: 2N2 + 5O2 + 2H2O → 4HNO3 (7)

Adsorption sites can include individual atoms or specific locations within a group
of atoms. However, defect sites also can adsorb reactant molecules and are generally
more active in facilitating crucial photocatalytic reactions. In practical applications, there
are five potential reaction pathways for photocatalytic N2 reduction and three potential
reaction pathways for photocatalytic N2 oxidation. These pathways are visually depicted in
Scheme 1a,b. The photocatalytic N2 reduction reaction can be categorized into two distinct
pathways: the associative alternating route and the associative intermediate pathway [26].
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oxidation reaction mechanism [27]. Copyright 2019 Royal Society of Chemistry.

In the realm of scientific literature, a diverse array of nanomaterials with varied
morphologies have been utilized to advance photocatalytic nitrogen fixation. These include
nanoparticles, nanosheet nanotubes, nanorods, and materials with zero-dimensional (0D),
one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) structures. While
extensive research has been conducted on nanomaterials with 0D, 2D, and 3D architectures
for nitrogen fixation, exploration of 1D nanomaterials in this domain remains relatively
limited, with scant scholarly discourse available. Consequently, the current literature
predominantly focuses on the synthesis and application of one-dimensional nanomaterials
in the realm of photocatalytic nitrogen fixation (See Scheme 2).
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3. One-Dimensional (1D) Nanomaterials

One-dimensional semiconducting nanomaterials belong to an emerging class of semi-
conductors characterized by cross-sectional dimensions ranging from 1 to 100 nm and
variable lengths spanning from hundreds of nanometers to millimeters. The foundation of
today’s research on 1D nanomaterials is based on Dr. R.S. Wagner’s research in the 1960s at
Bell Laboratories [28,29]. He developed a method called the ‘vapor–liquid–solid process’
for the synthesis of nanowires (specifically, silicon nanowires) on gold catalysts. By the
1990s, interest had shifted mainly to the exploration of carbon nanotubes (CNTs) [30–32]
and several oxide materials [33,34] and elemental semiconductors [35–37]. Among 1D
nanomaterials, nanowires (NWs), nanobelts, nanofibers, nanotubes (NTs), and nanorods
(NRs) possess unique and exceptional properties due to their confined dimensionality
along one axis [38–41]. These properties distinguish them from bulk and one-dimensional
materials and make them highly attractive for various applications. Additionally, their
higher surface area, improved active surface sites, and fewer lattice defects are favorable for
reducing electron–hole recombination in long-run electron transfer reactions [42,43]. These
materials, characterized by their elongated and anisotropic structures, exhibit exceptional
electrical, optical, mechanical, and catalytic properties, making them valuable in fields
ranging from electronics and photonics to energy storage and sensing [42,44–46].

