
Citation: Lohaj, O.; Paralič, J.; Bednár,
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Abstract: Machine learning (ML) has been used in different ways in the fight against COVID-19
disease. ML models have been developed, e.g., for diagnostic or prognostic purposes and using
various modalities of data (e.g., textual, visual, or structured). Due to the many specific aspects
of this disease and its evolution over time, there is still not enough understanding of all relevant
factors influencing the course of COVID-19 in particular patients. In all aspects of our work, there
was a strong involvement of a medical expert following the human-in-the-loop principle. This is a
very important but usually neglected part of the ML and knowledge extraction (KE) process. Our
research shows that explainable artificial intelligence (XAI) may significantly support this part of
ML and KE. Our research focused on using ML for knowledge extraction in two specific scenarios.
In the first scenario, we aimed to discover whether adding information about the predominant
COVID-19 variant impacts the performance of the ML models. In the second scenario, we focused on
prognostic classification models concerning the need for an intensive care unit for a given patient in
connection with different explainability AI (XAI) methods. We have used nine ML algorithms, namely
XGBoost, CatBoost, LightGBM, logistic regression, Naive Bayes, random forest, SGD, SVM-linear,
and SVM-RBF. We measured the performance of the resulting models using precision, accuracy,
and AUC metrics. Subsequently, we focused on knowledge extraction from the best-performing
models using two different approaches as follows: (a) features extracted automatically by forward
stepwise selection (FSS); (b) attributes and their interactions discovered by model explainability
methods. Both were compared with the attributes selected by the medical experts in advance based
on the domain expertise. Our experiments showed that adding information about the COVID-19
variant did not influence the performance of the resulting ML models. It also turned out that medical
experts were much more precise in the identification of significant attributes than FSS. Explainability
methods identified almost the same attributes as a medical expert and interesting interactions among
them, which the expert discussed from a medical point of view. The results of our research and their
consequences are discussed.

Keywords: machine learning; COVID-19 prognostic model; CRISP-DM; knowledge extraction; risk
factors; explainable artificial intelligence

1. Introduction

COVID-19, also known as the coronavirus disease, has become a dominant topic of
global debate and has led to restrictions on free movement, schools, and business closures,
significantly affecting the daily lives of millions of people. Despite the relatively long time
since the outbreak of the pandemic, the topic is still important in many research fields,
including medicine, epidemiology, economics, psychology, and sociology. COVID-19 has
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proven to be a serious health problem affecting millions of people worldwide, becoming
one of the most significant health threats of our time. As it turns out, some people are
more susceptible to coronavirus infection than others and have a higher risk of a severe
course of the disease. It also appears that some people were more affected by the different
variants of COVID-19, whereas others had the exact opposite experience. There are also
comorbidities and other factors that may influence the course of the disease but are not
traditionally looked at in the first place. For this reason, in this work, we decided to analyze
the risk factors that influence the progression of this disease using machine learning tools,
as well as study the information about the current prevailing COVID-19 variant, to find
out if it influences the resulting ML models. In all aspects of our work, there was a strong
involvement of medical experts, which is, in our opinion, a very important aspect of the
ML and knowledge extraction process that is usually neglected in similar research papers.

We first focused on analyzing the current state of the art in Section 2, where we
analyzed the machine learning models used in open-access studies and compared their
performance. We also examined the risk factors identified in existing studies, where we
summarized the factors that most influenced the course of the disease. In Section 3, we
focused on the methodology and experiments on the open data of patients with COVID-19
disease using the CRISP-DM methodology. First, we examined the impact of adding
information about the predominant COVID-19 variant on the performance of each model.
Secondly, we took a look at classification models that aim to predict whether a patient has
a predisposition to be admitted to the Intensive Care Unit (ICU) or not. The focus here
was on knowledge extraction related to the main factors influencing the prognosis of the
COVID-19 disease. We also used two ML explainability methods—SHAP and LIME—to
analyze local and global interactions among the most important attributes identified by
their means. We then evaluated all the models and summarized their results. In the last
section, we summarized the main findings, answered the stated Research Questions (RQ),
discussed their implications, and sketched our future work.

The main contributions of this study are experimental evidence that information about
the COVID-19 variant did not influence the performance of the resulting ML models if
provided on the level of prevalent virus type in a given region. We also showed that the
role of medical experts is inevitable in the process of important attribute identification and
further analysis of their importance in accordance with the human-in-the-loop principle.
Finally, explainability methods identified almost the same attributes as medical experts and
interesting interactions among them, which, in connection with human expertise, provide
interesting insights.

2. Related Work

Coronavirus disease 2019 (COVID-19) is a highly contagious viral disease caused by
the SARS-CoV-2 (severe acute respiratory syndrome—coronavirus 2) virus. The severity of
the course depends not only on the characteristics of the virus but also on the host itself.
Identifying the factors of a severe course of the disease is still very important [1], mainly
because it enables the priority allocation of resources for high-risk patients to minimize
deaths.

