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Abstract: In many domains of our daily life (e.g., agriculture, forestry, health, etc.), both laymen and
experts need to classify entities into two binary classes (yes/no, good/bad, sufficient/insufficient,
benign/malign, etc.). For many entities, this decision is difficult and we need another class called
“maybe”, which contains a corresponding quantifiable tendency toward one of these two opposites.
Human domain experts are often able to mark any entity, place it in a different class and adjust
the position of the slope in the class. Moreover, they can often explain the classification space
linguistically—depending on their individual domain experience and previous knowledge. We con-
sider this human-in-the-loop extremely important and call our approach actionable explainable AI.
Consequently, the parameters of the functions are adapted to these requirements and the solution is
explained to the domain experts accordingly. Specifically, this paper contains three novelties going
beyond the state-of-the-art: (1) A novel method for detecting the appropriate parameter range for
the averaging function to treat the slope in the “maybe” class, along with a proposal for a better
generalisation than the existing solution. (2) the insight that for a given problem, the family of t-norms
and t-conorms covering the whole range of nilpotency is suitable because we need a clear “no” or
“yes” not only for the borderline cases. Consequently, we adopted the Schweizer–Sklar family of
t-norms or t-conorms in ordinal sums. (3) A new fuzzy quasi-dissimilarity function for classification
into three classes: Main difference, irrelevant difference and partial difference. We conducted all of
our experiments with real-world datasets.

Keywords: actionable explainable AI; classification; aggregation functions; ordinal sums; continuous
XOR-problem; interpretable machine learning

1. Introduction and Motivation

In many tasks in a wide variety of domains, e.g., agriculture, forestry or health
care, from everyday activities to critical diagnoses, there is an important problem: both
laypersons and experts often need to classify entities into two binary classes (yes/no,
good/bad, healthy/diseased, benign/malignant, accepted/rejected, etc.). However, for
many entities, such a decision is difficult not only for laymen but also for experts and
wrong decisions can have serious consequences. Therefore, we need a class called maybe,
but in addition, we need the determination of the inclination (tendency, propensity, slope)
to one of the two binary classes, which is a difficult problem [1–3].
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Classification and aggregation by fuzzy sets and fuzzy logic supported by computing
with words have shown their benefits in various fields including supporting decision-
making [4–6]. Beginning with a small number of data features, if one can fit an aggregation
function to the data (provided that the input data conform to a certain extent, with some
tolerance for noise), then one can obtain classification results including the class “maybe”
and from that, in a second step linguistic expressions of summarised sentences can be
produced. This is one of the ways to generate explanations that are similar to the ones that
human experts provide, which will help the comparison of human and Machine Learning
(ML) model’s decision-making processes.

In classification by the fuzzy rule-based systems, domain experts should explain
classification by the IF-THEN rules, i.e., matching input attributes with output labels by
linguistic terms among other tasks. In practice, it is often difficult to create a consistent
and easily interpretable rule-based system. In principle, these systems are transparent and
thus theoretically explainable; however, they pose problems to human interpretability due
to their often very high complexity [5]. To overcome this issue, several quality indicators
and constraints have recently been developed within the upcoming field of actionable
explainable AI (AXAI) [7] (see, for example, [5,8] and see a survey on XAI methods [9] and
a recent overview of methods of XAI [10]).

A major problem is that the rules do not cover all subsets of the entered attributes,
which can lead to classification failure. In certain real-world applications, a wrong decision
can lead to life-threatening situations, e.g., in medicine [11], in agriculture [12] or in
forestry [13,14]. Therefore, in these application areas, it is necessary to use the cognitive
abilities of humans in general, since humans can bring intuitive experiential knowledge to
some situations [15]. On the other hand, neural networks in particular have proven their
efficiency in classification, sometimes even beyond human-level performance [16–19]. This
is especially true when well-designed sets of input–output data (labelled data) are prepared
for learning and validation. By well-designed datasets, we mean a sufficient amount of
data of reasonable quality that covers the entire domain of the input data. Both “dirty data”
and data cleaning that is not done carefully can have harmful effects in these life-critical
domains [20].

A neural network having an error equal to zero might indicate that it works perfectly
on a specific subset of input data, but when new data from other sub-domains, but still
relevant to the problem, are considered, a neural network usually fails due to lack of
generalisation [21,22]). A problem of such networks, which is becoming more and more
serious due to predominantly legal requirements [23], is the lack of transparency and
interpretability, mainly due to the lack of suitable “explanatory interfaces” [24]. That means
that domain experts often have little chance to understand how the neural network has
reached a solution and therefore cannot explain the reasons why an entity is classified into
a particular class. Consequently, for a class maybe even an expert does often not know
why the entity tends either to class yes or no. In this work, human domain experts can
be engaged through an interactive interface to adjust the parameters of the aggregation
function, where adequate colours, metrics and visualisation of the classification results help
the user navigate through the search space.

A major motivation for our work is the known fact that fuzzy logic (FL) and in partic-
ular aggregate functions (AFs) on the one hand and artificial intelligence (AI), including
machine learning (ML), on the other hand, have been developed over a long period of
time separately in their respective communities [5]. In contrast, we are convinced that the
cross-disciplinary integration of AI, AF and FL opens many new possibilities, in particular
for classification tasks where neither rules nor labelled data are available or when we
consider transparent classification from a smaller subset of data, e.g., for less frequently
occurring events. In such cases, domain experts can introduce a weakly structured linguis-
tic explanation (or even a short verbal description) of the classification problem instead of
(fuzzy) rules. From such explanations, we can identify the most appropriate subclasses of
aggregation functions [3].
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In the other direction, if input–output data from already classified entities is avail-
able (or an expectation of what class the entity should be in), we should be able to
learn the most appropriate parameters of the aggregation functions to define classes and
explain the obtained solution. This concept is therefore related to the actionable and
explainable approach.

Another challenging task is the classification by the exclusive OR requirement (XOR).
Some theoretical background on fuzzy XOR can be found, for example, in [25]. In XOR
classification, a three-layer feedforward network is in principle able to perform any input-
to-output mapping. However, this does not solve the crucial question of how many hidden
units are needed and how easily and accurately the mapping can be learned.

The classification into three flexible categories or classes—key difference, irrelevant
difference and partial difference—conveys the same semantic requirement. However, from
the logic aggregation point of view, it is a totally different task, because flexible XOR
does not meet the axioms of an aggregation function [26]. Neither fuzzy XOR nor fuzzy
dissimilarity [27,28] is fully convenient, since XOR requires associativity [25] (which is not
relevant for us), whereas dissimilarity should satisfy d(x, x) = 0 for all possible x. Generally,
we do not need such strong demand. For instance, a small deviation in the data should be
covered, i.e., d(0.48, 0.48) = 0.1. To solve this task, we introduce a fuzzy quasi-dissimilarity
function to cover all flexible requirements of the proposed function.

The initial work of classification by ordinal sums of conjunctive and disjunctive
functions is proposed in [3]. In our present work, we enhance the results in two directions.
The first and main direction is in recognising the most suitable ordinal sums, learning their
parameters to reflect domain expert explanation and knowledge from the already classified
data, aggregating atomic requirements into the compound ones and the user interaction in
fine-tuning the classified data. The next direction is proposing the dissimilarity function
for flexible XOR classification into three classes. In particular, we introduce a new notion
of quasi-dissimilarity function by relaxing condition XOR(x, x) = 0 for all x ∈ [0, 1] to
XOR(x, x) = 0 for all x ’close’ to 0 or 1.

This article is organised as follows: Section 2 focuses on some fundamental considera-
tions and the preliminary stages of classification by rule-based systems, neural networks
and ordinal sums. Section 3 is devoted to the learning parameters of conjunctive, disjunc-
tive and averaging functions that occur in ordinal sums. Section 4 is dedicated to the novel
flexible XOR classification. Section 5 explains on a toy example learning the best parameters
for separating classes and managing intensities in the class maybe. Section 6 deals with
constructing and explaining the classification space related to a real-world medical dataset.
Section 7 discuss the obtained results and open issues and paves the way for future work.
Section 8 finalises the article and provides an outlook for future research.

2. Preliminaries of Classification by Rule-Based Systems, Neural Networks and
Ordinal Sums

This section briefly reviews classification approaches and aims to motivate the benefits
of bringing them together.

