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Abstract: The contact-less sensing and fault diagnosis characteristics induced by fixing short Metglas®

2826MB ribbons onto the surface of thin cantilever polymer beams are examined and statistically
evaluated in this study. Excitation of the beam’s free end generates magnetic flux from the vibrating
ribbon (fixed near the clamp side), which, via a coil suspended above the ribbon surface, is recorded as
voltage with an oscilloscope. Cost-efficient design and operation are key objectives of this setup since
only conventional equipment (coil, oscilloscope) is used, whereas filtering, amplification and similar
circuits are absent. A statistical framework for extending past findings on the relationship between
spectral changes in voltage and fault occurrence is introduced. Currently, different levels of beam
excitation (within a frequency range) are shown to result in statistically different voltage spectral
changes (frequency shifts). The principle is also valid for loads (faults) of different magnitudes and/or
locations on the beam for a given excitation. Testing with either various beam excitation frequencies
or different loads (magnitude/locations) at a given excitation demonstrates that voltage spectral
changes are statistically mapped onto excitation levels or occurrences of distinct faults (loads). Thus,
conventional beams may cost-efficiently acquire contact-less sensing and fault diagnosis capabilities
using limited hardware/equipment.

Keywords: fault diagnosis; contact-less sensing; magnetoelastic material; statistical hypothesis test;
stochastic autoregressive representations

1. Introduction

The use of magnetoelastic materials in the design and production of contact-less
sensors owes much to their characteristic property of exhibiting shape changes under
external magnetic fields. Conversely, these materials also emit magnetic flux when suffering
shape deformation due to external loading, with flux dynamics related to those of the
imposed loading [1–5]. Then, if magnetoelastic strips are, for instance, clamped on both
sides and subjected to variable magnetic fields, the resulting shape changes will cause the
strip to vibrate. The dynamics of such vibration depend on the external variable magnetic
field, the strip dimensions and its mass distribution. Thus, the accumulation on the strip
surface of substances such as biological agents [6], air pollutants [7], volatile organic
compounds [8], H2O [9] or H2O2 [10], which bind to suitable surface coating, will change
its mass distribution and consequently its vibration characteristics (resonant frequencies).
Hence, shifted resonant frequencies indicate a significant concentration of substances on
it and, accordingly, the environment. This is the operational principle of magnetoelastic
(magnetostrictive) sensors, which allow for monitoring dangerous substances in hostile
environments without requiring human presence on the field since the strip vibration signal
can obviously be remotely recorded and assessed.

Two main classes of sensor setups can be distinguished based on whether the magne-
toelastic element is driven to resonance via electrical excitation used specifically for this
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purpose, or whether it is simply vibrating because it receives mechanical excitation from
its environment. The first class involves setups such as those presented in the previous
paragraph, where an interrogation coil (excited by a suitable electrical signal) is used to
provide the magnetoelastic material with the magnetic flux required to drive it to resonance.
Then, another coil placed above the vibrating ribbon or film (usually referred to as the
reception coil) picks up the emitted flux in a contact-less manner and transforms it into an
electrical signal (voltage). The latter is then monitored for frequency shifts indicating the
accumulation of substances. This two-coil setup is referred to as active and was reviewed
among others in [5]. The active setup is quite sensitive to mass accumulation on the magne-
toelastic element’s surface, especially if the latter is selected based on its Young’s modulus
and ∆E effect characteristics [11], its length-to-width ratio [11–13] or even its shape, with
hourglass [14] or rhomboid forms [15,16] being more efficient.

The second class of sensor setups involves those not requiring interrogation coils
to provide excitation to the magnetoelastic element since the latter is part of vibrating
mechanical structures (or machines with rotating parts) and, hence, vibrates due to its
normal operation. Then, the vibrating magnetoelastic element produces magnetic flux,
which is picked up by a reception coil in a contact-less manner. Analyzing the signal’s
spectral characteristics draws conclusions on the dynamics of the magnetoelastic part and,
obviously, of the underlying mechanical structure [17–21]. This one-coil-only setup is
referred to as the passive setup and was also reviewed in [5]. Note that, sometimes, setups
involving magnetoelastic elements that are fixed as parts of a vibrating structure, with
the intention of estimating spectral characteristics of the underlying structure, do use two
coils but with the interrogation coil fed by DC. This is completed in order to induce bias to
the magnetic flux produced by the magnetoelastic element and seemingly achieve better
efficiency [22,23]. Due to the presence of the interrogation coil, such setups should really be
included in the class of active setups. This remark also illustrates the fact that the magnetic
flux produced by the passive setups is notably weaker than that of the active ones, but
the operational costs are lower, and the associated electrical or electronic circuits are far
simpler. Even though signals obtained with passive setups are noisy, faults/failures that
influence the dynamics of the underlying structure (or machinery) are, indeed, detectable
in the recorded voltage. In [17,19,20], it was shown that specific resonant frequencies of
the structure’s dynamics, which were estimated using Finite Element Analysis, are present
in the recorded voltage’s spectral characteristics. Using a passive setup, fault diagnosis
was achieved in polymer slabs with magnetoelastic ribbons integrated with 3D printing
during slab manufacturing [17]. Fault diagnosis was also achieved for structures composed
by bolting together such slabs, and specifically, for indicating loose connections between
structural members [18]. Interestingly, this study demonstrated that although only one slab
with integrated magnetoelastic material was used in the structure, more than one loose
connection could be detected. Again, cracks were diagnosed in metal cantilever beams
involving magnetoelastic ribbons fixed on their surface [19] or metal rotating beams [21].
Most importantly, passive setups were proven adequate for obtaining sensing and diag-
nostic results both for short/sturdy and for long, thin/flexible polymer cantilever beams
(see [24] and references therein). Pure sensing properties were also extensively evaluated
for metal cantilever beams [20] and for plastic beams (in terms of bending frequencies) [23],
although, strictly speaking, these works involved an interrogation coil inducing bias into
the magnetic flux produced.

