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Abstract: In this work, an advanced 2D nonparametric correlogram method is presented to cope with
output-only measurements of linear (slow) time-varying systems. The proposed method is a novel
generalization of the kernel function-based regularization techniques that have been developed for
estimating linear time-invariant impulse response functions. In the proposed system identification
technique, an estimation method is provided that can estimate the time-varying auto- and cross-
correlation function and indirectly, the time-varying auto- and cross-correlation power spectrum
estimates based on real-life measurements without measuring the perturbation signals. The (slow)
time-varying behavior means that the dynamic of the system changes as a function of time. In
this work, a tailored regularization cost function is considered to impose assumptions such as
smoothness and stability on the 2D auto- and cross-correlation function resulting in robust and
uniquely determined estimates. The proposed method is validated on two examples: a simulation to
check the numerical correctness of the method, and a flutter test measurement of a scaled airplane
model to illustrate the power of the method on a real-life challenging problem.

Keywords: nonparametric methods; time-varying structures; Operational Modal Analysis; industrial
measurements; autocorrelation; regularization

1. Introduction

The paper presents a nonparametric estimation technique for output-only measure-
ments of time-varying mechanical and civil structures. These types of measurements are
the so-called operational measurements [1]. These measurements are crucial because it is
common that systems tend to exhibit different dynamical behavior when observed under
operating conditions than observed under laboratory conditions. To explore the behavior
in operating conditions is important because unobserved and unmodeled phenomena may
lead to structural failures or unstable operation.

Operational measurements proved to be successful in civil engineering, where it is
difficult to obtain artificially induced vibration levels that exceed the natural vibrations due
to traffic or wind [2—4]. It is also a popular approach in various mechanical engineering
applications; think of, for instance, the road testing of a vehicle [5-7]. These types of
measurements are commonly used in aerodynamics; for instance, studying vortex-induced
vibration [8,9].

The main challenge with the Operational Modal Analysis (OMA) framework—in com-
parison with the classical identification frameworks—is that the perturbation (excitation)
is not (or cannot be) measured directly, and instead it is assumed to be (nearly) white
noise around the frequency domain of interest [1]. Methods for OMA have hence been
developed and are now widely used in the industrial environment [2]. This can be used
(1) to better understand the true underlying system [1], (2) to simulate the system [10],
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and (3) to validate and update computer-based models such as finite element models, for
instance [11,12].

In the case of nonparametric OMA (or in general, output-only measurements), the
most common goal is to estimate the output power spectral density function (PSD). Given
a (time domain) measurement, the auto-power spectrum can be estimated via different
techniques; for an exhaustive list of OMA techniques, we refer to [13].

The most commonly used nonparametric methods are the (time domain) correlogram-
and the (frequency domain) periodogram-based procedures [14,15]. In the case of correlo-
gram techniques, different types of output autocorrelation functions (ACF) are estimated,
then transformed to the (discrete) frequency domain resulting in a PSD estimate [16]. Be-
cause the raw ACF-based time estimate may result in a non-smooth estimate of the power
spectrum (i.e., the estimate has high variance level), therefore, additional windowing (typi-
cally exponential windowing) is usually applied [1] to overcome this issue. The drawback
is that the damping factor will be overestimated, due to the windowing applied to the time
domain signal. The user must manually decide on the type of window function and its
parameters (e.g., the decaying rate of the exponential window).

In the case of a simple periodogram (squared discrete Fourier transform of the mea-
sured signal), the variance issues are even more pronounced. There are two popular
possibilities to reduce the variance of the periodogram estimate. One of the possibilities is
to use averaging techniques such as Bartlett’s method, where the estimate is calculated on
the (special) averaged periodograms of the segmented measurement [17]. The drawback is
that this method results in a decreased frequency resolution of the estimate. Welch’s method
is another popular possibility where the data segments are overlapped, and an additional
windowing function is applied [18]. In the latter case, the variance of the PSD estimate is
decreased, and the bias error is significantly increased (resulting in an overestimating of
the damping factor).

The state-of-the-art STFT implementations include, among others, efficient methods
for time-of-flight problems [19], identification of wireless devices [20], and modeling of
electric energy losses [21]. Ref. [22] proposes a combination of STFT and a convolutional
neural network to postprocess 1D ECG signals into 2D spectrograms.