2.1. Classification by Rule-Based Systems

Although fuzzy classification rules are expressed by linguistic terms and fired with
degrees, usually the winner takes all, i.e., an entity belongs entirely to the class with the
highest membership degree. If several rules are fired with the same degree, either the class
is randomly selected or the classification is not performed [5,29]). The other option is to
record the intensities.

An illustration of a rule base dividing entities into three classes is as follows:
IF A is LOW and B is LOW, then C is no
IF A is LOW and B is HIGH, then C is maybe
IF A is HIGH and B is LOW, then C is maybe
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IF A is HIGH and B is HIGH, then C is yes
where A and B are atomic or compound attributes.

Generally, the classification space is explainable when a set of quality criteria managing
the consistency and interpretability of a rule-based system is applied. Otherwise, the
inconsistency causes unreliable results. Details about the quality criteria are described in,
e.g., [5]. Such a rule-based classification system can be called a glass-box approach [30], but
managing its quality can be a demanding task.

2.2. Classification by Neural Networks

Classification by neural networks [31] is usually a supervised task (with only few
notable exceptions as f.e. Kohonen networks [32]), where the network is confronted with a
set of labelled training data [33–36]. The task is to learn the features that help discriminate
between the samples of each class. After the end of the training, the network is exercised in
a dataset that contains samples not included in the training dataset.

Several different architectures are used for classification, depending on the type of in-
put data; fully connected networks were prominent even for image data, but currently, more
sophisticated architectures such as Convolutional Neural Networks (CNNs) [16,37–39] are
used. The discriminative features and decision logic thereof can be presented in a more
understandable manner to humans with the use of specific explainable AI methods [40–42].

Neural networks can perform classification between two (binary) or more classes
(multi-class). Depending on the encoding of the labels in the output, the conceptual rela-
tionship between the different classes is derived. The labels of the different classes are not
sequential numbers; if this were the case, then the performed task would rather be regres-
sion. The labels of the classes have an orthogonal representation. For example, a three-class
classification’s labels will be [0, 0, 1], [0, 1, 0], [0, 0, 1]. By that means, the expression of yes,
no, maybe classes covering also the inclination towards two extremes is not straightforward.

2.3. Classification of Ordinal Sums of Conjunctive and Disjunctive Functions

This work focuses on experiments and further adjustment of ordinal sums, so the
theory is recalled in more detail.

The ordinal sum of conjunctive and disjunctive functions has been proposed by De
Baets and Mesiar [43] as follows.

For an n–ary aggregation function B : [0, 1]n → [0, 1] and [a, b] ⊂ R, denote B[a,b](x) =
a + (b− a) · B( x−a

b−a ). Note that then B[a,b] is an n–ary aggregation function on [a, b]. For
B1, . . . , Bk : [0, 1]n → [0, 1], k ≥ 2 and 0 ≤ a0 < a1 < · · · < ak = 1. Let Ai : [ai−1, ai]

n →
[ai−1, ai] be given by: Ai = (Bi)[ai−1,ai ]

. Then the ordinal sum A : [0, 1]n → [0, 1], A = (<
ai−1, ai, Ai >)|i = 1, . . . , k is given by

A(x) =
k

∑
i=1

(Ai(ai ∧ (ai−1 ∨ x))− ai−1) (1)

which is an aggregation function on [0, 1]. If all B1, . . . , Bk are t-norms (t-conorms, copulas,
means) then also A is a t-norm (t-conorm, copula, mean).

Equivalently, A(x) = ∑k
i=1(ai − ai−1) · Bi(1 ∧ (0 ∨ x−ai−1

ai−ai−1
)). For our purpose,

n = k = 2 is considered. Denoting a1 = a(a0 = 0, a2 = 1), we have the two next
forms of ordinal sums [3]

(i) B1, B2 : [0, 1]2 → [0, 1],

A(x, y) = a · B1(1∧
x
a

, 1∧ y
a
)+

(1− a) · B2(0∨
x− a
1− a

, 0∨ y− a
1− a

)
(2)
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(ii) A1 : [0, a]2 → [0, a], A2 : [a, 1]2 → [a, 1],

A(x, y) = A1(a ∧ x, a ∧ y) + A2(a ∨ x, a ∨ y)− a (3)

Then the consequences are as follows:

1. if (x, y) ∈ [0, a]2, A(x, y) = a · B1(
x
a , y

a ) = A1(x, y),
2. if (x, y) ∈ [a, 1]2, A(x, y) = a + (1− a) · B2(

x−a
1−a , y−a

1−a ) = A2(x, y),
3. if (x, y) ∈ [0, a] × [a, 1], A(x, y) = a · B1(

x
a , 1) + (1 − a) · B2(0, y−a

1−a ) = A1(x, a) +
A2(a, y)− a,

4. if (x, y) ∈ [a, 1] × [0, a], A(x, y) = a · B1(1, y
a ) + (1 − a) · B2(

x−a
1−a , 0) = A1(0, y) +

A2(x, a)− a.

Observe that case 1 covers class “no”, case 2 class ‘‘yes” and cases 3 and 4 cover class
“ maybe”. This is supported by the following facts [44]. If B1 is a conjunctive and B2 is a
disjunctive aggregation function, then A is conjunctive on [0, a]2 and disjunctive on [a, 1]2.
Further, if B1 has a neutral element e = 1 and B2 has a neutral element e = 0, then, for
(x, y) ∈ [0, 1]2 \ ([0, a]2 ∪ [a, 1]2) it holds that A(x, y) = x + y− a ∈ [min(x, y), max(x, y)],
i.e., A is averaging on this domain. For more details, see [3].

The flexibility, adaptability and actionability to data and requirements can be realised
by variation of conjunctive, disjunctive and averaging functions in ordinal sums.

In this work, we explore parametric nilpotent t-norm for conjunctive behaviour
(i.e., classification into class no), parametric nilpotent t-conorm for disjunctive behaviour
(i.e., classification into class yes) and power mean (an averaging function for classification
into class maybe).

Observe that Łukasiewicz t-norm and Łukasiewicz t-conorm are representative nilpo-
tent functions. Note that (for n = 2) Łukasiewicz t-norm is CL(x, y) = max(0, x + y− 1)
and its dual t-conorm is DL(x, y) = min(1, x + y).

In order to keep the expected value on edges of subintervals [0, a]2 and [a, 1]2, when
a = 0.5, the Łukasiewicz t-norm on [0, 0.5] is expressed as (see Figure 1)

CL(x, y) = max(0, x + y− 0.5). (4)

Figure 1. Classification into three classes, no, maybe, yes, by ordinal sums of conjunctive and disjunc-
tive functions.

The dual observation holds for t-conorm on [0.5, 1]:

DL(x, y) = min(x + y− 0.5). (5)
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For the neutral behaviour of the averaging function, i.e., neither conjunctively nor
disjunctively polarised (for this topic see, e.g., [45]), we obtain [3]

AW(x, y) = x + y− 0.5 (6)

When the neutral behaviour of class maybe is not the case, we can manage averaging
behaviour by other averaging functions keeping the nilpotent behaviour for the conjunctive
and disjunctive parts of a classification space.

A hypothetical domain expert (or layperson) might pose a weakly structured linguistic
explanation (or a short story) of the classification problem as follows:

Example 1. When comfort is high and distances to relevant points are short, the satisfaction should
be full; for low comfort and high distances the satisfaction is zero; otherwise, the inclination is
more toward rejection than to acceptance. Next, the majority of distances should be short, whereas
the comfort requirement would be: size approx. 200 m2 and a strong preference for a balcony and
(spacious basement or else spacious larder).

The first sentence is the key one for ordinal sums, whereas the second sentence deals
with the aggregation of atomic attributes into compound ones. From the first sentence,
we know that the conjunctive behaviour should be expressed via nilpotent conjunctive
function, disjunctive behaviour via nilpotent disjunction and averaging behaviour via
conjunctively polarised averaging function. When we do not have any further informa-
tion or a subset of the already classified data, the choices can be Łukasiewicz t-norm,
Łukasiewicz t-conorm and dual quadratic mean. When we obtain additional information,
we can adjust parameters to obtain a more accurate classification. This topic is explored in
the next section.