The current work aims at obtaining a novel two-fold extension of the preliminary
results presented in [24]. First, the previously established sensing ability of the setup is
consolidated with a statistical evaluation of the mapping between the level of excitation
of the beam and the resulting frequency shifts in the recorded voltage signal. Hence,
sensing capabilities are obtained because the vibration level provided to the beam may
now be deduced by monitoring frequency shifting patterns in the voltage signal, with
the uncertainty in the process quantified. Second, the fault diagnosis capabilities already
shown in [24] are statistically consolidated: A mapping of complex-plane areas (containing
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poles linked to shifted voltage frequencies) onto faults (loads) of specific magnitude and
position affecting the beam is statistically established, so that the risk of wrong diagnosis
is quantified. As already explained, the setup involves a thin, flexible cantilever beam
clamped on one end and supported by an exciter on the opposite end. The latter provides
excitation as specified with a waveform generator. The magnetoelastic element (short
ribbon of Metglas® 2826MB) is attached at the clamped end (in contrast to [19–21]), with
a low-cost reception coil suspended above the ribbon surface. The raw voltage induced
in a contact-less manner is recorded using a conventional oscilloscope, without circuits
for preliminary conditioning/filtering or amplification. Thus, the objective of obtaining
sensing and diagnostic capabilities out of a low complexity (in terms of hardware and
operation) setup, by investing in the optimization of the algorithmic framework used, is
possible: It is shown that although the beam is only excited at the free end, the sensing of the
beam excitation level and diagnosis of different structural changes (magnitude/position on
the beam) are both achievable. By virtue of the current results, conventional long, flexible
beams equipped with magnetoelastic elements may be used: (i) either for deducing the level
of excitation (due to external forces, for instance) suffered by the beam (or any structure
connected to it) or (ii) for detecting and localizing faults (loads) of different magnitude
affecting the beam for a given level of excitation.

2. Materials and Methods

The experimental setup is essentially that which was used in [24] and consists of a
long, thin and flexible beam (with a length of 425 mm, width of 25 mm and thickness equal
to 1 mm), an exciter (SMARTSHAKERTM K2004E01), a 25 mm long ribbon of Metglas®

2826MB magnetoelastic material and a low-cost Vishay IWAS reception coil (normally used
for wireless charging). The beam is 3D-printed in FDM (fused deposition modeling) mode
with a PET-G filament and is used in a cantilever arrangement with one end clamped, as
presented in Figure 1. The opposite (free) end is fixed to the exciter rod, thereby receiving
the vibration of the user-defined profile. For this purpose, an external waveform generator
(SIGLENT SDG 5122) is connected to the exciter. The magnetoelastic ribbon is fixed on the
beam surface near the clamp with glue, whereas the reception coil is fixed 5 mm above
the ribbon, thus bearing no contact with it. The distance of 5 mm was selected from
sensitivity tests, as described in [24]. Magnetic flux created by the vibrating (along with
the beam) ribbon induces voltage in the reception coil circuit, which is recorded with a
digital oscilloscope. Based on the analysis of the recorded voltage’s spectral characteristics,
sensing and fault diagnosis results may be obtained. Especially in terms of fault diagnosis,
this approach based on using only one signal is representative of real-life applications
(bridges, flexible structures and so on), because the excitation signal is often unavailable (or
hard to measure) with only the structure’s response signal being available.
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Figure 1. Experimental setup indicating a load (coin) at position A, other load positions B and C 
(middle and left) and the arrangement of the reception coil and magnetoelastic film. 
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2.1. Methodology for the Evaluation of the Sensing Characteristics of the Setup

The sensing principle of the proposed passive setup was previously examined in [24]
using a first series of tests with voltage recorded while the beam was at rest and a second
one with the beam excited with a triangular force at 160 Hz. Triangular waveforms were
used instead of pure sinusoids or pulses because they correspond better to real sources of
vibrations such as those created by machine-reciprocating parts [18]. Comparison of the two
series of recorded voltage signals led to two conclusions. First, the time histories of both
voltage series were almost identical, as expected for passive setups [18]. Second, the spectral
characteristics of the voltage with the beam under excitation were different than those from
the voltage recorded with the beam at rest. Dominant frequencies at 1300–1370 Hz showed
consistent shifting with the beam under excitation, as presented in Figure 2b,c in [24].

Based on this result, the current study systematically examines the link between the
shifting of dominant frequencies in the recorded voltage and the excitation levels provided
to the beam. For this purpose (see also Section 3.1), the excitation level is set to as low as
10 Hz for the first series of tests, and keeps increasing for each test series, until reaching a
value of 160 Hz. For each test series (and, hence, excitation level), frequency bands with
higher contributions to the voltage frequency content (those corresponding to prominent
peaks in Fourier plots) are designated. In each such band, the values of dominant frequency
peaks form relevant groups, one per test series. Then, statistically comparing two (or more)
of these groups (in the considered band) corresponds to statistically evaluating whether the
respective beam excitation levels cause similar shifting patterns in the recorded voltage’s
spectral characteristics. Demonstrating that different excitation levels ultimately result in
statistically not similar groups of dominant frequency values in the considered band means
that there exists a mapping between beam excitation levels and frequency shifts in the
recorded voltage signal. Then, conversely, one may use this mapping to estimate the level
of beam excitation based on the dominant frequency shifting pattern exhibited.

Statistical evaluation of the similarity in two or more groups (intervals) of data may
be formulated as a problem of deciding whether the data in both groups come from similar
distributions or not. In the current case, a hypothesis-testing problem may be formulated
as follows:

H0: Frequency values in both (or all) groups follow a similar distribution.
H1: Frequency values in both (or all) groups follow different distributions.