In this paper we consider generic linear time-varying (LTV) systems. The dynamical
properties of such systems (such as damping ratios, resonance frequencies) may vary
significantly when operating conditions (such as wind speed, pitch angle, temperature,
mass, etc.) change. Ignoring these variations might lead to poor product quality, instability,
and structural failures. Therefore, it is crucial to use OMA models that can capture time
variations. It is a common practice in system identification and in modal analysis to use
different types of short-time Fourier transform (STFT) methods that are suitable to cope
with (very) slow time-variations. The idea of these techniques is to create a series of linear-
time invariant (LTI) models [23,24] which make use of the above-mentioned simple to
implement techniques. These STFT-based models can describe the time-varying behavior
quite well, when the time-variations are very smooth (i.e., the system varies very slowly).
Therefore, these models cannot cope with fast(er) or sudden variations.

In this work, we provide a novel 2D TV kernel function-based regularization technique
to overcome the issues of the classical STFT-based methods, thus allowing more accurate
modeling in cases of faster time-variations. The kernel-based methods are a quasi-extension
of the well-known Tikhonov regularization techniques [25,26]. In the classical regularization
methods, impulse response estimates of LTI systems are considered [27,28]. There are
technically more-involved hybrid nonparametric and parametric regularization-based
methods that are applied for time-invariant dynamic networked system identification
problems [29-31]. It is important to mention that none of the already existing techniques
cope with output-only problems.

The main novelty of this work is that the nonparametric regularization is applied to
output-only measurements of LTV. The proposed robust 2D regularization techniques make
the uniquely determined TV auto- and cross-correlation function possible. By robustness
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we mean the system identification concept: the estimation framework applied in this work
results in reliable and statistically correct estimates in the presence of noise and outliers.
The proposed method is illustrated on a simulation example with (a high level of) noise,
and on a real-life flutter test measurement of a scaled airplane—containing both noise
and outliers.

This paper is structured as follows. In Section 2, the basic definitions, concepts, and
assumptions of this work are summarized. Section 3 provides the model structure and the
cost function of the underlying problem and summarizes the practical considerations of
the proposed technique. Sections 4 and 5 show a simulation and a measurement example.
Finally, conclusions are provided in Section 6.

2. Basics
2.1. Considered Systems and Assumptions

Assumption 1. In this work only linear, time-varying, damped, and causal [32] systems
are considered.

The time-domain (discrete) output response of a time-varying system to an arbitrary

time domain signal u[t] at time instance ¢ is nonparametrically given by [33,34]:
00
ylt) =Y = JhltTlult — 7] = hlt, ] ult — 7], (1)

where h[t, 7] is the time-varying impulse response function (also known as 2D impulse
response function), the parameter f is the measurement time (the time instance when
the system is observed [35]), T is the system time (that represent the lags of the impulse
response coefficients), and * is the convolution operator.

An LTV system represented by h[t, 7] is causal when the following is true:

hit,t] =0, whent <0 )

When a finite observation (measurement) with N samples is considered, with an
impulse response length L, then (1) boils down:

ylt] = Yo hlt,tJult —1],t=0,...,N —1 3)
To make the text more accessible, the time indices will be omitted. The LTV system
represented by & is linear when the superposition principle is satisfied:

y=hx{(a+bu} =ahxu+bhxu=(a+bhxu, (4)

where a and b are scalar values.

Because time-varying systems are often misinterpreted as nonlinear systems, it is
important to mention that when / varies with 2 and b (and the variation depends also on
the excitation signal u), then the system is called nonlinear [36,37].

Assumption 2. The considered systems are smooth: the finite differences between the adjacent
points of h in both time directions (t, T) are relatively small. A detailed study on smoothness can be
found in [38].

Assumption 3. For the estimators to work L < N is needed: the measurement must be longer
than the impulse response function.

Assumption 4. The measurement has a constant sampling time. The output is measured with
additive, i.i.d. Gaussian noise (denoted by e in the time-domain) with zero mean and finite variance
Uyz, such that the measurement y,, is given by:

ym=y+e=hxu+ee~N(007) 5)
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Assumption 5. The exact excitation signal u is unknown but is assumed to be (nearly) white (in
the frequency band of interest) with a finite variance of o2.