Nanomaterial for Photocatalytic N2 Fixation

The potential of 1D nanomaterials in the area of heterogeneous photocatalysis is im-
mense, especially following the invention of CNTs and TiO2, which can function as single
materials or be incorporated with other materials of various functionalities. As a result,
1D nanomaterials are becoming an active research topic, especially in solar water splitting,
NH3 conversion, organic dye degradation, photocatalytic nitrogen oxides (NOx) removal,
and photocatalytic N2 fixation [47–50]. Similar to TiO2 nanorods, zinc oxide exhibits similar
1D nanostructures with comparable band gap energies (3.2–3.3 eV), which exhibit higher re-
action rates [51]. On the other hand, to maximize visible light absorption, narrow band gap
semiconductors are used, either alone or coupled with sensitizers [52–54]. TiO2 1D nanos-
tructures, such as nanorods or nanowires, exhibit enhanced photocatalytic efficiency in
the N2 fixation reaction [55]. The infusion of dopants or the fabrication of heterostructures
with TiO2 can significantly enhance its efficiency, often resulting in a substantial increase in
performance [56,57]. Materials composed of noble metals with one-dimensional structures
demonstrate efficient catalytic rates in photocatalytic N2 fixation. However, the reaction
kinetics in such systems may not meet the desired standards for optimal performance. To
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improve the potential for enhanced efficiency, achieving effective charge transfer is crucial.
One promising strategy involves assembling bimetallic or trimetallic compositions. This
approach can significantly enhance charge transfer processes and prevent particle agglomer-
ation on the surface, ultimately leading to improved catalytic performance [58–60]. g-C3N4,
known for its two-dimensional sheet-like structure, is highly regarded for its eco-friendly,
cost-effective, and metal-free semiconductor properties, making it suitable for a wide range
of applications. However, its rapid recombination of electron–hole pairs poses a challenge,
creating barriers for interplanar charge transfer and complicating its catalytic efficiency. To
enhance catalytic performance, one strategy involves template-based methods or intricate
synthesis routes to produce one-dimensional g-C3N4 structures. These one-dimensional
configurations offer improved catalytic efficiency and more efficient charge transport along
a single direction, mitigating the limitations associated with their 2D counterparts. Metal-
organic frameworks (MOFs) have emerged as noteworthy antecedents and templates in
the fabrication of one-dimensional nanostructures, which is an intriguing observation. This
category of nanoparticles includes a diverse range of chemicals, such as metal phosphides,
metal sulfides, porous carbon compounds, and metal oxides [61,62]. One noteworthy
attribute of these derived materials is their ability to preserve the intricate pore structure
inherited from the original MOF, giving rise to materials with elevated surface areas and
distinctive structural characteristics. For instance, the creation of a porous hollow tubular
In2O3 semiconductor, derived from the MIL-68(In) MOF, exemplifies this preservation. In
their study, Hu et al. synthesized a photocatalyst consisting of In2O3-decorated g-C3N4,
generated from a Metal-Organic Framework (MOF) called MIL-68(In). The catalyst demon-
strated remarkable efficiency in the process of photocatalytic hydrogen (H2) production [63]
In a similar vein, Bariki et al. proposed the concept of utilizing MOF-derived hollow tubular
heterostructures composed of In2O3/MIIIn2S4 (where MII represents calcium, manganese,
and zinc) for photocatalytic applications such as hydrogen production, hydrogen peroxide
(H2O2) production, and ammonia (NH3) production [64] Recently, metal doping with 1D
WxOy (stoichiometric and non-stoichiometric) materials has become a promising pho-
tocatalyst for improving the N2 fixation reaction. The incorporation of Mo, Ce, and Fe
doping on W18O49 nanowires has been the subject of extensive research, showcasing the
remarkable potential for improving the efficiency of N2 fixation compared to conventional
WO3 materials [17,65,66]. It is widely acknowledged that one-dimensional nanostructures
hold significant potential as fundamental components for developing advanced electrical
or photoelectronic devices, chemical or biological sensors, and energy harvesting, storage,
and conversion systems in the future [67]. Both descriptions are relevant to the physical
and technological importance of one-dimensional nanostructures. Nevertheless, there has
been limited focus on conducting extensive analyses of the potential practical applications
of one-dimensional nanomaterials, which is of utmost importance for both scientific and in-
dustrial considerations. Therefore, considering the potential to address current deficiencies
and issues related to energy and the environment, it is necessary to conduct more impartial
and focused assessments on the potential practical applications of nanomaterials based on
one-dimensional structures. In recent times, the use of one-dimensional nanostructures
in photocatalysis, particularly in the context of nitrogen fixation, has emerged as a highly
active research area within the nanoscience community. Nonetheless, there have been only
a limited number of comprehensive reviews that have thoroughly examined the application
of one-dimensional nanostructures in photocatalytic nitrogen fixation. The aforementioned
circumstance serves as a compelling impetus for the composition of this feature article,
which aims to present a comprehensive analysis of the noteworthy subject matter related
to 1D-based photocatalysts used in photocatalytic nitrogen fixation.

4. Synthesis Methods for 1D Nanomaterials

The synthesis of one-dimensional nanomaterials is a critical aspect of harnessing their
potential. Researchers have developed a wide array of synthesis techniques, each with
its own advantages and limitations, to produce these nanoscale wonders. Two primary
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approaches are employed in the synthesis of nanomaterials: bottom-up and top-down
methods. Bottom-up methods involve building nanoscale structures from individual atoms
or molecules, while top-down methods involve reducing larger materials to nanoscale
dimensions. Of the two, bottom-up methods have gained widespread popularity due
to their precision and control in creating tailored 1D nanomaterials. In this brief section,
we will explore some of the commonly employed synthesis methods in Scheme 3, and
highlight their significance in tailoring the properties of one-dimensional nanostructures.
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4.1. Chemical Vapor Deposition Method

The high-temperature vapor-phase synthesis technique is extensively employed for
the production of one-dimensional nanostructures, with a special emphasis on metal
oxide materials. Several scientific journals have conducted research on this well-established
approach. The chemical reaction involves the combination of metal vapor with an oxidizing
gas, such as oxygen or nitrogen, in a direct and uncomplicated manner. In a conventional
vapor-phase synthesis method, the reaction takes place within a horizontally oriented
quartz tube positioned within a furnace operating at elevated temperatures. The interior of
the tube is used for loading the raw material, specifically metal powder, which is placed
into an alumina boat and then injected upstream. A substrate is positioned downstream to
accumulate the ultimate product.