(1)

with H0 referred to as the null hypothesis and H1 as the alternative hypothesis. Note
that there is no available information on whether the data in the previously mentioned
groups follow a normal distribution; hence, non-parametric statistical tests must be used to
choose between the null and alternative hypotheses in (1) at a given risk level α (usually
equal to 0.05). The latter is the probability of rejecting H0 even though it is true. Such
non-parametric statistical tests include the Kolmogorov–Smirnov two-sample test and the
Kruskal–Wallis test [25,26]. As its name suggests, the Kolmogorov–Smirnov two-sample
test is designed to address a hypothesis problem such as that in (1), when comparisons
between only two groups are considered. The null hypothesis is accepted (or rejected)
based on the distance between the empirical distributions of data for each group estimated
using the associated data. On the other hand, the Kruskal–Wallis test may be used for
two or more groups of data [25–27] and provides an answer to the question of whether
data in the groups under consideration follow similar statistical distributions. If these
distributions have similar shapes, then the Kruskal–Wallis test accepts (or rejects) the null
hypothesis based on whether the medians of all groups are sufficiently (in some statistical
sense) close [25]. Furthermore, the Kruskal–Wallis test may be used with groups containing
5 or 6 data values, as shown in cases presented in [25,26], respectively. These characteristics
motivated the choice of the Kruskal–Wallis test to address the hypothesis testing problem
(1), which will be presented later (Section 3.1). The Kruskal–Wallis test is coded in most
software packages like SPSS® or MATLAB®, with the relevant routines using data provided
to instantly compute the probability value (referred to as the p-value), which evaluates the
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evidence against the null hypothesis. A lower p-value indicates more important evidence
against accepting the null hypothesis. As will be explained in Sections 3.1 and 3.2, the
p-value may offer valuable information for quantifying the uncertainty (risk) involved
when deciding on whether two or more frequency groups feature significant similarities:
in other words, whether these groups potentially overlap in part or not.

2.2. Methodology for Evaluating Fault Diagnosis Characteristics of the Setup

The principle of fault diagnosis was also examined in [24] using several series of tests
with faults affecting the beam. These were simulated as loads of two different magnitudes
(EUR 1 cent designated with the suffix –1C or a bolt fixed with its nut on the beam designated
with –BN) potentially placed on the beam at three positions (A, B or C—see Figure 1). Table 1
presents the fault cases (also referred to as test scenarios) and their characteristics. For each
series of tests, one load was placed at one position throughout the series with voltage
recorded as usual. The series also involved tests without load on the beam (designated with
the prefix N). For each fault case, a prefix other than N designated the load position—so it
should be A, B or C. The associated voltage signals were recorded and analyzed, the bands
of dominant frequencies were inspected and the patterns of the dominant peak shifting
according to the load, its magnitude and its position on the beam were studied. Once
the impact of load position and magnitude was validated in specific frequency bands, a
model-based fault diagnosis procedure was defined and applied to all signals (obtained
from testing according to the test scenarios in Table 1), with the following steps:

1. The voltage signal considered was filtered and subsampled (details are given in
Section 3.2 in [24]);

2. Discrete-time stochastic AutoRegressive (AR) time-series representations were iden-
tified on the signal resulting from step 1 (thus modeling its spectral characteristics),
and the discrete-time AR poles corresponding to specific bands of the dominant
frequencies were computed and plotted on the z-plane;

3. Using the AR poles from step 2, the corresponding continuous-time poles were
computed and plotted on the s-plane, thus enabling the calculation of the natural fre-
quencies ωn and damping ratios ζ for the considered bands of dominant frequencies.

The reader is referred to [24] for specific details on signal filtering, identification of AR
representations and their optimization for enhancing fault detectability. The application
of the 3-step procedure allowed for mapping areas of the s-plane onto each one of the
test scenarios in Table 1. According to this mapping, the majority of poles from each
test scenario would only be located inside their proper s-plane area, meaning that fault
occurrence, localization and magnitude estimation were in principle achievable.

Table 1. Test configurations (scenarios) presenting load magnitudes and positions on the beam.

Fault Case
(Test Scenario) Load Used Load Mass (g) Load Position

(From Free End)

N-1C No load 0 n/a
A-1C EUR 1 cent 2.3 A (35 mm)
B-1C EUR 1 cent 2.3 B (185 mm)
C-1C EUR 1 cent 2.3 C (360 mm)
N-BN No load 0 n/a
A-BN Bolt + nut 6 A (35 mm)
B-BN Bolt + nut 6 B (185 mm)
C-BN Bolt + nut 6 C (360 mm)

The current study addresses the remaining part of the problem, namely, the demonstra-
tion that each s-plane area (which contains mostly poles resulting from one of the specific
fault scenarios in Table 1) may be statistically distinguishable from other neighboring
areas with a specific level of confidence. This is crucial because, as described in [24] (and
alluded to in the previous paragraph), it is hard to delimitate (pole) areas in the s-plane
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corresponding to specific faults without using some kind of statistical inference to estimate
the level of accuracy of this process. In other terms, the risk of erroneously classifying poles
with respect to the fault case they result from should be quantified. For instance, ref. [24]
shows that in a few isolated cases, the poles from the signals corresponding to N-1C faults
were in the s-plane areas designating A-1C faults. Again, an isolated case of poles from the
signals corresponding to A-1C faults inside the area designating the poles from B-1C fault
scenarios may also be found in [24]. Obviously, such isolated cases do not cast doubt on
the principle that fault diagnosis is, indeed, achievable using this setup. Nonetheless, it is
important to quantify the risk of overlapping s-plane areas potentially leading to wrong
decisions when attempting to detect and isolate specific faults.