2.2. Non-Uniqueness Issues

The challenge in nonparametric system identification is that i cannot be uniquely deter-
mined from a single set of measurements. This means that /1 consists of L-N parameters that
cannot be directly determined using N measurement samples. An illustration can be seen
in Figure 1, where the true system is estimated by the means of Maximum Likelihood (ML)
estimators: observe that the result does not resemble the original model. The application of
Assumptions 14 allows us to have uniquely determined (smooth and decaying) solutions in
case of known input for #, or for the TV autocorrelation function in case of unknown input
when Assumption 5 is also fulfilled. This can be achieved by using smoothing methods, for
instance: spline interpolation or nonparametric kernel-based regularization.

true system ML estimate Regularized estimate

t[samples] 0 30 r[samples] t[samples] 0 30 r[samples] t[samples] 0 30 r[samples]

Figure 1. (Left): the TV IRF of the observed system. (Middle): the ML estimate. (Right): the
regularized estimate.

3. The Proposed Identification Method
3.1. The Model

In the case of OMA measurements, the frequency response function (FRF) model
cannot be directly estimated. However, output only data allows us to estimate the power
spectrum estimates—similarly to FRF estimates. When the Assumptions 1-5 are fulfilled,
the underlying systems can be uniquely estimated by their ‘scaled” 2D TV FRFs. The scaling
in this case means that the exact level of excitation is unknown, but due to the whiteness
assumption of the perturbation, the estimated power spectrum corresponds to the FRF but
scaled by an unknown factor. This process is illustrated in Figure 2.

output -~ Measured
input ____ LTV signal signal L (RN
signal SYSTEM 7 c -|FRF
O ... — Pemor (e, o)
Input is unknown
assumed to be white

Figure 2. Overview of the proposed method.

In this work, a novel nonparametric method is provided to identify the time-varying
auto-correlation function of output-only measurements. To keep the complexity under
control, the proposed technique is illustrated with a single output, but it can be generalized
to measurements with multiple outputs. The advantage of using multiple outputs (sensors)
is that the phase relationship between different (sensory) locations can be obtained. In this
case not only the magnitude values of the ‘scaled” 2D TV FRFs can be obtained, but also an
estimation of the phase values. These estimated phase values may play an important role
when the end-users are interested in estimating the operational deflection shapes.
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When Assumptions 1-5 are fulfilled, the time-varying auto-correlation function boils
down to a modified auto-correlation function centered around t, T as follows:

Rymym t T L+12k L ym t+T+k]ym[t+k] (6)

Note that depending upon the application area, different weightings of (6) are possible:
for more details see [15].

3.2. The Cost Function
In this output-only framework, the ML cost function of the time-varying autocorrela-

tion estimate boils down to LS (least square) cost function that is given by:

2
Vig = H vect(Rymym) —vect(Ryy> S

(7)

where vect(X) stands for the column-wise vectorization of X, Ry, y,, is the measured LTV
autocorrelation obtained using (6), and Ry is the true LTV model. It is important to emphasize
that the ML cost function will only be simplified to the LS cost function when the assumptions
on the measurement noise are fulfilled. If this assumption (Assumption 4) is not (entirely)
fulfilled, then this will result in an additional (bias) error because when modeling colored
noise, more complex modeling structures are needed. For a further elaboration we refer
to [32,39].

The key idea of the regularization technique is to keep the model complexity under
control in a way that any deviation from the assumptions is punished. This will introduce
on the cost level some small bias error to the classical LS cost function that results in a
lower variance that ultimately results in a lower total (mean square) error [40]. The new
combined regularized cost function is given by:

V=Vis+V,=Vis+ Uﬁvect(RyTy)P_lvect(Ryy), (8)

where P is the (regularization) covariance matrix that contains the assumptions (a prior
knowledge), and % is the amount of regularization applied that corresponds to the variance
(estimate) of the output measurement ((7122 R 5).

Evaluating the cost function (8) can be completed by solving the d/dR,, {V} = 0
equation as shown in the following main steps—for the sake of simplicity from here on
vect() will be omitted:

2p—1 2p—1 2p—1
—2Ry,y, +2Ryy +20°P "Ry = ORyy + 0P~ "Ry = Ry, (1 +o°P )Ryy = Ryuym

that results in the following estimate:

Ry = (1+0}P7) " Ry 9)

where [ is the identity matrix.