(a) Direct vapor synthesis

In the direct vapor-phase synthesis process, both the metal and the oxidizing agent
are introduced into the reaction chamber. The metal is then heated to the vapor phase and
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undergoes a reaction with the oxidizing agent. The major governing factor in synthesizing
one-dimensional nanostructures via the vapor phase is supersaturation, also known as
metal vapor pressure. To facilitate the creation of 1D nanostructures, maintaining a low
degree of supersaturation is imperative. Conversely, medium supersaturation is required
for the growth of bulk crystals, while high supersaturation is necessary for powder growth
and the membrane-based synthesis of nanomaterials. There are two distinct methods for
vapor-phase growth: vapor–liquid–solid (VLS) and vapor–solid (VS). The VLS approach
is a growth technique that utilizes metal nanoparticles as nucleation seeds. The growth
direction and diameter of resulting one-dimensional nanostructures are controlled using
the vapor–liquid–solid (VLS) approach. The process begins with the generation of liquid
alloy droplets, comprising a combination of metal and a catalyst. As the experimental
procedure progresses, the liquid alloy undergoes a state of supersaturation due to the
accumulation of the desired metal vapor. Metal oxide is produced through gas oxidation,
where oxidizing gases such as oxygen are introduced and allowed to flow. TEM exam-
ination has confirmed the presence of a catalyst nanocluster located near the end of the
one-dimensional nanostructure, which is a notable characteristic of the VLS process [68,69].
For instance, two different catalysts, namely Au and Fe, could be employed for the synthe-
sis of silicon nanowires. According to the Au–Si binary system phase diagram depicted in
Figure 4, it can be inferred that nanowire formation is expected to occur at temperatures
slightly above 363 ◦C. This temperature is notably more than 800 ◦C lower compared to the
Fe-based catalyst.
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(b) Indirect vapor phase synthesis

The indirect vapor-phase synthesis technique is commonly employed for the growth of
one-dimensional nanostructures. In this process, intermediates or precursors are typically
involved. Due to the need to account for breakdown and other forms of side reactions in
various scenarios, the synthesis method employed in this approach is more complex com-
pared to the relatively straightforward chemical vapor deposition (CVD) process. In their
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study, Yang et al. presented a technique for producing magnesium oxide (MgO) nanowires
using a carbon thermal reduction process. Initially, a chemical reaction is initiated between
carbon and MgO to facilitate the conversion of MgO into Mg vapor. The Mg vapor is then
transported onto the surface of the condensation substrate, where it undergoes oxidation
to regenerate MgO [70]. One notable benefit of employing the two-step process is the
effective control of Mg vapor supersaturation through the reaction rate between MgO and
carbon. This level of control facilitates the formation of one-dimensional MgO nanowires.
An alternative technique for indirect vapor-phase development is metal–organic chemical
vapor deposition (MOCVD), wherein the source metal is supplied through the utilization
of metal-organic compounds [71]. The laser ablation method exhibits similarities to the
chemical vapor deposition growth process. There are differences in the way in which they
generate metal vapor. In the latter method, metal vapor is generated by laser ablating a
metal component, which rapidly transitions the metal to the vapor phase inside the chemi-
cal vapor deposition process. The growth mechanism of laser ablation remains rooted in
the vapor–liquid–solid or vapor–solid process [72].

4.2. Solution Phase Synthesis

The growth of solution-phase synthesis requires significantly lower temperatures com-
pared to vapor-phase synthesis, resulting in a decrease in the overall cost of synthesis. The
process of solution-phase synthesis can be strategically planned to facilitate the synthesis
of a wide range of materials. These materials encompass several types, including elemental
substances like gold and platinum, binary compounds such as TiO2, ZnO, and CdTe, as well
as complex compounds like barium titanate (BaTiO3) and magnesium hydroxide sulfate
hydrate [73–76]. In contrast, vapor-phase synthesis is restricted to fundamental materials,
specifically metal elements or combinations of metal binaries. This approach has effectively
achieved the synthesis of many morphologies. Coprecipitation and hydrothermal methods
represent a selection of solution-phase synthesis methods employed for the fabrication of
one-dimensional nanomaterials.

(a) Coprecipitation

The phenomenon of coprecipitation encompasses a series of sequential stages, in-
cluding nucleation, growth, and coarsening. The complexity of the phases involved in
coprecipitation has hindered the development of a comprehensive understanding of this
phenomenon. Nevertheless, the subsequent content provides a fundamental outline of
the procedure:

(1) Typically, the solubility of desired products in a specific solvent is limited.
(2) Supersaturation is a determinant factor that influences the growth of a product.
(3) Elevated supersaturation levels induce the process of nucleation, leading to the

creation of a significant quantity of clusters or nuclei.
(4) The crystals undergo development into larger structures as ions or molecules

are introduced.
(5) The size and morphology of the final result can be significantly influenced by

secondary growth mechanisms, such as Ostwald ripening or aggregation.
The coprecipitation method has been used to fabricate various nanoparticles, including

elemental metal and metal oxide. For instance, Zagari et al. synthesized ZnO nanorods
using this process. They sensitized the nanorods with tetrakis(4-carboxyphenyl) porphyrin
and its tin complex to enhance their visible light photocatalytic activity [77]. Soares et al.
synthesized nanotube/nanorod-like structures of La-doped ZnO using the co-precipitation
method for the degradation of methylene blue and ciprofloxacin [78]. Wang and colleagues
developed a simple method using coprecipitation to create hierarchical microcuboids of
CuBi2O4 by self-assembling nanorods. These materials have an average size of 6 µm in
length and 1.5 µm in width. Additionally, modifying them with an AuAg alloy increased
their photocatalytic efficiency by 1.9 times [79].