Interestingly, the current study also demonstrates that results similar to those obtained
in continuous time (s-plane areas) may also be achievable in discrete time (z-plane areas).
This could lead to simplifying the previously presented 3-step procedure in terms of fault
detection/classification, if the calculation of natural frequencies ωn and damping ratios ζ
for the considered bands of dominant frequencies is not needed. This fact is particularly
promising because in [24], no conclusive (or even indicative) evidence of z-plane pole areas
being able to be mapped onto fault cases (test scenarios) was found.

For these purposes, the following statistical hypothesis problem may be formulated:

H0: Pole locations inside the considered groups follow a similar distribution.
H1: Pole locations inside the considered groups follow different distributions.

(2)

where H0 is the null hypothesis potentially corresponding to (neighboring) s- or z-plane
areas with significant overlapping and H1 is the alternative hypothesis designating substan-
tially separable areas at a given risk level. As with the frequency data used to evaluate the
setup sensing characteristics, there is no available knowledge of pole locations following
a normal distribution. Then, non-parametric statistical tests should be used to decide be-
tween the null and alternative hypotheses in (2) at a given risk level α (usually equal to 0.05
or 5%), which is the probability of the examined pole areas not being considered as overlap-
ping (or, in other terms, that H0 is rejected) even though they are. The Kruskal–Wallis test
may again be used to solve the hypothesis testing problem (2), as will be presented later
(Section 3.2).

3. Results and Discussion

The proposed setup is evaluated in the current section with extended testing and
statistical evaluation of results using the methodology presented in Section 2. Sensing
characteristics are assessed in Section 3.1 by statistically evaluating the mapping between
excitation frequency levels and experimentally obtained shifts in the voltage signal’s
dominant frequency peaks inside the principal frequency bands. The fault diagnosis
characteristics are assessed in Section 3.2 by statistically evaluating the connection between
the recorded signal’s AR pole locations in the s-plane or z-plane and the occurrence of
specific faults (type, magnitude and location as in Table 1).

3.1. Results of the Statistical Evaluation of Sensing Characteristics

The testing procedure involved six experiments for each excitation level, as presented
in Table 2. The reception coil was placed at a distance of 5 mm above the ribbon, following
the relevant testing performed in [24], to define an optimal value for that distance. As seen
in Table 2, the beam was excited with frequencies starting at 10 Hz for the first series of six
experiments and finishing at 160 Hz for the last series. In general, at each test series, the
excitation level increased by 15 Hz with respect to the previous one. The only exception
to this rule regarded the test series with the beam excited at 25 Hz, which presented very
similar results to those obtained when the beam was under an excitation of 10 Hz (see also
the relevant comment later on) and was therefore omitted. Note also that a test series of
six experiments with the beam at rest, namely, series zero, was included for comparison
purposes. The voltage signals were recorded and examined with respect to their frequency
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content. In Figure 2, the Fourier plot of one representative signal from each test series
shows that the bands of the dominant frequencies are consistently situated (in a decreasing
order of magnitude) around 316 KHz, 1400 Hz, 1800 Hz and 2100 Hz. For each of these
four frequency bands, the values of the dominant peaks are collected for each test series
(six values per series), and the respective groups are plotted (in the form of error bars) in
Figures 3–6.

Table 2. Excitation in Hz provided to the beam for each test series and the number of experiments.

Excitation Frequency (Hz) Test Series Number of Experiments

0 s0 6
10 s1 6
40 s2 6
55 s3 6
70 s4 6
85 s5 6

100 s6 6
115 s7 6
130 s8 6
145 s9 6
160 s10 6
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in turn, means that by focusing on the band around 1400 Hz and examining the frequency 
groups shown in Figures 4–6, a one-to-one mapping may be established between the beam 
excitation levels and the respective frequency peak groups. Hence, if a (voltage) signal’s 
frequency peak around, for instance, 1400 Hz is available, then one may deduce the exci-
tation level of the beam simply using the previously mentioned mapping, provided that 
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This mapping becomes less consistent for excitation levels above 100 Hz, with Figure 
4 suggesting that the levels of 100 Hz are distinguishable from those of 115 Hz in the 1400 
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An initial remark is related to the groups resulting from the excitations at 10 Hz and
40 Hz, whose upper and lower values, respectively, are very close in all four frequency
bands. This is indicative of the fact that an intermediate excitation level at 25 Hz was,
indeed, not necessary since its group exhibited considerable overlapping neighboring
groups. Then, it is easily noted that all groups up to 100 Hz feature an increasing trend
with no apparent overlapping in frequency bands around 1400, 1800 and 2100 Hz. This, in
turn, means that by focusing on the band around 1400 Hz and examining the frequency
groups shown in Figures 4–6, a one-to-one mapping may be established between the
beam excitation levels and the respective frequency peak groups. Hence, if a (voltage)
signal’s frequency peak around, for instance, 1400 Hz is available, then one may deduce
the excitation level of the beam simply using the previously mentioned mapping, provided
that this level does not exceed 100 Hz.

This mapping becomes less consistent for excitation levels above 100 Hz, with Figure 4
suggesting that the levels of 100 Hz are distinguishable from those of 115 Hz in the 1400 Hz
band, or that the levels of 115 Hz are distinguishable from those of 130 Hz in the 316 KHz
band (Figure 3). In any case, a measure of the probability that two or more frequency
groups are mutually distinguishable in each frequency band is required. For this purpose,
the Kruskal–Wallis test is used between all possible pairs of groups to solve the hypothesis
testing problem (1). The results, in terms of p-values, are given in Tables 3–6 for the
frequency bands at 316 KHz, 1400 Hz, 1800 Hz and 2100 Hz, respectively.

Table 3. p-values for the comparison of two groups with the Kruskal–Wallis test in the band of 316 KHz.