Various statistical approaches are used, as well as ML methods, to identify the risk
factors. The most frequently used ML algorithms and their performance are analyzed
in Section 2.1. Besides the use of ML models for predictive purposes, they are also used
for knowledge extraction in order to identify the main factors influencing the course
of COVID-19. We analyze related work from the knowledge extraction perspective in
Section 2.2.

2.1. Related Work on Machine Learning Algorithms

The most frequently used machine learning algorithms were logistic regression models,
random forest models, and decision trees [2]. Also, frequently used models include the
Cox proportional hazards regression model [3] and various gradient boosting models [4].
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These predictive models are used to classify patients according to the expected severity of
the course of the disease or survival and also to identify key risk factors.

Interesting analyses have been made by Kenneth Chi-Yin Wong et al. [5], who focused
on detecting clinical risk factors influencing the course of COVID-19 and using them to
predict severe cases. They created four different types of analyses, which they predicted
using the XGBoost prediction model. The target groups of these analyses were hospital-
izations/fatal cases—outpatient cases; fatal cases—outpatient cases; hospitalizations/fatal
cases—a population with no known infection; and fatal cases—a population with no known
infection. The AUC ROC values, i.e., recall, sensitivity, specificity, and accuracy, were used
to evaluate the quality of each model. The AUC values ranged from 69.6% to 82.5%, recall
ranged from 0.5% to 74.8%, sensitivity ranged from 55.7% to 83%, and specificity ranged
from 66.6% to 71.9%. The accuracy was similar in the three analyses, ranging from 66.5% to
68.6%. The most accurate analysis, with 72% accuracy, predicted the target group of fatal
cases vs. outpatient cases.

Machine learning algorithms have been used by Krajah et al. in [6] to predict the
target class of “death”, i.e., to predict the death or survival of a patient depending on
the patient’s health status and other predictors. They conducted this experiment using
data originating from Mexico provided by the General Directorate of Epidemics. In this
case, the researchers used a partially preprocessed dataset available on Kaggle [7]. Krajah
et al. used classification algorithms such as Logistic Regression, Linear Discriminant
Analysis (LDA), Classification and Regression Trees (CART), Support Vector Machines
(SVM), Naive Bayes (NB), and k-Nearest Neighbors (k-NN). These models were trained
with 11 predictors, which included attributes such as “intubated”, “icu” “pneumonia”, etc.
In the final stage of this work, they included logistic regression and SVM models. After
finalizing the models, they achieved an average accuracy of 84% for the logistic regression
algorithm and an average accuracy of 85% for the SVM algorithm. In comparison, the
overall success rates of these models were 83% and 82% for the logistic regression and SVM
algorithms, respectively.

Using machine learning, Holy and Rosa [8] predicted the target class “icu”, which
represents the placement or non-placement of a patient in the Intensive Care Unit using
the same data as in the study [6]. Three SVM algorithms were used: the linear kernel,
polynomial kernel, and RBF kernel. These models were trained using three- and five-fold
cross-validation with different numbers of predictors. The most successful models in this
study achieved the following accuracies: linear SVM—77.16%, polynomial SVM—80.44%,
and RBF SVM—81.27%. These accuracies were acquired using the models with five-fold
cross-validation using 16 predictors.

Holy and Rosa [8] used “accuracy” as the metric of model performance, with the best
model achieving an accuracy of 81.27%. However, presenting only the accuracy can be
misleading, as other metrics like AUC value, precision of each class, or their recall are not
mentioned. In this case, it is particularly important because of highly imbalanced data.

The imbalance of classes in the dataset [7] (with only 11% of the records in the positive
class) can affect the model’s performance, even after balancing the classes. The AUC metric
reflects this, likely showing a value of around 0.5, indicating that the model has no class
separability. In this situation, we cannot consider the relevant results, as the model may
classify almost all cases into the majority class (0), indicating patients who did not require
ICU care. The main findings of the related analysis focused on ML algorithms used in the
context of our research are summarized in Table 1.
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Table 1. Summary of related work on ML algorithms.

Author Predicted Class Used Algorithms Resulting Statistics

Kenneth Chi-Yin Wong
et al. [5]

Severity of
COVID-19 cases

XGBoost prediction
model

AUC ROC: 69.6% to 82.5%; recall: 0.5% to 74.8%;
sensitivity: 55.7% to 83%; specificity: 66.6% to 71.9%;

accuracy: 66.5% to 68.6%. Best analysis: 72%
accuracy for fatal cases vs. outpatient cases.

Krajah et al. [6] Patient Survival
(Death or Survival)

Logistic regression,
LDA, CART, SVM, NB,

k-NN

Logistic regression: average accuracy 84%; SVM:
average accuracy 85%; overall success rates: logistic

regression 83% and SVM 82%.

Holy and Rosa [8] Placement in ICU SVM (linear,
polynomial, and RBF)

Accuracies obtained with 5-fold cross-validation
using 16 predictors: Linear SVM: 77.16%;

Polynomial SVM: 80.44%; RBF SVM: 81.27%.