(b) Hydrothermal/Solvothermal synthesis
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The solvothermal method utilizes supercritical fluids, which are fluids heated to tem-
peratures and pressures above their boiling point, exhibiting characteristics of both liquids
and gases. The reduction in interfacial tension leads to a significant improvement in mass
movement between phases. When water is the solvent, the process is often referred to
as hydrothermal. If an organic solvent is used, then the process is termed solvothermal.
Although some syntheses have been conducted under supercritical conditions, the vast
majority of nanomaterial synthesis occurs at significantly lower temperatures and pres-
sures [80–82]. This approach has been used to create a variety of essential nanomaterials
with 1D morphologies, such as nanotubes, nanorods, and nanowires, including TiO2, ZnO,
g-C3N4, and CdTe [80,83–85]. The hydrothermal approach has been extensively used for
synthesizing nanostructured titania, which is considered a highly significant photocatalyst.
Wangs and Ge groups conducted a comprehensive examination to investigate the effects of
hydrothermal conditions on the growth of TiO2 nanotubes [86,87]. The diameters of the
nanotubes were found to depend on temperature and reactant ratio, with higher temper-
atures resulting in larger nanotubes with a wider size dispersion. Under hydrothermal
conditions, some researchers utilized various acids as catalysts to transform amorphous
TiO2 into anatase or rutile crystallite TiO2 [88] Nanorods in the rutile phase can be synthe-
sized using citric and nitric acid, while the conversion of amorphous TiO2 to the anatase
phase can be achieved by employing hydrofluoric acid.

4.3. Template Assisted Synthesis

Another method of synthesizing 1D nanostructures utilizes pre-existing nanostruc-
tures in a process known as ‘template synthesis’. Various templates have been utilized
to create nanostructure materials, including polymeric membranes and self-assembled
molecular structures [89,90]. The two most commonly used templates are polymers and
anodic aluminum oxide (AAO). In the synthesis process, the AAO membrane, which has
well-organized channels, is immersed in the reaction system. Subsequently, the reaction
solution is subjected to electrochemical deposition within the pores of the AAO membrane.
The required nanowires can then be obtained by dissolving the AAO membranes in NaOH
solution [91,92]. Polymer materials can be used as templates due to their ease of processing.
They can either serve as sacrificial templates or as guiding agents during the synthesis
of hollow structures. Caruso described a method for producing hollow SiO2 nanomate-
rials [93]. This methodology employed polystyrene spheres as templates, followed by
coating SiO2 particles onto their surfaces using poly(diallyl dimethyl ammonium chloride)
(PDADMAC). Calcination then led to the formation of silica spheres with hollow interiors.
Similarly, a core-shell structure consisting of silver and gold layers was fabricated using
polystyrene as the core template [94]. Poolakkandy et al. developed an easy method for
synthesizing transition metal oxides that allows for precise morphological (1D, 2D, and 3D)
and physicochemical control [95].

4.4. Sol-Gel Method

One-dimensional nanostructures with a porous membrane have been produced using
the sol-gel synthesis process [96]. The sol-gel technique relies on a gel composed of ag-
gregated sol particles. A membrane template is submerged in the sol suspension, causing
sol aggregates to form on its surface. These sol particles fill the template’s pores, creating
nanostructures with a high aspect ratio. The deposition period determines the length of
the nanostructures. Finally, the gel is removed through a heating process, completing
the production of desired nanostructures, such as one-dimensional arrays of gold (Au),
ZnO nanorods, and MnO2 nanowires [97,98]. Matysiak et al. synthesized hybrid amor-
phous/crystalline SnO2 1D nanostructures and studied their shape, structure, and optical
characteristics [99]. Reyes et al. used a simple route to obtain TiO2 nanowires via the sol-gel
method [100].
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4.5. Electrochemical Deposition

The process of electrochemical deposition involves applying a metal coating to one
side of the membrane, which acts as a cathode for electroplating within the pores. In
other words, electrically conductive membranes with appropriate channels are used as
templates for synthesizing nanowires via electrochemical deposition. Since cations in the
deposition solution reduce at the cathode, they adhere to the template. The anode is placed
parallel to the cathode in the deposition solution. When an electric field is applied, cations
in the system diffuse towards the cathode, where they undergo reduction. This process
leads to the formation of nanowires within the pores of the template. Electrochemical
deposition is commonly used to synthesize metals, alloys, semiconductors, and electrically
conductive polymers. This is facilitated by the fact that once the initial deposition occurs,
the electrode becomes isolated from the precursor solution by the deposited materials.
Consequently, the deposited material can serve as an electrically conductive substance,
enabling it to function as a channel for electric current. The synthesis of nanostructures
using this technology is primarily influenced by factors such as deposition duration, the
length of the deposition channel or pore, and current density [101]. She et al. stated that
electrodeposition is a straightforward and flexible approach for producing one-dimensional
nanostructures, which has gained increasing attention in recent years [102].