Excitation 0 Hz 10 Hz 40 Hz 55 Hz 70 Hz 85 Hz 100 Hz 115 Hz 130 Hz 145 Hz 160 Hz
0 Hz N/A 0.0032 0.0032 0.0038 0.0036 0.0036 0.0032 0.0032 0.0036 0.0036 0.0032

10 Hz 0.0032 N/A 0.0027 0.0032 0.0031 0.0031 0.0028 0.0027 0.0031 0.0031 0.0027
40 Hz 0.0032 0.0027 N/A 0.0032 0.0031 0.0031 0.0028 0.0027 0.0031 0.0031 0.0027
55 Hz 0.0038 0.0032 0.0032 N/A 0.0037 0.0037 0.0033 0.0032 0.0037 0.0037 0.0032
70 Hz 0.0036 0.0031 0.0031 0.0037 N/A 0.0086 0.0032 0.0031 0.0036 0.0036 0.0031
85 Hz 0.0036 0.0031 0.0031 0.0037 0.0086 N/A 0.3880 0.4844 0.0086 0.0086 0.0031
100 Hz 0.0032 0.0028 0.0028 0.0033 0.0032 0.3880 N/A 0.8474 0.0203 0.0203 0.0045
115 Hz 0.0032 0.0027 0.0027 0.0032 0.0031 0.4844 0.8474 N/A 0.0077 0.0077 0.0027
130 Hz 0.0036 0.0031 0.0031 0.0037 0.0036 0.0086 0.0203 0.0077 N/A 1.0000 0.1620
145 Hz 0.0036 0.0031 0.0031 0.0037 0.0036 0.0086 0.0203 0.0077 1.0000 N/A 0.1620
160 Hz 0.0032 0.0027 0.0027 0.0032 0.0031 0.0031 0.0045 0.0027 0.1620 0.1620 N/A

Table 4. p-values for the comparison of two groups with the Kruskal–Wallis test in the band of 1400 Hz.

Excitation 0 Hz 10 Hz 40 Hz 55 Hz 70 Hz 85 Hz 100 Hz 115 Hz 130 Hz 145 Hz 160 Hz
0 Hz N/A 0.0038 0.0036 0.0037 0.0036 0.0032 0.0032 0.0020 0.0033 0.0027 0.0032

10 Hz 0.0038 N/A 0.0037 0.0038 0.0037 0.0032 0.0032 0.0021 0.0034 0.0028 0.0032
40 Hz 0.0036 0.0037 N/A 0.0036 0.0036 0.0031 0.0031 0.0020 0.0033 0.0026 0.0031
55 Hz 0.0037 0.0038 0.0036 N/A 0.0036 0.0032 0.0032 0.0020 0.0033 0.0027 0.0032
70 Hz 0.0036 0.0037 0.0036 0.0036 N/A 0.0031 0.0031 0.0020 0.0033 0.0026 0.0031
85 Hz 0.0032 0.0032 0.0031 0.0032 0.0031 N/A 0.0027 0.0017 0.0029 0.0023 0.0027
100 Hz 0.0032 0.0032 0.0031 0.0032 0.0031 0.0027 N/A 0.0190 0.0105 0.0037 0.0144
115 Hz 0.0020 0.0021 0.0020 0.0020 0.0020 0.0017 0.0190 N/A 0.0555 0.0051 0.1380
130 Hz 0.0033 0.0034 0.0033 0.0033 0.0033 0.0029 0.0105 0.0555 N/A 0.2410 0.5751
145 Hz 0.0027 0.0028 0.0026 0.0027 0.0026 0.0023 0.0037 0.0051 0.2410 N/A 0.0926
160 Hz 0.0032 0.0032 0.0031 0.0032 0.0031 0.0027 0.0144 0.1380 0.5751 0.0926 N/A
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Table 5. p-values for the comparison of two groups with the Kruskal–Wallis test in the band of 1800 Hz.

Excitation 0 Hz 10 Hz 40 Hz 55 Hz 70 Hz 85 Hz 100 Hz 115 Hz 130 Hz 145 Hz 160 Hz
0 Hz N/A 0.0037 0.0036 0.0038 0.0036 0.0036 0.0035 0.0032 0.0020 0.0033 0.0027

10 Hz 0.0037 N/A 0.0036 0.0038 0.0036 0.0036 0.0035 0.0032 0.0020 0.0033 0.0027
40 Hz 0.0036 0.0036 N/A 0.0037 0.0036 0.0036 0.0035 0.0031 0.0020 0.0033 0.0026
55 Hz 0.0038 0.0038 0.0037 N/A 0.0037 0.0037 0.0036 0.0032 0.0021 0.0034 0.0028
70 Hz 0.0036 0.0036 0.0036 0.0037 N/A 0.0036 0.0035 0.0031 0.0020 0.0033 0.0026
85 Hz 0.0036 0.0036 0.0036 0.0037 0.0036 N/A 0.0084 0.0031 0.0020 0.0033 0.0026
100 Hz 0.0035 0.0035 0.0035 0.0036 0.0035 0.0084 N/A 0.0570 0.0068 0.0062 0.0074
115 Hz 0.0032 0.0032 0.0031 0.0032 0.0031 0.0031 0.0570 N/A 0.1380 0.0303 0.0917
130 Hz 0.0020 0.0020 0.0020 0.0021 0.0020 0.0020 0.0068 0.1380 N/A 0.0555 0.3173
145 Hz 0.0033 0.0033 0.0033 0.0034 0.0033 0.0033 0.0062 0.0303 0.0555 N/A 0.2410
160 Hz 0.0027 0.0027 0.0026 0.0028 0.0026 0.0026 0.0074 0.0917 0.3173 0.2410 N/A

Table 6. p-values for the comparison of two groups with the Kruskal–Wallis test in the band of 2100 Hz.