We summarise this section with the following observations. Due to transformation
of the whole domains of attributes into the unit interval (i.e., normalisation, see, e.g., [3]),
classification covers all sub-domains of attributes and therefore solves aforementioned
issues of NNs (catastrophic forgetting [21]) and rule-based systems (inconsistent rule
base, [5]). When we have two atomic or two compound attributes, classification space is
graphically interpretable and therefore a domain expert sees why and where in each entity
classified and can provide an action to improve classification results, if necessary. If a
classification space is densely populated for one compound attribute, the domain expert
obtains information that the problem might be in the aggregation of its atomic attributes
and therefore can focus his/her action on solving this problem (e.g., adjusting parameters
of quantifiers and improving the transformation from the attributes’ domains into the
unit interval).

We also have cases when a higher number of atomic attributes appears directly in
rules like A1 is low and A2 is low and . . . and An is high, then the class is no. While this topic
is also worth attention and could be examined and applied, this work is focused on the
classification of two compound attributes, aggregating atomic attributes into the compound
ones and fine-tuning classification graphically.

3. Learning Parameters from Data for Classifying by Ordinal Sums of Conjunctive and
Disjunctive Functions Expressed by Nilpotent Functions

The classification space of interest is shown in Figure 1. The disjunctive part consists
of two areas D1 (clearly belonging to the class yes or 1) and D < 1, where due to disjunctive
behaviour D<1(x, y) > max(x, y) (observe that in this region equality holds for the idempo-
tent disjunction, whereas there is inequality for Archimedean t-norms (strict and nilpotent)),
for x, y ∈ [0.5, 1]2, a significant inclination to 1 is recorded. The separation line (or curve)
between D1 and D<1 can be learned from the data. Av can be any averaging function
ranging from min to max, but in our work, we propose it to be a function without an
annihilator. It is a hard task for domain experts to recognise the right parameter expressing
this separation.
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A disjunction can be expressed by the Schweizer–Sklar family [46] of t-conorms as [47]

DS
λ(x, y) =



max(x, y) for λ = −∞
DP(x, y) for λ = 0
DD(x, y) for λ = ∞
1− (max((1− x)λ+

(1− y)λ − 1, 0))
1
λ else

(7)

This family of t-conorms is remarkable in the sense that it contains all four basic t-conorms.
Next, it covers the whole range of nilpotency, whereas the other families have nilpotency
as a special case. We need nilpotency for flexible separation of the clear belonging to the
class “yes”, see Figure 2. Due to the duality principle of aggregation functions, the same
observation holds for class “no” (the nilpotency of conjunctive functions).

Figure 2. Learning of the disjunctive part of classification by ordinal sums for class no.

When we want to adapt Equation (7) to [0.5, 1]2 (see Figure 1), we obtain max(x, y) for
λ = −∞, −1 + 2x + 2y− 2xy for λ = 0, max(x, y) if max(x, y) = 0.5 and 1 otherwise for
λ = ∞ and 1−max(1− x + 1− y− 0.5) for λ = 1. Concerning the learning, in disjunctive
subsquare (Figure 1) we obtain the following equation

DS
λ(x, y) = 1−max(0, (1− x)λ + (1− y)λ − 0.5λ)

1
λ (8)
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for the values of λ ∈]0, ∞[. This is a theoretical limit, but for the learning process we limited
values to 5, as learning large values is not suitable.

For λ = 0, we obtain probabilistic sum t-norm, i.e., D1 holds only when x = 1 or y = 1
for x, y ∈ [0.5, 1]2, whereas the whole inner space and its left and lower bound belong to
D<1. This case is depicted in Figure 2 upper left part. This is a solution when the domain
expert wants a clear 1 in the case when one attribute is clearly ideal and another has a high
satisfaction value. In the opposite case, when λ = ∞ we obtain the drastic sum, i.e., D1 is
everywhere except on dashed lines of [0.5, 1]2 in Figure 2 upper right part. We should avoid
very high values of λ, because machine learning cannot efficiently cope with ∞. While
further optimisation in this direction is also promising for research, this work is focused on
the learning of the separator between D1 and D<1.

Next, adopting λ = −∞ leads to maximum t-conorm, which is not the right function
due to the non-compensatory effect, i.e., E1(0.9, 0.6) and E2(0.9, 0.9) are indistinguishable [3].

When λ = 1, we obtain the Łukasiewicz t-conorm, i.e, a separator is a diagonal line of
the considered quadrant (see Figure 2 left part in second row), i.e., areas D1 and D<1 are of
equal size. Naturally, the question is how to adjust this separation curve by parameter λ
(Figure 2, fourth and fifth diagram).

The first option to adjust classification space is to graphically interpret positions of
entities when λ = 1 and allow domain experts to mark each data point and indicate whether
it should be in D1 or D<1. In the next step, ML could find the most suitable non-linear
separator (via the value of λ). In this way, the domain expert explains the requirements for
classification linguistically and consequently fine-tunes the resulting classification space.
The second option is from the already classified data to compute the best value of λ to meet
the acceptable accuracy. However, the problem is that entities are classified into binary
classes or winner-takes-all; that is, entities are classified into classes with higher matching
degrees. The analogous observation holds for the conjunctive part C1 and C<1, where the
solution is a family covering the whole range of nilpotency in a disjunctive function, i.e.,
parametrised Schweizer–Sklar family of t-conorms [47].

When we want to adapt Equation (10) to [0, 0.5]2 (see Figure 1) we obtain min(x, y)
for λ = −∞, 2xy for λ = 0, min(x, y) if min(x, y) = 0.5 and 0 otherwise for λ = ∞ and
max(x + y− 0.5) for λ = 1. Concerning the learning task, for the conjunctive subsquare
(Figure 1) we have the equation:

CS
λ(x, y) = (max(xλ + yλ − 0.5λ, 0))

1
λ (9)

for the values of λ ∈]0, ∞[.

CS
λ(x, y) =


min(x, y) for λ = −∞
DP(x, y) for λ = 0
DD(x, y) for λ = ∞
(max((xλ + yλ − 1, 0))

1
λ else

(10)

Classification into the class maybe is activated when one attribute has high value and
another low value, i.e., IF A1 is high and A2 is low THEN B is maybe. The simplest solution is
adopting a logically neutral averaging function, i.e., arithmetic mean. The other averaging
functions are either conjunctively or disjunctively polarised [45]. Conjunctively polarised
functions are further divided into soft ones (without an absorbing element) and hard
ones (absorbing elements equal to 0, such as geometric mean, for instance). Analogously,
disjunctively polarised averaging functions are divided into soft ones (without an absorbing
element) and hard ones (absorbing elements equal to 1, such as dual geometric mean,
for instance). Hence, the direction of polarisation should be learned from data and/or
linguistically provided by a domain expert and fine-tuned from the subset of labelled data.
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Averaging functions can be expressed by a power mean (a subclass of averaging
function) as

Mr(x, y) =
(

1
2
(xr + yr)

)(1/r)

(11)

for r ∈]−∞, ∞[, when r = 0, M0(x, y) is geometric mean (proof for r → 0 is in, e.g., [47]).
This function is the borderline case between the hard and soft polarised conjunctive
functions).

For r = 1, we obtain the arithmetic mean (neutral behaviour). Thus, for r < 1 we
have conjunctively polarised functions, whereas for r > 1 we obtain disjunctively polarised
functions. The family of power means can be extended by the limiting cases:

M−∞(x, y) = lim
r→−∞

Mr(x, y) = min(x, y) (12)

M∞(x, y) = lim
r→∞

Mr(x, y) = max(x, y) (13)

For machine learning, the problem is working with −∞ and ∞. However, functions
MIN and MAX are not suitable due to the non-compensatory effect. The problem is
dividing by zero (to obtain the behaviour of the geometric mean). It indicates conjunctive
polarisation, G(0.3, 0.7) = 0.46 < 0.5. However, for G(0, 0.9) we obtain 0. This solution
is problematic. When we have expected rule IF A1 is small AND A2 is high THEN maybe,
geometric mean classifies to a clear no. Thus, for seamless learning we should assign,
e.g., r > 0. In the case of Example 1, the range is r/in]0, 1]. On the other hand, due to the
asymmetry of power mean and the existence of annihilator only for MAX, the acceptable
range in disjunctive polarisation is in ]1, ∞[. For learning, this is inconvenient. Hence, we
should limit the range to ]1, m[ in a way that when the result is not very close to m, the
range is acceptable. Even though this works, the task for future research is searching for a
function which covers similarity, because the known categorisation by power mean is not
the ideal solution. These theoretical observations create rules for applying ML in learning
parameters for classifying by ordinal sums as follows:

• For data points in [0, 0.5]2 the ML model learns parameters for strict or nilpotent
conjunction to classify into class no

• For data points in [0.5, 1]2 the ML model learns parameters for strict or nilpotent
disjunction to classify into class yes

• For data points in [0, 0.5]× [0.5, 1] ∨ [0.5, 1]× [0, 0.5] the ML model learns parameters
for power means to classify into class maybe

The next problem is classification by dissimilarities, i.e., when values of attributes are
very similar or equal, the class is “irrelevant difference” (or 0); when values of attributes
are very or fully dissimilar (or 1) the result is “key difference”. Otherwise, the result is class
“partial difference” (in the open unit interval). The next section explores this problem and
proposes a new dissimilarity function.