2.2. Related Work on Identified COVID-19 Risk Factors

Older age and some comorbidities such as chronic kidney disease, lung disease,
heart disease, and diabetes are well-known predictors of worse prognosis in patients with
COVID-19 disease [9,10]. Multimorbidities have been shown to play an important role in
general [11]. In addition to the mentioned chronic diseases, some other parameters include
obesity, diarrhea, or male gender. Laboratory indicators include hypoxemia, high values of
C-reactive protein (CRP), interleukin 6 (IL-6), ferritin, D-dimer, and LDH [12,13]. However,
the results of individual studies differ for some indicators.

A retrospective cohort study [14] in Wuhan, China, examined the clinical course
and risk factors for mortality in patients hospitalized at the local Jinyintan Hospital and
Wuhan Lung Hospital. In this study, the researchers included all patients hospitalized
in the aforementioned hospitals and older than 18 years of age. They used demographic,
laboratory, clinical, and treatment data to detect the risk factors. They used univariate and
multivariate logistic regression to identify the risk factors. Univariate logistic regression
identified diabetes and coronary heart disease as factors leading to death in COVID-19
patients. Also, age, lymphopenia, and leukocytosis were associated with death in this
analysis. Using multiple logistic regression, the researchers found that higher age, higher
SOFA (a diagnostic marker of sepsis) score, and d-dimer greater than 1 µg/mL predisposed
patients to death. They also found that the median coronavirus-shedding time for surviving
patients was 20 days. On the other hand, in patients who did not survive, coronavirus was
detectable until death.

In a comprehensive global analysis, Orwa Albitar et al. [15] used data on risk factors
influencing mortality in coronavirus when they used data from open databases. This study
aimed to extract all patients with COVID-19 who had a clear positive test result at the
individual level from the open databases reported by Xu et al. in their study [16]. In this
way, they extracted data such as patient demographics, comorbidity records, and key dates
such as the date of hospital admission, date of positive test result for COVID-19, date
of symptom onset, and date of discharge or death. As a result of the study, older age,
male gender, hypertension, and diabetes are the identified risk factors that most influence
mortality in COVID-19 patients. They also found that positively tested American citizens
are at a higher risk of coronavirus death than Asian citizens. Also, chronic lung disease,
chronic kidney disease, and cardiovascular disease are associated with COVID-19 mortality
but were identified as non-significant factors in this analysis.

Sven Drefahl and colleagues reported an interesting study [3], where they attempted
to uncover sociodemographic risk factors influencing mortality in COVID-19. These re-
searchers obtained data from the Swedish authorities on all recorded deaths from COVID-
19 in Sweden up to May 2020. Via survival analysis, they found that men, people with
low or no income, with only primary education, unmarried, and those born in a low- or
middle-income county have a high predicted risk of death from COVID-19.

Related work analyzing COVID-19 risk factors are summarized in Table 2. None of the
related work analyzed the influence of predominant COVID-19 virus types on the resulting
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ML models’ performance. Moreover, the analyses in related works were performed by
computer scientists, without considering the expert opinion.

Table 2. Summary of related work on COVID-19 risk factors.

Study and Reference Kind of Data Used Methodology for Risk
Factor Identification Identified Risk Factors

Wuhan Cohort Study [14]
Demographics, laboratory
data, clinical information,

and treatment records

Univariate and
multivariate logistic

regression

Diabetes, coronary heart disease, older age, lymphopenia,
leukocytosis, higher SOFA score, and d-dimer > 1 µg/mL

Global Analysis by Orwa
Albitar et al. [15]

Demographics,
comorbidities, and key

dates (hospital admission,
test results, symptom onset,

discharge, or death)

Comprehensive
analysis based on open

databases

Older age, male gender, hypertension, diabetes, and
differences in risk by nationality (American vs. Asian).

The following risk factors are associated but not
significant: Chronic lung disease, chronic kidney disease,

and cardiovascular diseases

Sociodemographic Study
by Sven Drefahl et al. [3]

Data on recorded
COVID-19 deaths

in Sweden

Survival
analysis

Men, low or no income, only primary
education, unmarried, and born in a low or

middle-income county

3. Methodology and Experiments

Based on the related work analyses, we defined three research questions. RQ1. Does
information about the predominant COVID-19 virus type influence the performance of
the predictive ML models? RQ2. Which approach to the selection of risk factors will
provide better prognostic results: factors selected by medical experts, or factors extracted
automatically by forward stepwise selection? RQ3. When we extract knowledge employing
explainability methods to analyze how particular comorbidities influence ICU prediction
and compare it with selections of domain experts and FSS resp., which one is better?

To answer these research questions, we used open data from the studies analyzed in
Section 2 and the well-known CRISP-DM methodology [17]. In all aspects of our work,
there was a strong involvement of medical experts, which is in our opinion a very important
aspect of the ML and knowledge extraction process and is usually neglected in similar
research papers. The following subsections correspond to particular CRISP-DM phases.