5. Important 1D Nanostructures for N2 Fixation
5.1. Metal Oxide 1D Nanostructures

Metal oxide nanostructures have garnered significant interest in the field of photo-
catalytic N2 fixation due to their unique properties and potential to drive this challenging
and important reaction. Indeed, various techniques and mechanisms have been developed
for synthesizing one-dimensional metal oxide nanostructures. Some of the important
nanostructures include nanotubes, nanowires, nanorods, and nanobelts. TiO2 has emerged
as a focal point in the study of oxide nanotubes due to its significant technological rel-
evance. Researchers have increasingly turned their attention to TiO2 for photocatalytic
applications, drawn by its environmentally friendly properties, chemical inertness, and
anisotropic behavior [103]. The pivotal development in creating tube-like structures for
TiO2 initially involved using anodic aluminum oxide templates and sol-gel techniques
supported by supramolecular templates. However, its wide band gap (3.0–3.2 eV) and
the increased recombination of photogenerated electrons and holes have led to reduced
efficiency. To tackle these challenges, 1D TiO2 nanostructures have been customized by
combining them with other semiconductors or by introducing structural defects through
the addition of metal or non-metal dopants. This innovation has led to augmented surface
area, heightened efficiency, and superior absorption of visible light when compared to
pure TiO2 structures [104,105]. Wu et al. utilized a solvothermal synthesis method to
fabricate TiO2(B) nanotubes, employing MoO3 nanorods as templates. These nanotubes
demonstrated a notably larger surface area compared to pure TiO2 nanosheets. Under
natural sunlight, TiO2(B) exhibited an NH3 production rate of 106.6 µmol L−1 g−1·h−1.
This heightened activity can be attributed to improved charge separation and an increased
presence of surface oxygen vacancies [106]. Similarly, Shufang et al. synthesized TiO2
nanotubes adorned with Au nanocrystals, resulting in enhanced N2 fixation performance
along with excellent stability. SEM and TEM images of TiO2 nanotubes and Au-decorated
structures are presented in Figure 5. The presence of Au-decorated nanocrystals led to an
augmentation of oxygen vacancies, enhancing the chemisorption of N2 and promoting
charge separation on the surface of TiO2 nanotubes [107]. To mitigate surface defects on
TiO2 nanotubes, Wang and coworkers subjected the as-synthesized TiO2 nanotubes to
treatment with a H2 atmosphere. This treatment yielded a remarkable NH3 production rate
of 1.2 mmol L−1 g−1·h−1 under the full spectrum of light [55].



Nitrogen 2024, 5 362

Nitrogen 2024, 5, FOR PEER REVIEW 14 
 

 

natural sunlight, TiO2(B) exhibited an NH3 production rate of 106.6 µmol L−1 g−1·h−1. This 
heightened activity can be attributed to improved charge separation and an increased 
presence of surface oxygen vacancies [106]. Similarly, Shufang et al. synthesized TiO2 
nanotubes adorned with Au nanocrystals, resulting in enhanced N2 fixation performance 
along with excellent stability. SEM and TEM images of TiO2 nanotubes and Au-decorated 
structures are presented in Figure 5. The presence of Au-decorated nanocrystals led to an 
augmentation of oxygen vacancies, enhancing the chemisorption of N2 and promoting 
charge separation on the surface of TiO2 nanotubes [107]. To mitigate surface defects on 
TiO2 nanotubes, Wang and coworkers subjected the as-synthesized TiO2 nanotubes to 
treatment with a H2 atmosphere. This treatment yielded a remarkable NH3 production 
rate of 1.2 mmol L−1 g−1·h−1 under the full spectrum of light [55]. 

 
Figure 5. (a,b) Field emission scanning electron microscopy (FESEM) images of gold nanocrystals 
anchored TiO2 nanotubes (Au@TiO2 NT); (c) transmission electron microscopy (TEM) image of 
Au@TiO2 NT. Gold nanocrystals are marked by dotted circles according to their darker contrast 
compared to TiO2 nanotubes; (d) high-resolution TEM image of Au@TiO2 NT. Lattice fringes are 
marked; and (e) energy-dispersive X-ray (EDX) spectroscopic analysis of the selected area (marked 
with a dotted square) in (d) [107]. Copyright 2020 Royal Society of Chemistry. 

ZnO nanostructures have garnered significant attention, surpassing other semicon-
ductor materials due to their ready availability and cost-effectiveness compared to known 
one-dimensional structures. ZnO primarily exists in three distinctive morphologies: nano-
tubes, nanorods, and nanowires [108]. ZnO nanowire-like structures started to be devel-
oped in the early 2000s through heating ZnO powders. TEM studies confirmed the for-
mation of nanobelts, which usually have widths ranging from 50 to 300 nm [109]. In the 
same year, ZnO nanowires were successfully synthesized using a vapor transport method, 
resulting in diameters of 80–120 nm and lengths of 10–20 µm [108] However, similar to 
TiO2, ZnO nanostructures face challenges related to their wide band gap, which limits 
their efficiency in absorbing visible light. To address this issue, ZnO nanostructures have 
been fabricated in conjunction with other semiconductors and dopants, enabling efficient 
absorption of visible light. A recent breakthrough involved coupling ZnO nanorods with 