To illustrate the concept of the regularization, an LTI example is shown in Figure 3.
The classical LS solution of the auto-correlation estimate oscillates in the tail part that results
in high variance (manifested as leakage) in the frequency domain. In the regularized least
squares (RLS) case, smoothness and stability is imposed such that the tail decays toward
zero. The fitting error of the regularized PSD estimate in this case results in approximately
two times lower error.
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Figure 3. An experimental illustration to compare the classical (LS) and regularized (RLS) autocorre-
lation (left) and PSD estimates (right). The LS solution is shown in blue, the regularized solution is
shown in red. The numbers in the legend refer to the rms errors between the estimates and the true
squared transfer function (shown in black).

3.3. The Kernel Functions

The covariance matrix P encodes assumptions about the system and it is obtained
using the so-called kernel functions. This is implemented in this work as a special corre-
lation between the elements of the 2D ACF. The specific choice of these kernel functions
will have a major impact on the estimation quality. Next, the kernels that are considered in
this framework will be briefly elaborated. A graphical illustration of the proposed kernel
function on an impulse response estimation problem is shown in Figure 4.

kernel estimate kernel estimate
] o
None, true system Diagonal, - tue system
estimate Y estimate
like LS solution exponential 00s
decaying 0
o 0 10 20 30 40 50] 10 20 30 40
. . . _ -
Radial Basis Function, tesystem || | Dijagonal Correlated,$ 015 tue system
estimate o estimate
smoothing via decaying + 0%
: 0
correlation smoothing
% w % w

Figure 4. Some selected regularization kernels illustrated on a classical impulse response problem.

The RBF (Radial Basis Functions) can impose smoothness between two i, j points as
follows [28]:
R ()
Prgp(i,j) =€ 7, (10)
where ¥ > 0. ¢ controls smoothness: the higher its value, the smoother the estimate.
To impose exponential decay and smoothness DC (Diagonal Correlated) kernel func-
tion can be used [27]:

PDC(irj) =e w®e 2, (11)
where « controls the smoothness between the autocorrelation coefficients (by imposing
higher correlation) and p scales the exponential decaying (the shortness of the autocorrela-
tion), &, B > 0. It is possible to reduce the computational needs (at a loss of some flexibility)
by setting 1/a to /2. This type of kernel is called TC (tuned correlated) kernel.

The TC [8] kernel can be defined as:

PTC(tll tz) = min (87&1,67&2) (12)

3.4. Construction of the Covariance Matrix

Figure 5 shows a TV ACF that correspond to the LTV system illustrated in Figure 1.
By analyzing this figure, several properties can be observed. These properties correspond
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to the assumptions given in Section 2. The goal is to incorporate these properties/encode
these assumptions into the covariance matrix P.

100

an
o
!

RLTV output autocorrelation

150

100

1125 0 )
——— 150 time t [samples]
Figure 5. The time-varying output autocorrelation function of the system presented in Figure 1 is
shown. The direction represented by the red arrow refers to measurement time where smoothness
can be observed. The blue direction refers to the system time where both smoothness and exponential

decaying can be observed.

First, observe that the TV autocorrelation function is smooth in both system time T
(direction of lags) direction and measurement time ¢ direction.

Second, in the system time direction exponential decaying can be observed. This
corresponds to the stricter definition of stability: the impulse responses and hence the auto-
and cross-correlation functions are exponentially decaying. This decaying behavior is valid
for the vast majority of stable vibro-acoustic systems.

From the implementation point of view, the above-mentioned relationships have
to be coded in such a way that every point of the 2D ACF is connected to every point.
For a measurement with N samples and ACF length of L, there will be N-L times N-L
connections. These connections in fact are constraints that will achieve a unique solution of
the rank-deficient estimation problem discussed in Section 2.2.

The TV covariance matrix is then formulated—with DC kernels—as follows:

Pty 1) {101 = Prp(t, t2) Ppe(ti, 12) (13)
for every possible pair of t and 7.

3.5. Tuning of the Model Complexity

The proposed nonparametric identification consists of two interrelated steps: (1)
optimization of the hyperparameters, and (2) computation of the ACF TV model using (9).
7, &, B, 0% parameters in (9)—(12) are the so-called hyperparameters. These hyperparameters
can be optimized, for instance, by maximizing the marginal likelihood function of the
observed output [41]:

A A -1
Onp = argminRmiym (P + (71%1) Ry,.y,, + logdet (P + 012{1) , (14)
Ryy

where éhp is a vector containing all the hyperparameters.