3.1. Business Understanding

In the wake of the COVID-19 pandemic, businesses, schools, health providers, etc.
worldwide have been confronted with unprecedented challenges. From disruptions in
supply chains and shifts in consumer behavior to the urgent need for accurate and timely
decision-making, the pandemic has highlighted the critical role of technology in navigating
these uncertain times. It was probably the most urgent in the healthcare sector, on which the
eyes of the whole world were fixed with hope. Machine learning methods have emerged as
powerful tools as analyzed in [18] for, e.g., diagnosis and detection, outbreak and prediction
of virus spread, and potential treatment. In the case of diagnosing, the focus is often on
X-ray and CT scan data using deep learning ML approaches [19]. However, this task was
simple in the case of X-ray images for doctors. Moreover, CT is not broadly accessible for
massive use in case of epidemics. What is more difficult is the identification of relevant
factors that influence the subsequent course of the disease to properly perform the triage of
patients and prescribe adequate treatment. For this purpose, a broader extent of patient
data is necessary, whether clinical, demographic, or laboratory information.

To achieve this “business” goal, we used machine learning algorithms to classify
patients based on the risk factors that may influence the course of disease in hospitalized
patients, whether it is a deterioration of the patient’s condition or an improvement in their
condition. In the modeling section, we used data from Mexico, which were obtained from
the database of the General Directorate of Epidemiology [20]. Primarily, we used data from
the year 2022, and in case of a significant imbalance in the target class, we also used data
from the year 2021. But we also used data from the year 2020 [7] in the modeling part.

Firstly, we focused on two studies in the modeling section: one predicting patient
survival [6] and the other predicting ICU admission [8]. We reproduced these experiments,
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used them as baseline models, and created our models using different preprocessing and
predictors. We compared these models using accuracy and also included information on
COVID-19 variants to see if it affected predictions (to answer RQ1).

Then, we performed two experiments consisting of two groups of models: in the first
group, we used the predictive features identified as important by the domain expert. In the
second group, we used the predictive features identified by the forward stepwise selection
algorithm (to answer RQ2).

Moreover, we applied three different explainability methods to analyze how particular co-
morbidities influenced ICU prediction. Two methods were used to compute the global impor-
tance of the predictors for the population sample (a transparent logistic regression model using
statistical tests and model-agnostic Shapley Additive Explanations—SHAP—method). Ad-
ditionally, we applied the local interpretable model-agnostic explanations—LIME—method
to compute the local importance of the combination of predictors. The resulting set of
important attributes was compared using FSS and domain expert selections (RQ3).

After understanding and processing the data, we used various boosting models,
logistic regression, random forest, and other classification models to classify or identify the
risk factors influencing the patient’s admission to ICU care. We will measure the success
rate of each of the models using the AUC metric. We also measured the accuracy and
precision of these models for both the target classes.

3.2. Data Understanding
3.2.1. Datasets from 2020

The selected dataset sourced from the kaggle.com [7] website (accessed on 1 March
2023), which was extracted from the Mexican government datasets, contains 23 attributes
and 566.602 records. Of these 23 attributes, 1 attribute is numeric, 19 attributes are nominal,
and 3 attributes are interval attributes in the form of dates.

When visualizing some attributes (icu, intubated, and diabetes), we found that the
data were slightly imbalanced, and for some attributes, the data were strongly imbalanced.
In most cases, strongly imbalanced data can cause significant problems in the modeling
and result evaluation phases.

We also performed a missing value analysis of the dataset. Missing or unknown values
were denoted by the values “97, 98, 99” in this dataset. We replaced these values with
the NaN value. By analyzing the missing values, we found that the attributes “icu” and
“intubated” contained the most missing values, with more than 78%. The seven attributes
of the dataset did not contain any missing values.

We also performed a correlation analysis of the attributes, which found that 38 pairs of
attributes had a correlation greater than 0.8, i.e., they were strongly correlated. The most highly
correlated attribute pairs were, for example, “sex—pregnancy”, “patient_type—intubated” or
“diabetes—copd” (copd stands for chronic obstructive pulmonary disease).

3.2.2. Datasets from 2021 and 2022

The datasets from 2021 and 2022 share several characteristics. Both datasets have a
total of 40 attributes, including 4 interval attributes that represent dates, 1 numeric attribute
that represents age, and 35 nominal attributes. Missing, or unknown values are again noted
by the values “97”, “98”, and “99”. The attribute names in the datasets were originally in
Spanish and have since been translated into English.

Although the datasets shared many common features, there were also some important
differences between them. One such difference was the number of records in each dataset.
The 2021 dataset had 8.830.345 records, whereas the 2022 dataset had 6.330.966 records.

By analyzing the distribution of values, we found that the values for the target attribute
are highly imbalanced; in both datasets, class “1” does not even reach 10% of the total
number of records when the missing values are removed. Class “1” in the dataset indicates
that the patient will be hospitalized in the Intensive Care Unit (ICU); on the other hand,
class “0” indicates that the patient will not be hospitalized in the Intensive Care Unit.
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When analyzing the missing values, we found that the attribute “Migrant” had the
most missing values in both cases. The target group also had a lot of missing values, and in
both datasets, it was over 93%.