Excitation 0 Hz 10 Hz 40 Hz 55 Hz 70 Hz 85 Hz 100 Hz 115 Hz 130 Hz 145 Hz 160 Hz
0 Hz N/A 0.0037 0.0036 0.0038 0.0036 0.0035 0.0037 0.0033 0.0020 0.0032 0.0020

10 Hz 0.0037 N/A 0.0036 0.0038 0.0036 0.0035 0.0037 0.0033 0.0020 0.0032 0.0020
40 Hz 0.0036 0.0036 N/A 0.0038 0.0036 0.0035 0.0036 0.0033 0.0020 0.0031 0.0020
55 Hz 0.0038 0.0038 0.0038 N/A 0.0038 0.0036 0.0038 0.0035 0.0021 0.0033 0.0021
70 Hz 0.0036 0.0036 0.0036 0.0038 N/A 0.0035 0.0036 0.0033 0.0020 0.0031 0.0020
85 Hz 0.0035 0.0035 0.0035 0.0036 0.0035 N/A 0.0068 0.0032 0.0019 0.0030 0.0019
100 Hz 0.0037 0.0037 0.0036 0.0038 0.0036 0.0068 N/A 0.0750 0.0071 0.0051 0.0071
115 Hz 0.0033 0.0033 0.0033 0.0035 0.0033 0.0032 0.0750 N/A 0.0555 0.0105 0.0555
130 Hz 0.0020 0.0020 0.0020 0.0021 0.0020 0.0019 0.0071 0.0555 N/A 0.0190 1
145 Hz 0.0032 0.0032 0.0031 0.0033 0.0031 0.0030 0.0051 0.0105 0.0190 N/A 0.0190
160 Hz 0.0020 0.0020 0.0020 0.0021 0.0020 0.0019 0.0071 0.0555 1 0.0190 N/A

In these tables, the intersecting cell of the i-th line and the j-th column presents the
p-value obtained using the Kruskal–Wallis test for the groups indicated in the respective
line and column. Standard (non-shaded) cells correspond to cases where H0 (groups with a
similar distribution of data) is rejected in favor of H1 (groups with a different distribution
of data) at a risk level equal to α = 0.05, as explained in Section 2.1. In such cases, the two
groups considered are mutually distinguishable at the indicated risk level, meaning that
the previously mentioned mapping is valid, again, at the indicated risk level. On the other
hand, the shaded cells correspond to cases where H0 (groups with a similar distribution
of data) is accepted for the pair of groups under consideration, at a risk level equal to
α = 0.05. Then, the two considered excitation frequencies would result in significantly
overlapping groups of frequency peaks in the band of interest, meaning that no exclusive
one-to-one mapping is possible. An examination of Tables 3–6 basically validates the
conclusions drawn by visual inspection of (the corresponding) Figures 3–6. The frequency
band around 1400 Hz provides statistically non-overlapping groups at a risk level of 0.05
(Table 4) for beam excitation frequencies up to 115 Hz. Then, the excitation levels of 115 Hz
and 130 Hz create overlapping groups (at a risk level of 0.05), since the p-value computed
with the Kruskal–Wallis test is 0.055 (see the intersection between the ninth line and the
tenth column), or just larger than 0.05, which leads to accepting the null hypothesis. At the
same time, p-values just larger than the risk level indicate a statistical tendency of being
close to rejecting H0. In other words, even though the 1400 Hz band does not actually allow
for distinguishing between the excitation levels of 115 and 130 Hz, it would be relevant
to look at other frequency bands for the null hypothesis being rejected when comparing
the groups associated with the levels of 115 and 130 Hz. The band at 316 KHz offers this
possibility since the p-value (related to comparing groups created by the excitation levels
of 115 Hz and 130 Hz—Table 3) computed with the Kruskal–Wallis test is 0.0077 (see the
intersection between the ninth line and the tenth column). However, in the band around
316 KHz, all groups created by the excitation levels above 130 Hz are statistically similar,
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as indicated by a p-value of the Kruskal–Wallis test statistic equal to 0.2738 > 0.05 when
comparing all three groups corresponding to the excitation levels of 130, 145 and 160 Hz.
Then, distinguishing between the excitation levels of 115 and 130 Hz in the 316 KHz band
may only be achieved in conjunction with p-values from the band around 2100 Hz in
Table 6. The latter indicates that the group resulting from the beam excited at 130 Hz cannot
be mistaken for that associated with the excitation of 145 Hz at the considered risk level
of 0.05. Thus, frequency peak groups resulting from excitation levels up to 145 Hz may
be distinguished in a one-to-one comparison using the proposed setup and methodology.
Figures 3–6 and Tables 3–6 suggest that a meaningful solution for distinguishing groups
associated with excitation levels up to 145 Hz from a group associated with the excitation
levels of 160 Hz is not available in all four bands considered.

A final remark regards these results with respect to the passive excitation principle
used in this setup. Using mechanical excitation for the beam (and, hence, the magnetoelastic
ribbon) without, for instance, some form of DC bias from a second coil [20,23] mainly allows
for inducing sensing capabilities in standard conventional beams in a cost-effective manner.
On the other hand, the recorded signal is quite noisy, meaning that more (and surely
non-trivial) algorithmic effort has to be invested in rejecting noise effects and obtaining
results on higher-order modes of vibrations and/or larger beam deflections.