It is important to note that the above-mentioned marginal likelihood function is
only valid when the assumption about the measurement noise is fulfilled. This objective
Function (14) is non-convex in éhp and therefore, it is advised that the end-users try multiple
initializations. For theoretical aspects of the possible optimization techniques, we refer
to [38,42].
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3.6. Computational Concerns

The computational complexity of the proposed technique is O(NL x NL) that is
quadratically increasing with the number of measured samples (N), and with the length of
the auto-correlation function (L).

The main time-consuming part can be found in the matrix inversion in (9) and in (14).
This inversion is performed multiple times during the estimation process. Considering
the matrix sizes, it can be clearly seen that by increasing the length of the measurement,
the requested operational memory grows quadratically. To reduce the computational
complexity, the inversion can be completed using the following matrix equality [40]:

-1
(Ikxk + Akijjxk) Agxj = Akxj(BjxkAkxj + I]-X]-) (15)

Let us re-order (9) as follows:

—1\ 1 o
= (I—i—aﬁP 1) vect(Ry,y,,)
-1 A
= (i Ivwne + 03P ) =Tnpnioect Ry, y,,)

-1 A~
= (PL{npINxNL + 0RINLxNL)  PI{ ypovect(Ry,y,,)
A 5 \ 1 a4 (16)
— ——

- U]%INLXNL + PI]]\"]XNLINXNL PIIII\}XNLveCt(Rym]/m)

vect (R )
yyreg

=PI, i (INxNLPIR g + ‘72INxN)71WCt(ﬁymym)

Hence, the inversion problem boils down to O(N x N) instead of O(NL x NL).

To further simplify the tuning process, it is possible to fix the value of ¢3 to the
estimated variance of the measurement (i.e., 03 = ?75) or using TC kernels instead of
DC kernels.

For completeness we like to mention that there exists a filter-based regularization
method [43] that in many scenarios results in much lower computational complexity
compared to kernel-based methods. However, the LTV reformulation of the filter-based

approach is much more involved and therefore it is beyond the scope of this paper.

3.7. Processing Long Measurements

The above-mentioned resource-saving techniques can still be inadequate when work-
ing with large datasets. To that end, a sliding window method is proposed. Instead of
estimating the computationally demanding TV ACF model in one step, a sliding window
technique can be applied to speed up the calculation, and to reduce the memory needs. The
technique is illustrated in Figure 6. The 2D regularization technique can be applied within
this sliding window that contains only a portion of the large dataset (N, samples). After
computing the estimates for a set of measurements, the window can be moved with Nt
samples. To ensure that the estimates are continuous and overlap Novertap, Noveriap < Ntep
may be needed. At the overlap (see in gray in Figure 6) additional (and optional) RBF
smoothing can be applied. If there is overlap, then the effective step size is Nstep — Noverlap-
This means that at each iteration of Nstep — Noperiap new ACFs are estimated.

The proposed minimal width of the sliding window (Ny,) is 3L that is already adequate
to provide high quality estimates. Note that mathematically speaking, minimum L + Nt
samples are needed. The step size of the sliding window (Nj.p) should be at least 1. The
maximum width is limited to the available memory, but it is advised to use a shorter
window in order to speed up the calculations.

The memory need of the proposed sliding window technique is O (( Ny Nstep)? ) instead
of the classical O((NL)?). The computational complexity given by (9) further simplifies to

O(Ni-N/(NStep - Nomlap)) from O(N2).
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£ full data record
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smoothing
Figure 6. Illustration of the proposed sliding window technique.

3.8. Guide for Users

In this subsection a user-oriented guide is given. The recommended workflow is
shown in Figure 7.

Preprocess measurement
Early estimate for o
y
Estimate the classical ACF
Estimates for L, a'f
v
Initialize using TC kernels

Is there
enough
memory?

Use sliding windowing
method with N, = 3L

I Use the regular method

| Optimize hyperparameters I

Is the
frequency
resolution
good?

Results are
detailed
enough?

Good estimation
obtained

Figure 7. Flowchart of the recommended processing steps of the proposed methodology.

Increase L

Tves

Increase g2 OR
Change kernel type

The first step considers the preprocessing of the data where the classical processing
steps such as data segmentation, transient removal, and outlier analysis [44] are considered.
Using frequency-domain processing it is also possible to have an initial estimate for the
measurement noise estimate (O’yz) [45]. An illustration is shown in Section 4.1.

When multiple output channels (sensors) are available, it is highly recommended
to use the most dominant sensor (where the most energy is present or the classical PSD
estimate looks the cleanest with highest magnitude values) as a reference sensor. In
this case, the first argument of the proposed method—i.e., the first y;, in (6) is the ref-
erence channel—and the second channel can be varied—i.e., the second y,, in (6) is the
reference channel.