3.2.3. COVID-19 Variants Dataset

We obtained COVID-19 variant data from the GISAID database (https://gisaid.org/
hcov19-variants/ accessed on 1 March 2023) with 6 attributes (2 nominal, 3 numeric, and
1 interval). The data contain sequencing results of COVID-19 samples from different
countries and dates, and particular COVID-19 variants are named by WHO (World Health
Organisation). No missing values were found after the analysis.

By analyzing the distribution of the “variant” attribute for 2020 data (see Figure 1), we
found a skewed distribution with “non_who” and “others” having the highest values.
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Variant data for 2021 are similar (see Figure 2), but with more evenly distributed values
including “delta”, “alpha”, and “beta”. Adding variants to clinical data is, therefore, only
reasonable for 2021 data due to the skewed distribution of 2020 data, where “non_who”
and “others” dominate.
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3.3. Data Preparation

General data preprocessing operations include removing all missing data, or entire
records with missing values (NaN or values 97, 98, 99), which account for approximately
97% to 99.3% of records. Additionally, a binary attribute “dead” was created based on the
patient’s date of death, and an attribute “incubation_period” was created, representing
the time in days between the date of COVID-19 symptom onset and the date of hospital-
ization. Attributes with dates, such as “LAST_UPDATE”, “HOSPITALIZATION_DATE”,
“DATE_SYMPTOM” and “DATE_DEATH” were removed.

In preprocessing the Mexican datasets from 2021 and 2022, attribute names were
translated from Spanish to English, and categorical attributes that were in string format
were encoded using binarization. An attribute “y-w” was created to represent the year and
week of COVID-19 symptom onset for each record (e.g., 2020-01-01 −> 2020-01), and the
prevailing variant was assigned based on the date of COVID-19 symptom onset.

In preprocessing the COVID-19 variant dataset, records from Mexico were extracted.
An attribute “y-w” was created to represent the year and week of sequencing, and the
prevailing variant was extracted for each week.

3.4. Modeling
3.4.1. Predicting the Target Class “dead”

In this part of the experiment, to answer RQ1, we used the study by Krajah et al. [6]
as a reference, in which researchers used several machine learning algorithms to predict
patient survival, but for our comparison, we only considered the basic algorithms without
any special tuning, namely the logistic regression (LR) and random forest (RF) models. For
validation, we used a 10-fold cross-validation.

Using statistical tests, the authors selected the following predictors in the study [6]:
intubed, icu, age (61–90), age (0–30), pneumonia, covid_res, diabetes, hypertension, con-
tact_other_covid, age (31–60), and obesity.

From the 2020 data, the FSS algorithm selected the following attributes: sex, pa-
tient_type, intubated, age, covid_res, pneumonia, diabetes, contact_other_covid, and re-
nal_chronic.

From the data for 2021, the FSS algorithm selected the following attributes: pneumonia,
type_patient, antigen_sample_taking, age, final_classification, result_antigen, intubated,
sex, hypertension, icu, sector_healthcare, renal_chronic, contact_other_covid, other_disease,
obesity, origin, tobacco, diabetes, immunosuppressed, hospital_region, cardiovascular,
nationality, p_birth_region, p_language_speech, nationality. 1, epoc, and asthma. In 2021,
more predictor attributes were selected due to a larger dataset. Following the same data
preprocessing used in the study [6], we created six classification models.

3.4.2. Predicting the Target Class “icu”

We conducted another experiment to answer RQ2 using the study by Holy and
Rosa [8] as a reference, where we focused on the target class “icu”, i.e., whether the patient
will be hospitalized in the ICU or not. In that study, the researchers used the SMOTE
algorithm to balance the target class and used 5-fold cross-validation for validation. We
selected the SVM-linear model and SVM-RBF as the reference models. Researchers in
the aforementioned study selected the following attributes: pneumonia, patient_type,
cardiovascular, other_disease, immunosuppressed, tobacco, asthma, renal_chronic, copd,
obesity, diabetes, contact_other_covid, sex, hypertension, covid_res, and incubating_period.
As in the previous experiment, we created six models that were compared with the models
from the reference study, and this time, we used the same data preprocessing as the
researchers used in the reference study.

We decided to merge the two datasets mentioned above, the data for 2021 and 2022,
for this classification task. The purpose was to increase the volume of data for the minority
class. To balance the class distribution in the dataset and enhance the classification model’s
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performance, we used an under-sampling method called Tomek Links [21]. This approach
also helped us to avoid overfitting.

3.4.3. Knowledge Extraction—Important COVID-19 Attributes

(a) Identifying the right attributes that significantly impact the prediction results is
crucial for building successful machine learning models. There are several methods for
attribute selection, including forward stepwise selection and determination of attributable
importance. For the modeling, we chose the forward attribute selection algorithm, which
identified the following attributes: type_patient, final_classification, incubating_period, con-
tact_other_covid, sector_healthcare, origin, pneumonia, intubated, hypertension, pregnant,
p_birth_city, language_speech, age, nationality.1, renal_chronic, patient_region, migrant,
origin_country, and tobacco.