Figure 5. (a,b) Field emission scanning electron microscopy (FESEM) images of gold nanocrystals
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marked; and (e) energy-dispersive X-ray (EDX) spectroscopic analysis of the selected area (marked
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ZnO nanostructures have garnered significant attention, surpassing other semiconduc-
tor materials due to their ready availability and cost-effectiveness compared to known one-
dimensional structures. ZnO primarily exists in three distinctive morphologies: nanotubes,
nanorods, and nanowires [108]. ZnO nanowire-like structures started to be developed in
the early 2000s through heating ZnO powders. TEM studies confirmed the formation of
nanobelts, which usually have widths ranging from 50 to 300 nm [109]. In the same year,
ZnO nanowires were successfully synthesized using a vapor transport method, resulting
in diameters of 80–120 nm and lengths of 10–20 µm [108] However, similar to TiO2, ZnO
nanostructures face challenges related to their wide band gap, which limits their efficiency
in absorbing visible light. To address this issue, ZnO nanostructures have been fabricated
in conjunction with other semiconductors and dopants, enabling efficient absorption of
visible light. A recent breakthrough involved coupling ZnO nanorods with nickel phos-
phide (NixPy). Optimal loading of NixPy resulted in an impressive NH3 production rate
of 2304.43 µmol L−1 g−1·h−1, a remarkable 3.3 times higher than that of the pure ZnO
structure. The photocatalytic nitrogen fixation mechanism is shown in Figure 6 [110].

In addition to TiO2 and ZnO nanostructures, scientists are also interested in studying
one-dimensional nanostructures with different shapes and elements like tungsten oxide
(WxOy), molybdenum oxide (MoxOy), and bismuth oxide (BixOy). This helps improve
their ability to absorb visible light for N2 fixation. Among these, it is important to highlight
tungsten oxide (WxOy) catalysts, which have recently emerged as crucial metal oxides
for photocatalytic N2 fixation. Among them, W18O49 stands out for its abundant oxygen
vacancies, which can weaken the N≡N triple bond and enhance catalytic activity. Recently,
Huan et al. reported the construction of asymmetric active sites on Ru/W18O49 via the
hydrothermal method. The enhanced photocatalytic N2 fixation is due to the synergistic
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effect of Ru species with oxygen vacancies modifying the coordination to form Ru–O–W
bonds. The reaction pathway for photocatalytic NH3 generation is shown in Figure 7. The
electrons produced as a result of the local surface plasmon resonance (LSPR) effect between
Ru and oxygen species tend to reduce N2 to NH3 molecules [111]. Similarly, adding metals
like Au, Fe, Mo, and Mn to W18O49, or combining it with other semiconductors like SbO3
and g-C3N5, has shown impressive results in generating NH3 through photocatalysis under
visible light [65,111–113].
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5.2. Carbon-Based 1D Nanostructure

Carbonaceous one-dimensional nanostructures refer to carbon-based nanomaterials
that exhibit a linear or rod-like shape, with the structure extending predominantly in
one dimension. These materials have attracted significant attention due to their unique
properties and versatile applications in various fields. Carbon nanotubes (CNTs), carbon
nanofibers (CNFs), and carbon nitride materials (CNs) are prime examples of this class of
material. Carbonaceous one-dimensional nanostructures have also been studied for their
ability to catalyze N2 fixation, which converts atmospheric nitrogen into ammonia or other
nitrogen-containing compounds. Although carbon materials are not usually recognized for
their inherent catalytic activity in N2 fixation, they can act as supports or co-catalysts when
combined with other materials. Ping Xing et al. conducted a comprehensive study on the
impact of carbon-modified ZnO achieved through a hydrothermal process, followed by the
photo-deposition of MoS2. In this context, carbon atoms function as a substrate material
for loading both ZnO and MoS2. This composite, active under visible light, showed great
performance in generating NH3 through photocatalysis, reaching 245.7 µmol L−1 g−1·h−1,
which is 9.3 times higher than pure ZnO. Adding carbon as a support material not only
boosted the surface area but also improved charge separation effectively [115]. In a similar
vein, a hybrid system comprising carbon-supported WO3·H2O was found to exhibit signifi-
cantly enhanced N2 fixation capabilities compared to TiO2 and Bi-OBr. This observation
underscores the advantages of carbon decoration on tungstic acid, leading to improved
charge transfer and separation in the catalytic process [116]. The presence of carbonaceous
species can also act as a sacrificial agent that may directly react with atmospheric N2
to form urea. To transform the morphology of the material, the water-induced method
has been introduced, introducing water molecules into the substrate during the thermal
process. For instance, Yijiao and colleagues synthesized nanoparticles of NaYF4:Yb,Tm
(NYF) decorated on carbon nanotubes (CNTs). This combination showed the highest NH3
production yield of 1.2 mmol L–1gcat−1 when exposed to near-infrared light. Spectrochem-
ical studies verified that NYF nanoparticles displaced the deep trap state and the edge
of the conduction band. Moreover, these studies provided evidence that photogenerated
electrons in nitrogen vacancy-free carbon nanotubes dissipate their energy by relaxing
into multiple lower energy states [117]. Among carbon-based materials, carbon nitride
stands out as a remarkable one-dimensional nanostructure for photocatalytic applications.
This distinction is primarily attributed to its non-toxic nature and remarkable capacity
to absorb visible light. Inspired by carbon nanotubes (CNTs), polymeric carbon nitride
manifests in various morphologies, including nanowires, nanotubes, and nanorods. The
material’s specificity can be finely tailored by adjusting the synthesis methods [118,119]. A
key advantage of the one-dimensional nanostructure of carbon nitride compared to its two-
dimensional counterpart is its tubular structure. This structure improves the separation of
photogenerated charge carriers and makes it easier for electrons to transfer along one direc-
tion in photocatalytic reactions [120,121]. Furthermore, BiOBrxI1−x was coated on carbon
nanofibers via electrospinning technology followed by a solvothermal method. Figure 8
illustrates the mechanism of photocatalytic N2 fixation and Rhodamine B (RhB) degrada-
tion by BiOBrxI1−x/CNF. The optimal amount of bismuth oxyhalide with carbon nanofiber
exhibited 85% photodegradation of tetracycline and a rate of 281 µmol L−1 g−1·h−1 for
ammonia production. The BiOBr0.6I0.4/CNF photocatalyst exhibited a 5.5-fold higher
ammonia yield compared to pure BiOBrx [122].
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5.3. Metal Sulfide 1D Nanostructure