4. A New Dissimilarity Function for Classifying by XOR into Classes Yes, No
and Maybe

The challenge is the fact that XOR is not an aggregation function. Conjunctions, dis-
junctions and averaging functions belong to the class of aggregation functions, i.e., functions
A : [0, 1]n → [0, 1] which are monotone and satisfy the boundary conditions A(0, . . . , 0) = 0
and A(1, . . . , 1) = 1, n ∈ N. Observe that for XOR, F(1, 1) = 0 holds.

The classical XOR cover cases when one of two attributes should be satisfied but not
both. In two-valued logic XOR(0, 0) = 0, XOR(1, 1) = 0, XOR(1, 0) = 1, XOR(0, 1) = 1
hold. In many-valued logic, this function is expressed as a dissimilarity function. The
main obstacle is that XOR is not an aggregation function due to a violation of boundary
conditions. Nevertheless, this function should keep monotonicity and satisfy the condition
for the two-valued case. In this case, when levels of both attributes are medium (with values
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0.5), the solution should be 0 or near 0 to indicate uncertainty, when values of attributes are
neither high nor low. Employing the XOR problem might especially be useful for the study
of technical batch effects influencing the measurement of molecular probes. Batch effects
hinder a comprehensive comparison between healthy patients and, e.g., patients with a
viral infection. In case two laboratory strategies produce different results (e.g., levels of
antibodies) on the exact same molecular profile, an efficient comparison between patients
or probes is difficult. Thus, laboratory strategies, even when they differ slightly, assure
quality, as long as the quantified molecular quantities are on the same normalised scale
(both high or both low).

QD(x, y) =



0, if [x, y] ∈ A1
0, if [x, y] ∈ A2
1, if [x, y] ∈ A3
1, if [x, y] ∈ A4
x 1−2s

2p1−1 + y 1
1−2p1

+ s + s
2p1−1 , if [x, y] ∈ A5

x
(

1
p1

+ p1+p2−1
p1−2p2

1

)
+ y 1

1−2p1
− p2

1−2p1
, if [x, y] ∈ A6

(1− x) 1−2s
2p1−1 + 1−y

1−2p1
+ s + s

2p1−1 , if [x, y] ∈ A7

(1− x)
(

1
p1

+ p1+p2−1
p1−2p12

)
+ 1−y

1−2p1
− p2

1−2p1
, if [x, y] ∈ A8

y 1−2s
2p1−1 + x 1

1−2p1
+ s + s

2p1−1 , if [x, y] ∈ A9

y
(

1
p1

+ p1+p2−1
p1−2p2

1

)
+ x 1

1−2p1
− p2

1−2p1
, if [x, y] ∈ A10

(1− y) 1−2s
2p1−1 + 1−x

1−2p1
+ s + s

2p1−1 , if [x, y] ∈ A11

(1− y)
(

1
p1

+ p1+p2−1
p1−2p2

1

)
+ (1− x) 1

1−2p1
− p2

1−2p1
, if [x, y] ∈ A12

(14)

where A1, . . . , A12 ⊆ [0, 1]× [0, 1] are given by:

A1 : x p1
p1−p2

− p1 p2
p1−p2

≤ y ≤ x p1−p2
p1

+ p2

A2 : x p1−p2
p1

+ p2−p1 p2
p1

≤ y ≤ x p1
p1−p2

+ p1 p2−p2
p1−p2

A3 : y ≥ x p1−p2
p1

+ 1 + p2 − 2p1 & y ≥ x p1
p1−p2

− 2p2
1−p1 p2−p1+p2

p1−p2

A4 : y ≤ x p1
p1−p2

+
2p2

1−p1 p2−p1
p1−p2

& y ≤ x p1−p2
p1

+
2p2

1−p1 p2−p1+p2
p1

A5 : p1 ≤ x ≤ 1
2 & x ≤ y ≤ 1− x

A6 : 0 ≤ x ≤ p1&x p1−p2
p1

+ p2 ≤ y ≤ x p1−p2
p1

+ 1 + p2 − 2p1

A7 : 1
2 ≤ x ≤ 1− p1 & 1− x ≤ y ≤ x

A8 : 1− p1 ≤ x ≤ 1 & x p1−p2
p1

+
2p2

1−p1 p2−p1+p2
p1

≤ y ≤ x p1−p2
p1

+ p2−p1 p2
p1

A9 : p1 ≤ y ≤ 1
2 & y ≤ x ≤ 1− y

A10 : 0 ≤ y ≤ p1 & y p1−p2
p1

+ p2 ≤ x ≤ y p1−p2
p1

+ 1 + p2 − 2p1

A11 : 1
2 ≤ y ≤ 1− p1 & 1− y ≤ x ≤ y

A12 : 1− p1 ≤ y ≤ 1 & y p1−p2
p1

+
2p2

1−p1 p2−p1+p2
p1

≤ x ≤ y p1−p2
p1

+ p2−p1 p2
p1

In this classification, differences should be emphasised and similarities should be
attenuated. In addition, the function should be monotonic. Generally, XOR is expressed
as R(x, y) = |x− y|. For two-valued logic, we obtain R(0, 0) = 0, R(1, 0) = 1, R(0, 1) = 1
(due to similarity) and in general R(x, x) = 0 for all x ∈ [0, 1]. When searching for
flexibility in XOR or dissimilarity function, we should consider boundary conditions
and monotonicity. Small deviation in data or non-full dissimilarity should be covered,
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i.e, R(0, 98, 0.01) = 1. The same holds for the diagonal of the unit square from (0,0) to (1,1),
which should theoretically keep the value 0 or at least in edges of the diagonal and near
edges. The main diagonal solution should be 0. In the point (0.5, 0.5) and its vicinity we
might assign a value greater than 0 (the value s = f (0.5, 0.5) below) to indicate that when
intensities of satisfaction are not high, a low dissimilarity exists. We introduce a new notion
of quasi-dissimilarity function to keep this flexibility and propose a parametric class of
quasi-dissimilarity functions.

For our intention, neither fuzzy XOR nor fuzzy dissimilarity is fully convenient
since XOR requires associativity [25] (which is not important for us) and dissimilarity
d should satisfy d(x, x) = 0 for all possible x [48] (while we do not have such strong
demand—see discussion above). This observation led us to introduce a notion of fuzzy
quasi-dissimilarity function.

Definition 1. A function QD : [0, 1]× [0, 1]→ [0, 1] is a fuzzy quasi-dissimilarity function if it
satisfies, for all x, y, z ∈ [0, 1], the properties:

• (QD1) QD(x, y) = QD(y, x);
• (QD2) QD(1, 0) = QD(0, 1) = 1;
• (QD3) QD(0, 0) = QD(1, 1) = 0;
• (QD4) QD(x, x) ≥ QD(y, y) whenever |x− 0.5| ≤ |y− 0.5|;
• (QD5) QD(x, y) ≤ QD(x, z) and QD(y, z) ≤ QD(x, z) whenever x ≤ y ≤ z.

It is worth putting out that the first, second and fifth properties are standard properties
demanded from dissimilarity functions [28,49]. The third property is a relaxed version of
the usually used D(x, x) = 0 for all x ∈ [0, 1]. The fourth property is a new requirement of
the monotonicity of function QD on the main diagonal of the unit square.

Now we construct a parametric class of fuzzy quasi-dissimilarity functions. Let us
divide the unit square into 12 areas according to Figure 3 with the parameters:

• s ∈ [0, 1], s = f (0.5, 0.5);
• p1 ∈ [0, 0.5];
• p2 ∈ [0, p1[.

It is also possible to take p2 = p1, but in that case, the formula needs to be adjusted.
Then the function given by Equation (14) is a fuzzy quasi-dissimilarity function (see

Figure 4 for an example of the function with the parameters s = 1/3, p1 = 1/4 and
p2 = 1/8).