(b) Moreover, we also asked an expert, an associate professor, and a doctor at the
Department of Infectology and Travel Medicine of the Faculty of Medicine from Pavol Jozef
Šafárik University in Košice to help us identify important attributes from our dataset that
medically influence the course of COVID-19 disease. Selected attributes included hospi-
tal_region, sex, age, pregnant, diabetes, copd, asthma, immunosuppressed, hypertension,
other_disease, obesity, renal_chronic, and tobacco. We used nine classification algorithms,
namely XGBoost, CatBoost, LightGBM, logistic regression, Naive Bayes, random forest,
SGD, SVM-linear, and SVM-RBF for modeling.

(c) Besides the discrete attribute selection and assessment of attribute importance by
domain experts, we applied various global and local explainability methods to further
understand the relative importance of the attribute in the context of the particular predictive
model to answer RQ3.

In the first analysis, we trained a logistic regression model (a transparent explainability
method) and analyzed the global importance of the attributes. The coefficients of the linear
logistic model were directly interpretable, and it was possible to test their importance
statistically. The statistical test was based on the null hypothesis that the model’s coefficient
had a 0 value, i.e., the corresponding attribute was unimportant for the prediction. Suppose
the test statistic (p-value) of the feature is less than the significance level (commonly 0.05 or
0.01). In that case, the sample data provide enough evidence to reject the null hypothesis,
and this attribute is important for the classification. Table 3 lists the model’s coefficients
and corresponding p-values ordered from the most significant to the least significant
attribute. When we used the significance value of p = 0.05, we obtained 11 statistically
important attributes.

Table 3. Attribute importance based on the logistic regression model for the ICU classification.

Feature Coefficient p-Value

sex 0.2531 0
tobacco 0.1967 0
asthma 0.1698 0

age 0.0673 1.3263 × 10−69

diabetes 0.0477 5.2488 × 10−54

hypertension 0.0536 2.0673 × 10−53

renal_chronic 0.0277 2.0746 × 10−28

other_disease 0.0241 3.7978 × 10−19

pregnancy 0.0279 3.3495 × 10−16

copd 0.0178 1.221 × 10−12

immunosuppressed 0.0136 1.566 × 10−8

cardiovascular 0.0023 0.34459

Another (post hoc) method explaining the attributes’ global importance is SHAP.
SHAP is a game theoretic approach based on the Shapley values that explain how to assign
payouts to players depending on their contribution to the total payout. In the context of
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the explainability of the ML models, the players correspond to the input attributes, and the
payload corresponds to the prediction of the model. Shapley values can then be applied
to explain how the input attribute contributes to the prediction for the given instance,
averaged over the testing set. The additive importance of the attributes is presented in
Figure 3. Based on this, we can state that SHAP identified nine important attributes,
whereas eight of them have been also identified by the LR approach above.
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The previous methods are based on the global importance of the attributes. However,
a specific attribute can be significant only for a specific subset of the instances or in com-
bination with the other attributes. To evaluate such local dependencies, we analyzed the
impact of the attributes using the local interpretable model-agnostic explanations (LIME)
method. The LIME method is based on the local approximation of the black-box model
using the explainable surrogate models for each tested instance. At first, we split data
into the training and testing sets and trained the black-box XGboost model. Then, we
generated explanations with attribute weights for each instance in the test set using the
logistic regression surrogate models. All interactions among the most important attributes
are visualized using a heatmap in Figure 4.

We selected five of the most important attributes and accumulated the pair interactions
for all examples from the ICU class in the testing set (i.e., aggregated the sum of products
between the weights of two attributes). The most frequent interactions between attributes
important for the ICU classification were asthma-copd, asthma-cardiovascular, and asthma-
tobacco.

The presented heatmap accumulates positive and negative contributions to the predic-
tion in both cases whether the binary attribute (e.g., asthma, cardiovascular, etc.) is present
or not. To gain further insights into how the model classifies examples and to analyze
false positive and false negative errors, we decomposed contributions to positive/negative-
present/non-present dependencies (i.e., what is the average local importance of the binary
attribute if it is present or not-present vs. the correct or incorrect ICU classification). The
results are presented in Table 4.

From the results, the majority of the positive predictions are based on the absence of
the binary attributes, e.g., if the patient does not have asthma, it is highly probable that
s/he will be not hospitalized in ICU (averaged positive weight contributing to the true
prediction for asthma was 0.2290). The most important binary attributes were asthma,
copd, cardiovascular, renal_chronic, tobacco, and other_disease, followed by numerical
attributes symptoms_days and age.
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Table 4. Positive and negative contributions to the prediction of ICU classes identified by LIME.