Next, the classical ACF function is recommended to be estimated using all available
data (and in the case of multiple channels using the reference channel only). By analyzing
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the (effective) length of the ACF, a good initial estimate can be obtained for L. If needed,
one might draw an imaginary exponential envelope around the ACF to determine the
length of the ACEF. The tail (noisy) part of the ACF (after the imaginary decaying envelop)
can be used to provide a weak estimate of the measurement noise ((75). An illustration is
shown in Section 4.1.

Keep in mind that by using spectral analysis the measurement noise can be estimated
more accurately. The obtained values of L and ¢3 = 07 can be used as fixed hyperpa-
rameters. For a first attempt, we recommend starting with TC kernels that have lower
computational complexity with usually adequate results. In case of multiple outputs, it is
recommended to use the reference channel only, and apply the obtained hyperparameters
to other channels without optimizing again.

If there is not enough memory (or the computational complexity seems to be high),
then it is recommended to run a sliding window technique instead of the classical “all at
once” technique using the N, = 3L processing window (see Section 3.7). We advise to use
a step size (Nsep) of 15 for a smooth transition overlap (Noveriap) 0f 5. These settings are
believed to be adequate for almost all considered LTV problems.

After running the hyperparameter optimization routine, the obtained results have to
be inspected. If the obtained results are inadequate for the intended target application,
then first the frequency resolution must be checked. If the frequency resolution turns out
to be insufficient for the intended target application, then the value of L can be increased.
If the frequency resolution seems to be sufficient then one might consider using more
regularization (i.e., increase the value of 03)—especially if the obtained results look too
noisy. If the results seem not to be noisy but some details remain hidden, then it is
recommended to change the kernel function (for instance to DC kernels).

4. A Simulation Example
4.1. The Model

This section presents a simulation example of a second order LTV system. The simulation
time is 100 s. The damping ratio of the system varies linearly between 10% (at 0 s) and 1%
(at 100 s). The resonance frequency (undamped natural frequency) varies between 10 (at
0 s) and 20 Hz (at 100 s). The excitation signal is band-limited white noise (with o2 =1),
and the output is simulated with an SNR of 20 dB (i.e., (75 = 0.01). The simulated output
signal is discretized with a sampling frequency of 128 Hz that results in a simulation of
N = 128,000 samples. The system used for the performance test is already shown in Figure 1.
It is given by its TV transfer function [39] as follows:

(t0.01)s + 1
(54 £)0.01s2 + 1s + (1 + £)0.01

H(t,s) = (17)

The simulation and the illustration of the proposed estimation method (that is described
in Section 3.8) for 0'5 and L are shown in Figure 8. The longest considered ACF contains
128 samples—that is in complete agreement with the ideal impulse response length. To com-
pute the problem at once, the required memory need using 32-bit precision is approximately
4(NL)? ~ 10 TB. This means that the sliding window technique should be used. In case of
Ny = 3L, Nstep = 15 the required memory need boils down to 4 (Nsztep)2 ~ 135 MB. For

the sliding window technique the overlap (Nweﬂﬂp ) is set to 5.
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Figure 8. Visualization of the simulation and the proposed method for the variance and
length estimates.

4.2. The Results

In this section, the parametric estimates of the resonance frequencies and damping
ratios are compared, see Figure 9. The results of the traditional STFT approach (windowed
correlogram estimates) [23] are compared to the results of the proposed 2D regularization
method. In the case of STFT, the output measurement is split into short sub records,
and each time the output ACF is calculated, and an additional exponential windowing is
applied. This results in a series of ACFs, which represent the classical TV ACF estimate.
The power spectrum estimates are provided by the discrete Fourier transform of the ACFs.
The resonance frequencies and damping ratios are estimated and tracked with the help of
the operational Polymax method [24,46].

True True
20 |— Windowed correlogram estimate 15 Windowed correlogram estimate
Regularized estimate /\ Regularized estimate
18
16 =
N 2
= =
14 g
(=]
12 +
10
0 20 40 60 80 100

time [sec] time [sec]
Figure 9. The time-varying frequency and damping ratio estimates of the simulation example.

The absolute estimation values and the relative errors are shown in Figure 9. Please
note that the error caused by discretization is negligible. Observe that the regularized
estimates provide significantly lower errors in damping. Furthermore, the error levels are
smooth through the simulation.