3.2. Results of the Statistical Evaluation of Fault Diagnosis Characteristics

The testing procedure involved six experiments per fault case (or test scenario as
referred to) in Table 1. The 48 voltage signals resulting from the testing were also used
in [24] along with the three-step procedure outlined in Section 2.2, to deliver initially the
discrete-time AR poles inside the bands of the dominant frequencies (around 1350–1400 Hz
in this case) and then their corresponding continuous-time counterparts. This yielded the
pole areas in Figure 7a,b at the z-plane and the s-plane, respectively, for the –1C fault cases.
Figure 8a,b presents the pole areas at the z-plane and the s-plane, respectively, for the –BN
fault cases. From these figures, it seems quite hard to visually distinguish groups of poles
corresponding to specific pole scenarios in discrete time (z-plane), whereas it is relatively
easier to distinguish these groups in continuous time (s-plane). But even when the s-plane
is considered, poles corresponding to the N-1C beam configuration may be found in the
area involving poles corresponding to the A-1C-affected beam (Figure 7b). In other words,
the corresponding pole groups seem to effectively (although slightly) overlap. The same is
obvious for the A-1C and B-1C poles, as well as the poles from the B-BN- and C-BN-affected
beams (Figure 8b). Hence, although, in principle, –1C or –BN faults of all magnitudes
and positions on the beam may be distinguished from each other, a statistical assessment
of (overlapping) pole groups would be desirable. This assessment would quantify the
inherent uncertainty when fault diagnosis (detection, isolation and magnitude estimation)
is carried out by examining regions where these pole groups are located on the s-plane.

The statistical assessment of whether the regions of continuous-time pole groups
corresponding to fault cases (test scenarios) are distinguishable between them may be
carried out by formulating the statistical hypothesis problem (2), as described in Section 2.2.
The Kruskal–Wallis test is again used for pairs of pole groups and addresses the hypothesis
testing problem at a risk level α equal to 0.05. Only imaginary parts of the poles for each
group are considered as pole coordinates since pole regions are delimited with respect to
their imaginary part in Figures 7b and 8b. The detection of fault occurrence for fault types
–1C and –BN is examined by forming Tables 7 and 8, respectively. The intersecting cell of
the i-th line and the j-th column presents the p-value obtained using the Kruskal–Wallis test
for the fault cases indicated in the respective line and column. The shaded cells correspond
to significantly overlapping groups of poles.
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Table 8. p-values for the comparison of two groups in the s-plane with the Kruskal–Wallis test for the
fault detection and localization of –BN cases.

Fault Case N-BN A-BN B-BN C-BN
N-BN N/A 0.0039 0.0039 0.0039
A-BN 0.0039 N/A 0.0039 0.0039
B-BN 0.0039 0.0039 N/A 0.0374
C-BN 0.0039 0.0039 0.0374 N/A

In Table 7, H0 is systematically rejected for any comparison of N-1C against the A,
B or C-1C fault cases, at α = 0.05, since in all such cases, the p-value is lower than α. In
other words, the (imaginary parts of the) poles from the N-1C configuration do not follow
a similar distribution as those from the A, B or C-1C configurations at α = 0.05, and faults
may be systematically detected. Again, in Table 7, H0 is systematically rejected for any
comparison of N-1C against the A, B or C-1C fault cases at α = 0.05. Hence, all –1C fault
cases have different impacts on the pole (imaginary) locations, meaning that all –1C faults
may be identified. Note, however, that the p-value for comparing the A-1C and B-1C
configurations is notably higher (see the intersection between the third line and the fourth
column), although smaller than α = 0.05. This is related to the overlap between the two
groups, as seen in Figure 7b, which was commented upon earlier on. The same conclusions
in terms of detection and identification may be drawn for the –BN configurations with a
careful examination of Table 8. Again, comparing the B-BN and C-BN configurations results
in a higher-than-usual p-value (although again smaller than α = 0.05), which is related to
the slight overlap of groups designating the B-BN and C-BN fault cases in Figure 8b. Lastly,
Table 9 allows for addressing the issue of distinguishing between the fault configurations
–1C (small fault magnitude) and –BN (large fault magnitude), as defined in Table 1. Again,
the shaded cells correspond to significantly overlapping groups of poles. In general, the
p-values are always smaller than α = 0.05, meaning that H0 is systematically rejected at the
risk level α = 0.05 for all comparisons between the –1C and –BN configurations. Then, no
–BN fault may be mistaken for a –1C fault at the designated risk level. Obviously, these
results are valid for cases of a single fault (load) occurrence at a time.

Table 9. p-values for the comparison of two groups in the s-plane with the Kruskal–Wallis test for
fault localization and magnitude estimation between the –1C (small fault) and –BN (large fault) cases.

Fault Case A-1C B-1C C-1C A-BN B-BN C-BN
A-1C N/A 0.0104 0.0039 0.0039 0.0039 0.0039
B-1C 0.0104 N/A 0.0039 0.0039 0.0039 0.0039
C-1C 0.0036 0.0036 N/A 0.0038 0.0036 0.0035
A-BN 0.0038 0.0038 0.0038 N/A 0.0038 0.0036
B-BN 0.0036 0.0036 0.0036 0.0038 N/A 0.0035
C-BN 0.0035 0.0035 0.0035 0.0036 0.0035 N/A

Note that formulating the statistical hypothesis problem (2), as described in Section 2.2,
proved again to be highly beneficial for discrete-time pole groups in the z-plane. As noted
before, in [24], it was hard to delimit specific z-plane pole areas associated with the fault
cases of Table 1 using a simple visual inspection. In the current study, the Kruskal–Wallis
test is again used for pairs of discrete-time pole groups (see Figures 7a and 8a) in order
to address the hypothesis testing problem at a risk level α equal to 0.05. For each such
pole, its angle of rotation with respect to the origin is considered, and specifically, the ratio
of its imaginary over its real part (effectively corresponding to the tangent of that angle).
The detection of fault occurrence for the fault types –1C and –BN is examined by forming
Tables 10 and 11, respectively. As in the continuous-time case, the intersecting cell of the
i-th line and the j-th column presents the p-value obtained using the Kruskal–Wallis test for
the fault cases indicated in the respective line and column. The shaded cells correspond
to significantly overlapping groups of poles. The results are equivalent to those obtained
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for the s-plane pole groups, with H0 systematically rejected for any comparison of N-1C
against the A, B or C-1C fault cases, at α = 0.05, as shown in Table 10.