Correct ICU Predictions Incorrect ICU Predictions

not asthma 0.2290 False negative

not copd 0.1555 symptoms_days <= −7 −0.0608
not cardiovascular 0.1466 age <= 38 −0.0416
not renal_chronic 0.1306 tobacco −0.0126
not tobaco 0.1195 cardiovascular −0.0106
not other_disease 0.1008 False positive

−4 < symptoms_days <= −2 0.0190 not asthma 0.2164
age > 64 0.0253 not copd 0.1522
51 < age <= 64 0.0032 not cardiovascular 0.1452

not renal_chronic 0.1315
not tobacco 0.1109
not immunosuppr 0.1095

The second column in Table 4 summarizes the impact of the attributes on the false
negative and false positive errors. From this perspective, the most common attributes for
false negative cases are symptoms_days (for more than seven days between symptoms
and hospitalization), age (for patients younger than 38 years), tobacco use, and cardiovas-
cular disease. The most common attributes for false positive errors correspond with the
importance of the correct predictions, which reflects an unbalanced ratio between the rare
positive and very frequent negative class. The exception is immunosuppr attribute, which
does not contribute much to the correct predictions (the average weight of immunosuppr
attribute not reported in Table 4 for correct predictions was 0.006).

Additionally, for the numerical attributes, we generated partial dependence plots
(PDP), which show the dependence between the target response (ICU prediction in our
case) and a set of input features of interest, marginalizing over the values of all other input
features. The plots for age and days of symptoms before hospitalization are presented in
Figure 5.
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From the plot for the age attribute, there is a peak of higher probability for ICU
hospitalization for patients around 40 years old, and then the probability increases with
age over 60.

3.5. Evaluation

In the first part, we conducted experiments to investigate whether information about
the prevalent COVID-19 variant affects the performance of the models, comparing our
models with referential from Krajah et al. [6]. The results are shown in Table 5.

Table 5. Comparison of models with referential for the target class “DEAD”.

MEX Data—Model Comparison—Target Class “DEAD” (Accuracy)

Reference Model 2020 by [6] Model 2020 Model 2021 Model 2021 + Variants

LR accuracy—predictors by [6] 0.828 0.842 0.7683 0.7688
RF accuracy—predictors by [6] 0.82 0.803 0.7506 0.75
LR accuracy—own predictors 0.828 0.71 0.73 0.73
RF accuracy—own predictors 0.82 0.71 0.73 0.73

An experiment with custom data preprocessing and predictor selection showed that
forward attribute selection improved the model performance. However, the accuracies for
both 2020 and 2021 were lower than those for the reference models. In the second part
of the experiments, we compared our models with the reference models from a study by
Holy and Rosa [8] and also investigated the effect of COVID-19 variant information on the
performance of the models.

In Table 6, we can see that our models’ performance for 2020 was lower compared
to the reference models, despite balancing the target class using the SMOTE algorithm.
The SVM-linear model achieved 14% accuracy in classifying positive instances and 93%
accuracy in classifying negative instances. The SVM-RBF model achieved 14% accuracy in
classifying positive instances and 91% accuracy in classifying negative instances. However,
for 2021 data, both models achieved 96% classification accuracy. Adding COVID-19 variant
information again did not affect the models’ performance.
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Table 6. Comparison of models with reference models for the target class “icu”.

MEX Data—Model Comparison—Target Class “icu” (Accuracy)

Reference Model 2020 by [8] Model 2020 Model 2021 Model 2021 + Variants

SVM-linear 0.7715 0.4101 0.9662 0.9662
SVM-RBF 0.8154 0.5631 0.9662 0.9662

Although our models achieved high accuracy, further analysis revealed that they could
not distinguish between classes, with an AUC metric of 0.5. This is a common issue in
classifying highly imbalanced data, and it is challenging to solve since it depends on the
data type. The last part was dedicated to the classification into the target class “icu”.

Table 7 contains the results of models where we used the attributes identified by the
medical expert. There are significant differences in Class 1 accuracy between the models,
with CatBoost achieving the highest accuracy (0.83), whereas NB had the lowest accuracy
(0.24). For the other classes, the models were more accurate overall, but their AUC ROC
(area under the ROC curve) was low.

Table 7. Evaluation of models with attributes important according to the medical experts.

Model Precision Class 0 Precision Class 1 Accuracy AUC

XGBoost 0.9 0.35 0.87 0.57
CatBoost 0.9 0.83 0.9 0.57

LightGBM 0.91 0.5 0.89 0.59
Random Forest 0.89 0.4 0.88 0.52

Logistic
Regression 0.9 0.6 0.89 0.54

Naive Bayes 0.91 0.24 0.82 0.59
SGD 0.89 0 0.89 0.5

SVM-linear 0.89 0 0.89 0.5
SVM-RBF 0.89 0 0.89 0.5

Table 8 shows the results of the models where the predictor attributes were selected
using the forward selection algorithm. In terms of class 1 accuracy, the results in this table
are better compared to the first case. The highest class 1 accuracy was achieved by LR
(0.92). Still, its AUC was lower than the XGBoost, CatBoost, and LightGBM models, which
had high class 1 accuracy and also achieved the highest AUC, indicating that these models
were able to better separate the classes.