Figure 3. The 12 areas of the unique square corresponding to Equation (14).
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Figure 4. The graph of the function QD(x, y) given by Equation (14) for the parameters s = 1/3,
p1 = 1/4 and p2 = 1/8.

It is worth mentioning that taking s = 0 in Equation (14), the function QD is a fuzzy
dissimilarity function.

To evaluate the validity of the set of Equation (14), we have generated XOR-like
data using gene expression values from patients suffering from kidney cancer. The data
were retrieved from the Cancer Genome Atlas (https://www.cancer.gov/tcga accessed
on 25 September 2022). We sampled two patients with similar phenotypic characteris-
tics regarding age and smoking status. For these two patients, a total number of about
19,936 genes were available. We min-max normalised the expression values to a range of
[0, 1]. Following that, we calculated the absolute difference (Manhattan distance [50]) for
each gene between the two patients. In the first investigation, we set an artificial threshold
value of 0.5. Differences in gene expression below that threshold were assigned with the
label 1 (18,715 samples). The rest was labelled by the class 0 (1221 samples). The resulting
XOR representation of the survival data allows a researcher to study the gene levels of
single patient pairs and ultimately could help to detect biomarkers. This is particularly
interesting for patients with similar medical characteristics. The causal force causing a
death outcome may originate from a dysregulated gene function. Our XOR model may be
used to explore such patterns and ultimately may help to detect novel biomarker genes.

Figure 5 depicts the original data, with inversed target value (the values of the target
that were 0 were set to 1 and the ones that had the value 1 have now the value 0).

To search for adequate parameters p1, p2 and s, an evolutionary algorithm was pro-
grammed in Python with the use of the library DEAP: https://deap.readthedocs.io/en/
master/ (accessed on 25 September 2022). All figures were generated with the use of
the plotly library https://plotly.com/ 25 September 2022. The parameterisation of the
algorithm is the same as in Section 5.1.3. Added to that, the constraints p1 ∈ [0, 0.5], p2 ∈
[0, p1[, s ∈ [0, 1] were implemented with the use of a penalty when the proposed p1, p2, s
were distant from the region of feasible solutions. There were several combinations of
p1, p2, s values that were a good local minimum; the approximated data depicted in Figure 6
are just one of them. The average value of the Mean Squared Error (MSE) of the discovered
solutions w.r.t. the original XOR data was 0.046 for 10 independent runs.

https://www.cancer.gov/tcga
https://deap.readthedocs.io/en/master/
https://deap.readthedocs.io/en/master/
https://plotly.com/
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Figure 5. The original XOR data. The values on the x-axis correspond to the feature “survived”, the
values on the y-axis correspond to the feature “non-survived” and the corresponding inverted values
of the “target” are on the z-axis.

Figure 6. The approximated XOR data with the use of p1 = 0.076, p2 = 0.0731, s = 0.012 according to
Equation (14).

5. Parameter Learning in Classification by Ordinal Sums with Evolutionary Algorithm
and Reinforcement Learning

Parameter learning can be made reliably with the use of ordinal sums and evolu-
tionary algorithms from real data [51,52]. We conducted two separate experiments with
synthetically generated data; each of them containing 25 data samples created with the
same pre-specified parameterisation and 4 with a slightly different perturbed version of
the estimated parameter. The goal of the evolutionary algorithm is to estimate the original
parameter from the perturbed data.
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5.1. Parameter Learning for Conjunctive and Averaging Functions

For the learning, the input data are listed in Table 1 (for the conjunctive part of
the classification space) and Table 2 (for the averaging part of the classification space,
see Figure 1). Concerning the disjunctive part, it is dual to conjunctive and therefore is
not examined.

The areas in Figure 1 can be roughly described by the following behaviour:

• C0—Clear no
• C>0—Very significant inclination to no
• Avg—Averaging functions with possible inclination to no or yes
• D<1—Very significant inclination to yes
• D1—Clear yes

Table 1. Data for parameter learning of the conjunctive function for the class no.

λ 1.25 1.25 1.25 1.25 0.75 1.25 1.25 1.25 1.25 1.25

x 0.01 0.25 0.26 0.23 0.25 0.27 0.05 0.49 0.22 0.48
y 0.41 0.48 0.39 0.34 0.35 0.30 0.49 0.49 0.06 0
solution 0 0.22 0.12 0 0.12 0 0.03 0.47 0 0

λ 1.25 1.25 1.25 0.75 1.25 1.25 1.25 1.25 1.25 1.25

x 0.50 0.39 0.03 0.20 0.09 0.25 0.40 0.11 0.10 0.35
y 0.13 0.39 0.20 0.30 0.20 0.09 0.49 0.50 0.10 0.07
solution 0.13 0.27 0 0.05 0 0 0.38 0.11 0 0

λ 1 1.25 1.25 1.25 1.25 1.25 1.25 1

x 0.25 0.46 0.46 0.50 0.21 0.50 0.11 0.19
y 0.44 0 0.03 0.24 0.24 0.03 0.32 0.35
solution 0.19 0 0 0.24 0 0.03 0 0.04

Table 2. Data for parameter learning of the averaging function inclined to the class no.

r 0.75 0.75 0.75 0.75 0.75 1.25 0.75 0.75 0.75 0.75

x 0.42 0.37 0.26 0.10 0.29 0.29 0.42 0.32 0.36 0.35
y 0.80 0.57 0.95 0.55 0.67 0.70 0.98 0.78 0.99 0.63
solution 0.70 0.43 0.65 0.13 0.44 0.51 0.88 0.57 0.82 0.46

r 1 0.75 0.75 0.75 0.75 0.75 1.25 0.75 0.75 0.75

x 0.0 0.14 0.31 0.36 0.37 0.47 0.12 0.38 0.34 0.44
y 1.0 0.69 0.96 0.60 0.92 0.57 0.59 0.78 0.57 0.73
solution 0.5 0.28 0.73 0.45 0.76 0.53 0.23 0.64 0.40 0.66

r 0.75 0.75 0.75 1 0.75 0.75 0.75 0.75 0.75

x 0.46 0.50 0.36 0.20 0.01 0.17 0.45 0.47 0.02
y 0.56 0.50 0.74 0.80 0.63 0.56 0.71 0.68 0.98
solution 0.51 0.50 0.58 0.50 0.07 0.21 0.65 0.64 0.33

5.1.1. Averaging Behaviour for Class Maybe

The average function covers classification to class maybe when value of x is high and
value of y is low and the opposite Figure 1. This function is managed by the power mean
(Equation (11)) that generates the last column (the intensity to belonging to the class maybe)
in Table 2.

Depending on the value of r, the following behaviour is expressed:

• r = 1: Neutral
• r > 1: Optimistic—A bit inclination to yes



Mach. Learn. Knowl. Extr. 2022, 4 938

• 0 < r < 1: Pessimistic—A bit inclination to no

Some examples of the output of function (11) on pairs of (x, y) variables:

(0.3, 0.7)→ 0.5 (r = 1)
(0.3, 0.7)→ 0.58 (r = 2)
(0.3, 0.7)→ 0.46 (r = 0.5)

(15)

Theoretically, r can be any value, whereas value 0 for the geometric mean is a special
case. It cannot be learnt due to dividing by zero. The first solution is constraining learning to
values in the interval (0, 2). This interval focuses on learning the so-called soft conjunctively
and soft disjunctively polarised averaging functions. The second solution covers learning
also hard conjunctively and hard disjunctively polarised functions (except for r = 0). These
functions are examined in detail in [45]. Due to the internality principle of averaging
functions, the solution is between the minimal and maximal value, but for the cases
(0, 1) the solution is 0 for the hard conjunctive polarisation and 1 for the hard disjunctive
polarisation. This contradicts the classification into class maybe for a rule IF x is SMALL and
y is HIGH THEN solution is MEDIUM.

An example of learning is shown in Table 2 where values indicate that classification
(e.g., in Example 1) should be restrictive (a bit of inclination to class no, as domain expert
indicated), whereas values marked as bold indicate that for these records classification
has been recognised as neutral or optimistic. When we exclude these records, the solution
is r = 0.75. The influence of these records has increased the value of r towards the new
learned value r = 0.88. The results are depicted in Figure 7.