Table 10. p-values for the comparison of two groups in the z-plane with the Kruskal–Wallis test for
the fault detection and localization of –1C cases.

Fault Case N-1C A-1C B-1C C-1C
N-1C N/A 0.0163 0.0039 0.0039
A-1C 0.0163 N/A 0.0065 0.0039
B-1C 0.0039 0.0065 N/A 0.0374
C-1C 0.0039 0.0039 0.0374 N/A

Table 11. p-values for the comparison of two groups in the z-plane with the Kruskal–Wallis test for
the fault detection and localization of –BN cases.

Fault Case N-BN A-BN B-BN C-BN
N-BN N/A 0.0039 0.0039 0.0039
A-BN 0.0039 N/A 0.0039 0.0039
B-BN 0.0039 0.0039 N/A 0.0374
C-BN 0.0039 0.0039 0.0374 N/A

The same comments hold for results presented in Table 11, with H0 systematically
rejected for any comparison of N-BN against the A, B or C-BN fault cases, at α = 0.05. Again,
one may distinguish between the s –1C (small fault) and –BN (large fault) configurations in
Table 1 using rotation angles of the discrete-time poles in the z-plane to form Table 12. As
in the continuous-time case, the p-values are always smaller than α = 0.05, meaning that H0
is systematically rejected at the risk level α = 0.05 for all comparisons between the –1C and
–BN configurations. Then, no –BN fault may be mistaken for a –1C fault at the designated
risk level, even using discrete-time AR poles. As in the continuous-time case, these results
are valid for cases of a single fault (load) occurrence at a time.

Table 12. p-values for the comparison of two groups in the z-plane with the Kruskal–Wallis test for
fault localization and magnitude estimation between the –1C (small load) and –BN (big load) cases.

Fault Case A-1C B-1C C-1C A-BN B-BN C-BN
A-1C N/A 0.0065 0.0039 0.0039 0.0039 0.0039
B-1C 0.0065 N/A 0.0374 0.0039 0.0039 0.0039
C-1C 0.0039 0.0374 N/A 0.0039 0.0039 0.0039
A-BN 0.0039 0.0039 0.0039 N/A 0.0039 0.0039
B-BN 0.0039 0.0039 0.0039 0.0039 N/A 0.0374
C-BN 0.0039 0.0039 0.0039 0.0039 0.0374 N/A

A remark may at this point be made on having relatively few data values in each group
when the comparisons between two or more groups are carried out using the Kruskal–
Wallis test. As noted in Section 2, the Kruskal–Wallis test may be used with groups of five or
more data values each [25–27], with relevant examples in [25], ch. 8, and in [26], ch. 25. It is
clear that in the current study, this condition is fulfilled. Nonetheless, it would be advisable
to use more data values per group since this would render the Kruskal–Wallis test more
powerful. Currently, the test is more conservative rather than powerful in the sense that
it is more reluctant to reject the null hypothesis H0 at the designated risk level. This, in
turn, means that the results presented both for sensing and for fault diagnosis purposes are
rather conservative. In terms of evaluating sensing characteristics, for instance, if more data
per group were available, then comparisons between certain groups at the band around
1400 Hz (which indicated overlapping groups due to the p-values being marginally higher
than α = 0.05) could yield results toward rejecting H0, thus enabling a distinction between
the groups considered.
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A final remark is related to these sensing and fault diagnosis results being obtained
for a long, thin and flexible beam. The same basic setup with a model-based algorithmic
framework was applied to shorter, thicker and quite more rigid polymer beams in the
previous works [17] and (in part) [18], with similarly successful fault diagnosis results.
Nonetheless, sensing properties were not comprehensively evaluated in these studies since
they both aimed at obtaining fault diagnosis results. Moreover, no experiments with steel
structures have been carried out yet. Specifically, for such cases, the applicability of the
proposed setup and algorithmic analysis in terms of sensing and fault diagnosis has yet to
be tested, even though the currently obtained results are promising.

4. Conclusions

A thin cantilever polymer beam with a short Metglas® 2826MB ribbon attached to
its surface was statistically evaluated in terms of contact-less sensing and fault diagnosis
characteristics. The vibration of the beam’s free end creates the emission of magnetic flux
by the Metglas® ribbon (fixed on the opposite end), which induces a voltage in a coil
suspended over the film. This voltage is, hence, obtained in a contact-less manner and
is recorded with an oscilloscope. The voltage signal analysis showed that shifting of the
dominant frequencies may result either from changes in the excitation frequency provided
to the beam or from faults (loads) of various magnitudes and positions on the beam when
the latter vibrates at a given frequency. A statistical framework based on the formulation
of statistical hypothesis problems was introduced to evaluate such frequency-shifting
characteristics, which led to two main results. First, a mapping between the vibration
frequency level of the beam and the resulting frequency shifts observed in the recorded
voltage was statistically established. Hence, sensing properties were obtained because the
vibration level of the beam may be deduced by monitoring frequency shifting patterns
in the voltage signal, with the uncertainty in the process quantified. Second, s-plane or
z-plane areas containing poles corresponding to shifted frequencies of the voltage signal
(modeled as per Section 2.2) were statistically linked to faults (loads) of specific magnitude
and position affecting the beam. Hence, fault diagnosis properties were obtained because
the occurrence, magnitude and position of faults (loads) on the beam may be deduced
by checking the s-plane or z-plane pole locations, with the uncertainty in the process
quantified. Future work will involve validating the setup’s sensing and fault diagnosis
performance for low excitation frequency and/or high beam deflection and/or cases of
multiple fault occurrence. It would be equally useful to evaluate the impact of integrating
multiple sensing sets (ribbon and coils) on the beam.
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