Table 8. Evaluation of models with attributes according to the forward stepwise selection algorithm.

Model Precision Class 0 Precision Class 1 Accuracy AUC

XGBoost 0.93 0.83 0.93 0.71
CatBoost 0.93 0.87 0.92 0.68

LightGBM 0.93 0.83 0.93 0.71
Random Forest 0.91 0.9 0.91 0.63

Logistic
Regression 0.92 0.92 0.92 0.66

Naive Bayes 0.93 0.44 0.88 0.68
SGD 0.89 0.29 0.88 0.51

SVM-linear 0.93 0.76 0.92 0.68
SVM-RBF 0.89 0 0.89 0.5

4. Discussion and Conclusions

In this article, we used ML to answer two research questions aimed at a better un-
derstanding of COVID-19. In order to better evaluate our results, we used two reference
studies to create ML prognostic models that predicted the “dead” and “icu” classes. We
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first created models with the same data (2020) preprocessing as in the reference studies and
then with our own data preprocessing.

In the first part of our experiments related to RQ1, we examined the 2021 data and
added information about the prevailing COVID-19 variant, which we gathered from other
sources of open data. It did not affect the performance of the models. In both types of
models (targeted to prognose “dead” and “icu” resp.), the impact of COVID-19 variant
information was none or very marginal. So, our answer to RQ1 based on the available data
is NO, i.e., the information about the predominant COVID-19 virus type does not influence
the performance of the resulting predictive ML models. The current dominant variant
of COVID-19—the Omicron—leads to a much less severe course of COVID-19 than the
previous variants. The set we monitored was from the pre-Omicron period, and according
to our results, the variants known until then did not show differences in the number of
deaths or ICU admissions.

On the “dead” class data, we found that our models for (2020) data performed more or
less the same as the referential models. Models for (2021) data in this case achieved slightly
lower performance than those for (2020) data.

The situation differed for the “icu” target class, where our models performed worse
than the referential models. Much better results have been achieved for (2021) data. The
results may be affected by several factors, such as different training and test sets and
hyperparameters settings, as well as some preprocessing of data that have been used but
not described in the reference study.

To answer the RQ2, we used the classification of patients into the “icu” target class,
i.e., whether the patient will be admitted to the Intensive Care Unit or not. We performed
the analysis using data from the General Directorate of Epidemiology in Mexico.

We discovered that the models used were most successful within the scope of feature
attributes selected by the forward selection algorithm rather than the ones selected by the
domain expert. Of the models used, XGBoost, CatBoost, and LightGBM achieved the best
results. So, the answer to RQ2 is that knowledge extracted by the ML approaches like
forward stepwise selection for the selection of relevant factors provides better prediction
performance than factors selected merely on the medical expertise.

On the other side, when we examined the models from the explainability point of view
RQ3, the domain expert was much more precise in identifying the most important attributes.
When we compared the expert’s selection (13 selected attributes), it covered 10 out of
11 significant attributes identified by logistic regression and accompanied statistical tests.
Similarly, in the case of selection made by the SHAP methods, 8 out of 9 selected attributes
were identified by domain experts as well. On the other hand, FSS selection (19 selected
attributes) was able to cover only 5 out of 11 significant attributes identified by logistic
regression and 4 out of 9 by SHAP.

Our results show a peak of higher probability for ICU hospitalization for patients
around 40 years old, and then the probability increases with age over 60 (Figure 5). This
is a remarkable result, as most works report that the risk of ICU admission increases
with age. Cohen et al. in their study [22] report results from four European countries,
in which the summary proportions of individuals around <40–50, around 40–69, and
around ≥60–70 years old among all COVID-19-related ICU admissions were 5.4% (3.4–7.8;
I2 89.0%), 52.6% (41.8–63.3; I2 98.1%), and 41.8% (32.0–51.9; I2 99%), respectively. How-
ever, since many patients with advanced age suffer from advanced chronic disease, it
is necessary to distinguish whether the risk factor is only age or its combination with
chronic diseases. According to the results of the study by Kämpe et al. [23], the risk associa-
tions for co-morbidities were generally stronger among younger individuals compared to
older individuals.

The finding that the duration of symptoms before the patient’s hospitalization cor-
relates with the severity of the course and the probability of admission to the ICU can be
explained by the fact that early use of antiviral agents like remdesivir (<5 days from symp-
toms onset) may reduce COVID-19 progression. The delayed admission to the hospital
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is associated with a delayed administration of remdesivir and with a worse outcome, as
reported by Falcone et al. in [24].

Our results demonstrate some interesting findings and are unique in tight cooperation
with medical experts (infectologists), reflecting the human-in-the-loop concept. There are
some limitations imposed by the characteristics and extent of the available datasets. For
this reason, in our future work, we plan to create our own real dataset extracted from about
2500 electronic health records of patients in the local hospital.
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