One-dimensional metal sulfide nanostructures consist of metal cations and sulfide
anions arranged in a linear or rod-like fashion and have found diverse applications, in-
cluding photocatalytic N2 fixation. This is attributed to their unique properties, especially
their smaller band gap and high photoelectric sensitivity compared to metal oxides, which
traditionally suffer from wide band gaps. In the context of photocatalysis, the presence of
sulfur vacancies, surface defects, and cationic vacancies plays a pivotal role in enhancing
the photocatalytic efficiencies of metal sulfides (MSx, where x = 1, 2). The synthesis of these
one-dimensional metal sulfide nanostructures involves a range of techniques, including
solvothermal methods, chemical vapor deposition, and hydrothermal processes, resulting
in tunable properties that make them suitable for various applications. However, the appli-
cation of 1D metal sulfide nanostructures in photocatalytic N2 fixation has been compara-
tively less explored. One of the challenges in using metal sulfides as single photocatalysts is
the rapid recombination of photogenerated electrons and holes due to their low band gap,
which limits their photocatalytic efficiency. To address this limitation, He et al. introduced
a novel approach by synthesizing In2S3 one-dimensional hollow structures specifically for
photocatalytic N2 fixation. They utilized an organic linker, MIL-68, as a precursor to create
sulfur vacancies while maintaining the integrity of the one-dimensional structure. This in-
novative approach resulted in an enhanced NH3 generation rate of 52.49 µmol L−1 g−1 h−1,
surpassing that of the pure catalyst [123]. Among other metal sulfides, CdS has been well
explored in photocatalytic applications. Sun et al. reported the synthesis of CdS nanorods
on Ti3C2 MXene via a hydrothermal method. The nanocomposite material exhibited an
excellent photocatalytic N2 fixation rate of 293.06 µmol L−1 h−1 with an AQE of 7.88%. The
material exhibited good stability under sunlight irradiation. The charge transfer from CdS
to Ti3C2 MXene improved the ability to transfer charges. The presence of Ti3C2 reduces the
migration distance of carriers and improves the shuttling of charge carriers between CdS
and Ti3C2. Similarly, materials like FeS2, NiS, CuS, and WS2 are important metal sulfide
materials that exhibit enhanced photocatalytic performance [124,125]. Tuning the surface
properties by creating cation/anion vacancies can improve its photocatalytic efficiency
in N2 fixation rates. Apart from binary metal sulfides, ternary metal sulfides and com-
posites also attract a lot of attention. Figure 9 represents the energy band structure and
electron–hole separation of ZnIn2S4@polyaniline (PANI@ZnIn2S4), as prepared by Chen
et al. The transfer of conduction band electrons from PANI to ZnIn2S4 and vice versa for
photogenerated holes improved NH3 production to 290 µmol L−1 g−1 h−1 under visible
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irradiation [126]. Details from the comparative study of various 1D nanomaterials with
photocatalytic nitrogen production rate is shown in Table 1.
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Table 1. One dimensional nanostructured photocatalyst for N2 fixation.