Figure 7. Parameter estimation with the use of an evolutionary algorithm for the average case. The
blue points represent the samples with r = 0.75, whereas the red points are the ones that were created
with r = 1 or r = 1.25. The blue surface is the one created by the application of function (11) with the
original r = 0.75. The red surface is the one created by the application of the same function with the
best found r = 0.88.

5.1.2. Conjunctive Behaviour for Class No

In this part of classification space, we should adjust the separation line (or curve)
between C0 and C>0, where

• For area C>0: CL(x, y) > 0 and CL(x, y) < min(x, y)
• For area C>0: C(x, y) = 0

This classification is realised by the parametrised nilpotent family of conjunctive
functions (10), i.e.,

• λ = 1: Linear case, i.e., (0.3, 0.2) = 0
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• λ > 1: More restrictive, for instance (0.3, 0.4) = 0, for λ = 2
• λ < 1: Less restrictive, for instance (0.3, 0.2) = 0.1, for λ = 0.1

An example of learning is shown in Table 1 where values indicate that classification
into class no should contain a larger percentage of space, whereas values marked as bold
indicate that for these records class no cover a smaller percentage of the classification space.
When we exclude these records, the solution is λ = 1.25. The influence of these records has
decreased the value of λ towards the new learned value λ = 1.22. The results are depicted
in Figure 8.

Figure 8. Parameter estimation with the use of an evolutionary algorithm for the conjunctive case.
The blue points represent the samples with λ = 1.25, whereas the red points are the ones that
were created with λ = 0.75 or λ = 1. The blue surface is the one created by the application of the
function (10) with the original λ = 1.25. The red surface is the one created by the application of the
same function with the best found λ = 1.22.

5.1.3. Implementation of Parameter Estimation from Synthetically Generated Noisy Data
with an Evolutionary Algorithm

The data that were used for the experiment for the averaging part are presented in
Table 2. The data were in principle generated with r = 0.75 (more restrictive). For the
marked records in red, r is different (two of them 1 and the other two 1.25). The evolutionary
algorithm was implemented with the same software as the one mentioned in Section 4.

With an evolutionary algorithm, we search with the use of a population of 100 elements
for the right r. The starting values should lie between (0, 5) as was indicated above.
However, when humans express a more restrictive classification of high and low values, the
starting values lie between (0, 1) and their starting distribution is uniform. The operators
that are used are mating, mutation and selection. The mate probability was set to 0.5; the
mutation Gaussian distribution has a mean equal to 0.0 and a standard deviation of 1.0. The
mutation probability was set to 0.2. Those values were defined after several executions of
the algorithm to provide the best possible mean squared error (MSE) between the original
and estimated function. The number of generations that were needed for a satisfying result
was 100 and the solution is computed in approximately 40 s even without parallelism.
There were some edge cases that one needs to consider, such that during the evolutionary
algorithm the r in 1/r might take the value of zero or that in the averaging case Python
does not raise a negative number to a fractional power.

The same observation holds for learning parameters for the conjunctive part, except
for the different functions used. In the above experiment, the estimated value of λ is 1.25.
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The size of the dataset depends on the number of outliers and on the data distribution to
cover the whole domain.

5.1.4. Implementation of Parameter Estimation from Synthetically Generated Noisy Data
with Reinforcement Learning

The estimation problem described in Section 5.1.3 can also be solved with the use of a
reinforcement learning algorithm [53–55]. Although this might seem a too complex method
for the solution of such a task, it is expected that for more sophisticated estimations with
many more parameters and higher dimensionality, it can be proven beneficial.

As with every basic reinforcement learning algorithm, the first step was to define the
environment and the agent; the environment does not consist of a known Markov Decision
Process (MDP). The episode can terminate either when the number of maximum steps is
reached or when the mean squared error (MSE) between the original and the estimated
function is less than a predefined threshold (just as in the case of the evolutionary algorithm
in the previous Section 5.1.3). The reward strategy can be either the minimum time to goal
or one that is less discouraging and equal to the minus of the currently computed MSE. The
agent’s states are all float numbers in the x axis between 0 and 1 (bounds that are provided
by the problem definition and can be adapted). The permissible actions can move the agent
either left or right in this axis by a small amount each time (currently set to 0.01).

We implemented a custom environment and the agent with the following Python
library: https://mushroomrl.readthedocs.io/en/latest/ (accessed on 25 September 2022).
The reinforcement learning algorithm was used as the True online TD (lambda) [56]; since
we do not have a defined MDP, we could also use a Deep Q-Network [57] in a more complex
estimation problem. We tried two rewarding schemes; the use of the minus of the MSE to
the solution and the minimum time to goal; the second one has proven not to converge in a
reasonable time duration. We have tried several combinations of numbers of episodes and
maximum steps per episode and the smallest one that provided us results comparable to
the evolutionary algorithm for the averaging function was 150 and 5000, respectively. As
one can see in Figure 9, the last state that the agent finds himself at the end of the episode
converges to a value 0.87 and the same goes for the MSE, as shown in Figure 10.

Figure 9. State of the agent at the end of each of the 150 episodes for the averaging function. After
the exploration phase, around episode 70 the agent reaches a value near 0.87, which is similar to the
solution provided by the evolutionary algorithm.

https://mushroomrl.readthedocs.io/en/latest/
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Figure 10. MSE between original data and estimated solution at the end of each of the 150 episodes
for the averaging function. After the exploration phase, the MSE converges to 0.

The search for the appropriate parameter for the conjunctive function follows the same
pattern. After the exploration phase, the agent finds the solution near 1.2 at the end of each
episode, as seen in Figures 11 and 12.

Figure 11. State of the agent at the end of each of the 150 episodes for the conjunctive function. After
the exploration phase, around episode 70 the agent reaches a value near 1.2, which is similar to the
solution provided by the evolutionary algorithm.
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Figure 12. MSE between original data and estimated solution at the end of each of the 150 episodes
for the conjunctive function. After the exploration phase, the MSE converges to 0.

6. Experiment on Medical Data for Classification by Ordinal Sums

Medical data are valuable support for medical doctors when they can easily analyse
them. In this section, the Cleveland Heart Disease dataset from the dataset repository of
the University of California, Irvine (UCI) [58], is used. This dataset related to heart issues is
an established real-world dataset that is largely used in the machine learning field [59–61].
The classification space is created in a way that medical doctors can adjust parameters
intuitively. This section contains an example of such a process with the use of a novel tool
to explore prepared datasets. This tool expects datasets in a comma-separated values (CSV)
format and can theoretically be used for a wide variety of data. For this experiment, though,
the application has been primarily programmed to visualise the diagnosis of each patient
of the dataset described in Section 6.1 and compare it to the resulting distribution of the
data points on a two-dimensional plot.

6.1. Dataset Information

The dataset was derived from clinical and non-invasive test results from 303 patients
at the Cleveland Clinic in Cleveland, Ohio [62]. It contains 14 features, 4 of them being
clinical attributes and the rest attributes gathered from clinical tests on the patient.

Clinical attributes are age, sex (0 = female, 1 = male), chest pain type and blood
pressure. Chest pain type is further segregated into typical angina (angina pectoris),
atypical angina, non-anginal pain and no pain (asymptomatic), which have the identifiers
1, 2, 3 and 4, respectively. Studies have shown that patients with typical angina are more
likely to suffer from coronary disease while other types of pain do not give any indications
toward this disease in general [63,64].

The remaining attributes were gathered during non-invasive tests. The resting elec-
trocardiograph results are divided into three categories: normal results, results with ST-T
wave abnormality and apparent left ventricular hypertrophy by Estes’ criteria. Similarly,
there was an exercise electrocardiogram, but in this case, the maximum achieved heart rate
was recorded. Obtaining good limits for this attribute is rather difficult. The measure for
a value to be considered good depends on the age of the patient [65]. Generally, a higher
value indicates a healthier patient. The limits chosen for this attribute are an educated
guess based on prior research [66]. ST segment depression was recorded by comparing
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it to the resting baseline and is measured in mV. The slope of the ST segment peak was
recorded as either upsloping, flat or downsloping and marked by the identifiers 1, 2 and 3,
respectively. Lastly, thallium scintigraphic defects were recorded as either normal, fixed
defects or reversible defects by the values 3, 6 and 7 in that order. Further attributes are
serum cholestoral, fasting blood sugar (0 if <= 120 mg/dL, otherwise 1), exercise induced
angina (0 = no, 1 = yes) and fluoroscopy for coronary calcium.