SL No. 1D-Photocatalyst Morphology Light Source
Performance for

Photocatalytic NH3
Generation

Reference

1. TiO2 (B) Nanotubes
300 Xe lamp (Sunlight)/

300Xe lamp
(full wavelength)

106.6 µmol g−1/
318 µmol g−1 [106]

2. TiO2 Nanotubes 300 Xe lamp
(full wavelength) 1.2 mmol·L–1·h–1 [55]

3. Au- TiO2 Nanotubes 500 W high-pressure
mercury lamp 58.7 µmol g−1 [107]

4. Bi5O7Br nanotubes 300W Xe-lamp (>400 nm) 1.38 mmol g−1 h−1 [127]

5. Mo- W18O49 Nanowires 300 Xe lamp
(full wavelength) 95.5 µmol gcat

−1 h−1 [128]

6. Mn- W18O49 Nanowires 300 W Xe-lamp
(λ > 400 nm) 97.9 µmol g−1 h−1 [129]

7. Ce- W18O49 Nanowires 300 W Xe lamp
(1500 mW/cm2) 319.97 µg g−1 h−1 [66]

8. Fe- W18O49 Nanowires Xe lamp (power density of
100 mW cm−2) 375.2 µmol g−1 [65]

9. Fe- W18O49/g-C3N5 Nanowires 300 W Xe-lamp
(simulated sunlight) 131.6 µmol g−1 h−1, [111]

10. W/Mo- W18O49 Nanowires 300 Xe lamp
(simulated sunlight) 184.54 µmol g−1 h−1 [130]

11. Sb2O3@W18O49 Nanowires 300 W xenon lamp
(λ ≥ 420 nm) 600.1 µg h −1 gcat

−1 [113]
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Table 1. Cont.

SL No. 1D-Photocatalyst Morphology Light Source
Performance for

Photocatalytic NH3
Generation

Reference

12. NaYF4:Yb,Tm/g-C3N4 Nanotubes 300 W Xe lamp
(>420nm) 1.72 mmol L–1 gcat

–1 [117]

13. CdS @Ti3C2 MXene Nanorod 300 W Xe-lamp
(simulated sunlight) 293.06 µmol L−1 h−1 [131]

14. In2S3 nanotubes 300 W Xe-lamp
(simulated sunlight) 52.49 µmol h−1 g−1 [123]

15. PANI@ZnIn2S4 Nanorods visible light irradiation 290 µmol L−1 h−1 [126]

16. 1T-MoS2/CdS Nanorods visible light,
(780 nm > λ > 420 nm) (8220.83 µmol L–1 h–1 g–1) [132]

6. Conclusions and Outlook

It has been a century since the discovery and use of the Haber–Bosch method. Scientists
have been exploring novel, gentler techniques for nitrogen fixation processes. Photocatalytic
nitrogen fixation has the capability to utilize solar radiation to catalyze the reduction of
atmospheric nitrogen molecules under favorable conditions. Despite the positive outcomes
that generations of academics have obtained in recent years, industrial manufacturing
of photocatalytic nitrogen fixation technology is still a long way off. The photocatalytic
nitrogen reduction reaction requires the simultaneous fulfillment of three criteria by the
photocatalyst: a high rate of light utilization, efficient separation of photogenerated electron–
hole pairs, and a strong ability to adsorb and activate nitrogen molecules. There are
several effective methods to enhance the aforementioned three needs, such as modifying
the morphology of the material to introduce surface defects in different dimensions (1D,
2D, and 3D), including precious metal atoms, doping various atoms or ions, creating
heterojunctions, and utilizing auxiliary catalysts. The significance of the active site in
the photocatalytic nitrogen fixation mechanism lies in its ability to adsorb and activate
N2 molecules, while also facilitating the transmission of photogenerated electrons to the
adsorbed nitrogen molecules. The phenomenon being investigated is primarily observed in
materials with a high surface area, such as one-dimensional nanomaterials. The inclusion
of oxygen vacancies enhances the light absorption spectrum of numerous photocatalysts
that rely on oxygen vacancies as active sites. Nevertheless, it is crucial to recognize that
an excessive prevalence of oxygen vacancies is considered detrimental. The presence of
an excessive quantity of oxygen vacancies can hinder the nitrogen reduction process by
providing sites for the recombination of electron–hole pairs. One approach to enhancing
catalytic nitrogen fixation involves deliberately increasing the number of nitrogen vacancies.
In recent years, there has been a significant surge in the popularity of photocatalytic nitrogen
fixation catalysts featuring one-dimensional nanomaterials with a substantial number of
active sites. The activation of the N2 molecule, the weakening of the N≡N triple bond,
and the promotion of N2 reduction to NH3 can be facilitated through electronic feedback
mechanisms. In addition to the aforementioned achievements, significant efforts must be
made to enhance both the quantity and efficacy of active sites on the catalyst’s surface. This
is crucial for increasing the photocatalyst’s ability to effectively convert nitrogen under
solar irradiation. Consequently, thorough research and investigation into multiple issues
are imperative.

In future nitrogen fixation investigations, it is conceivable to integrate various active
sites to explore nitrogen fixation, such as investigating nitrogen fixation in the context of
nitrogen vacancies and oxygen vacancies. Furthermore, nitrogen exhibits low solubility in
aqueous solutions. Therefore, it may be worthwhile to explore potential improvements to
the current aqueous photocatalytic nitrogen fixation reaction system. These enhancements
could include examining the catalyst-to-water ratio, incorporating ionic liquids, exploring
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the gas–solid system, and investigating the utilization of heat for light conversion instead of
relying solely on cooling water. Moreover, in subsequent research, active site computation
and in situ experimentation could be employed to evaluate the catalytic reaction mechanism,
and a suitable catalyst could be developed based on the computational findings.
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