Finally, there is an attribute for the presence of heart disease. At value 0 there is an
absence of disease in this patient and values 1-4 indicate a diameter narrowing larger than
50% in at least one major blood vessel and thus a presence of heart disease.

It is noteworthy that the dataset contains six patients where the value for at least one of
the attributes is missing. In the case of this experiment, these entries were simply removed
from the dataset instead of substituting these values by using an average or assigning
a random value (imputation), [67]. Thus the number of remaining patients in the used
dataset amounts to 297.

Table 3. The 14 attributes of the processed Cleveland Heart Disease dataset with their specified
limits. More details on the attributes in Section 6.1 and details on maximum and minimum limit in
Section 6.2.

LabelLabelLabel Min LimitMin LimitMin Limit Max LimitMax LimitMax Limit DescriptionDescriptionDescription
age 40 65 Age in years
sex 0 1 Sex
cp 2 1 Chest pain type
trestbps 120 140 Resting blood pressure in mm Hg
chol 180 300 Serum cholesterol in mg/dL
fbs 0 1 Fasting blood sugar
restecg 0 2 Resting electrocardiographic results
thalach 160 120 Maximum heart rate during exercise electrocardiogram.
exang 0 1 Exercise-induced angina
oldpeak 0 4.4 ST depression relative to rest (mV)
slope 1 3 The slope of the peak exercise ST segment

(1 = upsloping, 2 = flat, 3 = downsloping)
ca 0 3 Number of major vessels coloured by fluoroscopy
thal 3 7 Thallium scintigraphic defects

(3 = normal, 6 = fixed defect, 7 = reversible defect)
num Presence of disease

6.2. Data Preprocessing

This application supports CSV files with a comma (“,”) as a separator. The first two
lines of each CSV dataset are reserved for further information on the data for the tool to
process. The first line of the file must contain all attribute names of the dataset in the
structure A1, A2, . . . , An.

The second line must contain the limits of the attribute in the structure
DL1|DH1, DL2|DH2, . . . , DLn|DHn. The minimum (DLi) and maximum (DHi) limits of each
attribute will be normalised to [0, 1] in the application. For the dataset from Section 6.1,
these limits were defined as described in Table 3. For medical features, we assign value 0
to all values lower than or equal to DL and value 1 for values greater than or equal to DH
when increasing means concern (above the value of DH is a full concern) and the opposite
when decreased value means increased concern. For instance, the limit for the attribute
thalach is given as [160, 120] which in this case simply means normalisation is inverted so
that a value above 160 results in a 0 and a value below 120 results in a 1. The attribute age
has a limit of [40, 65] in our dataset. However, when a new entity below 40 or above 65
is recorded, it does not simply mean that these values obtain values 0 or 1, respectively.
New values of age adjust DL and DH . The remaining lines contain a patient entry each
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with all of their attribute values filled in the structure PA1 , PA2 , . . . , PAn . Missing values are
not supported and rows containing them have to be removed before being able to use the
CSV file.

Generally, atomic attributes can be aggregated to a compound one in diverse ways.
A convenient option is an aggregation by the fuzzy quantifier most of [68]. For instance,
the most of declared distances in Example 1 should be short. In the medical domain, we cover
cases when most of the symptoms belonging to the category should be met. The intensity
of a quantified sentence indicates seriousness. More about the quantifier most of and its
formalisation is in, e.g., [69].

The true value of the quantified sentence adapted to the evaluation of atomic attributes
by the quantifier most of is expressed as

v(x) = µQ

( 1
n

n

∑
i=1

µPi (x)
)

, (16)

where n is the number of atomic attributes, µPi formalises the satisfaction of predicate P for
the ith attribute and µQ formalises quantifier most of as

µQ(y) =


1, f or y ≥ n,

y−m
n−m , f or m < y < n,

0, f or y ≤ m

(17)

where y is the proportion of satisfied atomic attributes, m and n are parameters expressing
the strength of the quantifier.

For this quantification, the values m and n have to be set.

6.3. Tool Navigation

The interface of the custom application where the experiments and data exploration
are performed is shown in Figure 13. Initially, a dataset as described in Section 6.2 needs to
be loaded using the “Load File” button. When a file is loaded the “Query” button can be
clicked in order to open the query window as seen in Figure 14. Within this window, the
quantifier functions for the x and y axis can be defined by selecting the target axis, choosing
an aggregation of atomic attributes (conjunctive or most of ), selecting the target attributes
from the dataset for the axis and clicking the “Apply for Axis” button. In case of most of
quantifier, the parameters m and n need to be provided. The “Save and Close” button will
then apply the settings and close the query window.

Figure 13. The initial state of the tool for the visualisation of the experiments.
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Figure 14. The query window allows the user to define the quantifier function for each axis. The
axis (“Axis”), quantifier mode (“Mode”) and the attributes (“Keys”) can be selected here. The bottom
section shows the current selection.

Now the “Plot” button can be clicked to plot the data. Using the parameters from
Section 6.4 and the dataset as described above will then result in a plot seen in Figure 15.
The user can then select a node by clicking on it, which displays information about the node
in the “Node Information” field of the application. With a selected node, the target outcome
value of the aggregation function can be defined by entering it into the “Target” input box
and clicking the “Set” button. Providing the Cleveland Heart Disease dataset with the
num attributes allows the application to preset the target values to 1 for patients with heart
disease and 0 for patients without the disease. Additionally, nodes will be coloured based
on the num attribute (0 = white, 1 = purple, 2 = green, 3 = blue, 4 = black).

Figure 15. Visualisation of the Cleveland Heart Disease dataset in the classification space before
adjusting λ and r.
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Finally, using the “calc l r” button calculates a best match for the parameters λ and r.
Note that for λ there are two separate input fields for the yes and no sections, respectively.
The only prerequisite for obtaining a result from the “calc l r” button that differs from the
default values is to have set at least one node to a target. After calculating those parameters,
the labels “mean error l yes”, “mean error l no” and “mean error r” indicate mean error for
each node with a target value.

6.4. Fitting Parameters

Defining parameters for the classification space is a challenging task. Usually, a
domain expert can provide information in short sentences on how to quantify the data (e.g.,
Example 1). However, due to the lack of a domain expert, an automated way to define the
parameters was used. For future and more complex tasks, we plan to include human-in-
the-loop for explaining classification, validation and fine-tuning. The classification space
was split into fields as shown in Figure 16. The goal was to fit as many patients into the
correct classification as possible. The heart-disease-positive patients should be in the upper
right half, while heart-disease-negative patients are expected in the bottom left area. To
classify the nodes, a brute force approach was applied. For all possible subsets of attributes
for the x and y axis, all possible values for m and n with a granularity of 0.1 were tested.
For each possible parameter set, the number of nodes in the correct field was counted and
the best overall score was used. In our experiment, we obtain the following values for
quantifier most of (17) and compound attributes on axes:

• m: 0.2
• n: 0.7
• x axis: [age, cp, trestbps, fbs, restecg, exang, oldpeak, slope, ca]
• y axis: [sex, chol, thalach, thal]

Figure 16. Separation of the classification space for parameter fitting. The dataset from Section 6.1 is
loaded in order to visualise the distribution of the points relative to the separator.

6.5. Adjusting λ and r

The Schweizer–Sklar family of t-norms and t-conorms in ordinal sum require a pa-
rameter λ, whereas parameter r is required for the averaging functions, as described in
Section 3. These parameters can be adjusted by the user to modify the strictness of the
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yes/no (λ) and the maybe (r) section. For example, if there are many data points in the no
section that the user knows should be a definitive no (0), but are not classified as such, then
the parameter λ of the no section can be increased to make the no section more inclusive
and thus include these points. Similarly, the maybe section can be adjusted to tend more
to no by decreasing the parameter r to indicate that data points near the no section within
the maybe section lean more to a no decision. The same holds vice versa: To adjust the
inclination in the other direction, the parameter r and λ of the yes section can be increased
to alter the yes and maybe sections, respectively.

λ adjusts the strictness of the yes and no classifications. This enables the user to
include or exclude data points inside the sections. The strictness of the yes and no sections
can be independent of each other. The parameter r affects the strictness of the maybe
classification. This leads to an inclination in the direction of the yes and no classifiers within
the averaging class.

6.6. Interpretation of the Visualisation

The aim is to achieve appropriate interaction between humans and data, so special care
must be taken with visualisation to improve interactive processes [70]. Plotting the data
without modifying the λ and r value results in a default value of 1 for these parameters. The
plot for the example data described in Section 6.1 and quantified as explained in Section 6.4
can be seen in Figure 15. From this point on, the human-in-the-loop is essential to influence
the classification [71]. Of course, the parameters λ and r can be manually set by the user,
but a more intuitive way is for the domain expert to select data points within the plot and
assign them to the yes or no class explicitly. After a moderate amount of assignments into
both classes, the parameters can be trained by the tool and will yield a sensible adjustment
to the strictness of the disjunctive, conjunctive and averaging classification. The resulting
plot of the aforementioned data and set parameters results in the visualisation seen in
Figure 17.

Figure 17. Result of calculating λ and r after assigning to each patient the target value of 1 for yes if
the patient has heart disease and 0 for no if the patient has no heart disease. The classification space is
presented as red for definitive no, green for definitive yes and a gradient from pink (tendency more to
no) to turquoise (tendency more to yes) for maybe.
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The colour coding as described in Section 6.3 assisted with the interpretation of the
data. Naturally, there are some false positives and false negatives in the no and yes classes,
respectively, but overall the classification of the data points within the yes and no class can
be seen clearly.

Data points within the maybe classes require additional attention as these are interesting
cases which do not have a clear yes or no answer to them and require further investigation
by the user or domain expert. In the case of the Cleveland Heart Disease dataset, the
number of patients in this category is quite high as humans react and develop symptoms
very differently. Overall, the tendency for a data point to align with the overall correctness
of identifying the disease is there. The outcome of the classification space is shown in
Table 4.

Table 4. Classification outcome; one can observe that the majority of points are correctly classified.
Nevertheless, since the ground truth does not provide us with the actual number of patients belonging
to the maybe class, one cannot use a well-known metric as accuracy, confusion matrix or mutual
information [72,73]. A human-in-the-loop approach must be used to provide the labels for the
samples in the maybe class.

Patients without disease in the no section 97

Patients with disease in the no section 13

Patients without disease in the yes section 7

Patients with disease in the yes section 52

Patients without disease in the maybe section 56

Patients with disease in the maybe section 73

7. Discussion and Future Works

By the concepts of aggregation functions (ordinal sums of conjunctive and disjunctive
functions) for classification space, quantified and conjunctive aggregation for the atomic
attributes and flexible XOR, we are able to perform classification tasks and moreover
explain the result by functions and also linguistically.

In [3], we solved the classification task when the requirement is explained linguistically
by a paragraph instead of rules. In this work, we have shown that, when we have a subset
of data, for which we know to which class they belong, we are able to adjust parameters of
nilpotency for the Schweizer–Sklar family of t-norms and t-conorms.

Next, we learned parameters for nilpotent conjunctive and disjunctive functions as
well as the most suitable aggregation of atomic attributes into two compound ones. We
obtain similar results as expected for classifying heart disease data. There is still space
for improvement, but this is the first attempt to realise classification by ordinal sums on
real-world data without domain expert intervention. The solution is interpreted graphically
and interactively. The former means that when the domain expert move classified items
inside the classification square, the new linear or non-linear separator between classes
(parameter λ) is learnt. The next task is to include human-in-the-loop (domain expert)
especially for less frequently occurring events to explain classification tasks linguistically,
learn separators of classes from a smaller subset of already classified data and allow a
domain expert to adjust data positions in classification space and consequently fine-tune
the classification space.

In our experiment, we explained classification space by a curve, which separates
classes no and maybe, which is expressed by function (18):

TS
λ (x, y) = (max(0, x4.9999 + y4.9999 − 0.54.9999))

1
4.9999 (18)
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The class maybe and its inclination to yes or no is explained by the power mean:

Mr(x, y) = (
1
2
(x2.8221 + y2.8221))

1
2.8221 (19)

Finally, class yes and its separation with class maybe is expressed by:

SS
λ(x, y) = 1− (max(1, (1− x)4.9999 + (1− y)4.9999 − 0.54.9999))

1
4.9999 (20)

The value r in the averaging function for class maybe indicates inclination to class yes.
It is a desirable solution because it is a better option to put a false alarm and indicate that
the patient should be further examined than to indicate that the patient inclines to a healthy
state despite quite significant values of attributes. For classes yes and no, the parameter λ
obtains high values, which indicates that the respective quadrants almost fully cover clear
yes and no, respectively. The future task should be also focused on the flexibility of the
parameter in an ordinal sum which separates three classes.

This classification is not easily compared with the other approaches because it covers
the class maybe. Existing approaches are usually binary or winner takes all (entity belongs
to class with the highest matching degree). Nonetheless, the inclination is a valuable
insight into data and an inclination to binary classes for a domain expert. Furthermore, the
domain expert can interfere by providing a linguistic explanation of the classification space,
which is contextual and sometimes also person-dependent (whether comfort is more or
less relevant than distance).

The interpretability of black-box approaches can be mitigated by a transparent model
with the aim of imitating the output of a black box, which is taken as an oracle, whereas
a transparent model is a surrogate model [5]. From the experiment, we conclude that the
proposed classification by ordinal sums and aggregating atomic conditions by quantified
aggregation are suitable for this task, but further research is advisable.

In the classification by rule-based systems, neural networks, decision trees and the
like, the entity is assigned to one class (in the case of fuzzy classification, the winner takes
all or the entity is not classified). In the binary classification to classes yes and no, for
many entities, this decision is not as simple as it looks at first sight. The option is to adopt
classification into three classes, where belonging to the class maybe is clear for the remaining
entities. However, for such entities domain experts would welcome information about
the tendency towards the classes yes or no. It might be solved by additional classes like
Tendency to no, Tendency to yes, which leads to the four-class classification. It adds flexibility
but is still limited. In this approach, we have the clear belonging to classes yes and no for
entities where the decision is clear and for all other entities we indicate the intensity of
belonging to the class maybe. As intensity is lower, the entity inclines to class no. In the case
of value 0.5, an entity has no inclination.

Upcoming future work is about learning parameters for the proposed dissimilarity
function expressing flexible XOR for classification into three classes.

8. Conclusions

In many application areas, both experts and laypersons classify entities into binary
classes (yes-no), e.g., healthy–sick, malignant–benign, credit accepted–rejected, etc.). How-
ever, for many entities, this decision is not as simple as it looks at first sight. In many cases,
we need another class that can be labelled maybe, supported by a corresponding inclination
towards one of these two extreme poles. Classification by ordinal sum of conjunctive and
disjunctive behaviour is a new research field which is able to solve these requirements.

In our work, we developed a method for learning parameters of nilpotent t-norms
and t-conorms and averaging functions from data. These parameters separate (linearly
or non-linearly) three classes. Classification by two atomic or compound classifications is
graphically interpretable. Thus, a domain expert is able to move entities into the desired
classes or adjust inclination to one of two extreme poles. This information is input for
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re-learning and fine-tuning the classification space. Classification is demonstrated on the
Cleveland Heart Disease dataset with a promising result. Accuracy can be improved by
including human-in-the-loop in explaining requirements and fine-tuning.

The proposed classification approach is beneficial when requirements are expressed
linguistically, the expert knowledge is not available in the form of rules, a labelled dataset is
available or the labelled dataset has a smaller size, but the domain expert provides details
relevant for recognising the sub-domains of parameters, e.g., the information about the
tendency to be classified into class maybe. The proposed approach leads to an explainable
and actionable AI solution.

The classification into class maybe requires further research as power means does not
ideally cover soft conjunctive and soft disjunctive parts to apply ML. Further research in
this direction is highly advisable to answer these observations. For future tasks, we also
consider classification into several classes covering class “maybe”, to maintain the full
belonging to one of the classes such as: “significant inclination to no”, “neutral inclination”
and so forth.

The classification should be consistent, reliable and explainable. These three require-
ments are met by the proposed approach.

Next, we proposed the XOR classification into classes: “key difference”, “irrelevant
difference” and “partial difference”. The novelty in comparison to the existing literature
is the new dissimilarity function. Neither fuzzy XOR nor fuzzy dissimilarity is fully
convenient, because we do not need a strong demand. A smaller deviation in the data
(e.g., due to noise) should be handled. To solve this task, we introduced a fuzzy quasi-
dissimilarity function and applied it on real-world data. The data that were used fulfil the
XOR functional characteristics and both evolutionary algorithms as well as reinforcement
learning can help us find adequate parameters that fit the data in a feasible region.
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