Figure 10 shows the time-varying 2D autocorrelation function estimates for the win-
dowed correlogram (STFT) case and the regularized correlogram methods. Observe that
the regularized estimate is very smooth.

The exact estimated hyperparameter values will depend on the implementation of
the optimization routine and environment. With our Matlab implementation using fixed
L =128and 0% = 05 values, we have obtained the following parameters for the RBF + DC
kernels: v = 10,« = 0.4, B = 0.05.
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Figure 10. The time-varying output autocorrelation estimates. On the (left) is the classical windowed
correlogram STFT estimate is shown. On the (right) the regularized estimate is shown.

5. Measurement Examples
5.1. The Experiment

This section illustrates an industrial case study involving the flutter analysis of a
scaled airplane model conducted in a wind tunnel, as elaborated in [24]. The objective of
such testing is to carefully verify and monitor (track) the vibration behavior (such as eigen
frequencies and damping ratios), given that flutter can lead to accelerated fatigue or even
abrupt system failure.

In this measurement, wind tunnel data is considered at various flow rates. Figure 11
shows a simplified block diagram of the measurement. The Mach number, which represents
the ratio of airflow velocity to the speed of sound, ranges from 0.07 to 0.79.

— —

-_— ==

] ——
e »
varying wind speed /

Figure 11. Illustration of the measurement.

acceleration
measured

The measurement is 424 s long and it is sampled with (an f; of) 500 Hz resulting
in (N) 212.000 samples. The length of the correlation function (L) is 512 lags—that was
obtained with the methodology proposed in Section 3.8. The required memory need with

Ny = 3L and Nty = 15 is approximately 2.2 GB. The overlap (Noverlap) was set to 5. In

this work, the two most significant (dominant) sensors have been selected and used as it
was completed in the original work in [24].

The excitation of a (turbulent) wind loading is typically characterized by a decreasing
magnitude spectrum. In this research, we are only interested in a narrow frequency band
around the structural modes that can lead to flutter. Within this frequency range, the wind
excitation is nearly white (constant)—that corresponds to Assumption 5.

Further details on the measurement procedure, classical preprocessing of the data,
and modal analysis using the classical STFT technique can be found in [24].

5.2. Results

In this section, we compare the frequency domain results of the traditional STFT
approach [23] with those derived from the proposed method. The obtained results are
shown in Figure 12. Observe that the conventional approach looks very noisy, whereas the
regularized solution appears smooth, revealing detailed features that can be used to track
the evolution of the resonances.
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Figure 12. TV PSD estimates are shown. (left): the classical STFT estimate, (right): the
proposed estimate.

The Polymax modal parameter estimation method was applied to track the modal
parameters. In the classical approach the spectra are obtained as the Fourier transform of
the correlation function multiplied with an exponential window of 1% damping and there is
95% overlapping applied. The ACF values contain an additional zero padding for smoother
results. In the case of the regularized approach, RBF + TC kernels have been applied with
the sliding windowing technique (according to the recommendations of Section 3.8).

The obtained results are shown in Figure 10. The time-varying character of the
modes is clearly visible. The identified modes have been tracked and Figure 13 shows, for
instance, the eigenfrequency and damping ratio of the first mode. The dataset contains
several short outliers that—even after removing the corresponding samples—resulted in
inconsistent estimates using the classical state-of-the-art technique, but it had minimal
effect on the proposed methodology; the results are shown without removing the outliers.
From these figures, it can be concluded that the regularization approach yields more stable
frequency and damping estimates when compared to the classical approach using an
exponential window.

N w
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T T
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frequency [Hz]
>

50 100 150 200 250 300 350 400
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Figure 13. Continuous tracking results of the mode located around 20 Hz. The classical approach
(blue) is compared to the regularization approach (red).
6. Conclusions and Future Work

The primary goal of the nonparametric OMA framework is to offer more accurate
models that are suitable for understanding, simulation, design, and—indirectly—control.
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There are many tools available for LTI scenarios, but only a few tools are available for
LTV cases.

By using the proposed regularization-based estimation framework, it is possible to
significantly improve the estimation quality with respect to the state-of-the-art techniques.

The obtained 2D LTV spectral models can be used to estimate parametric OMA modal
models using the classical LTI tools as it has been demonstrated with a simulation example
using an exactly known model.

The proposed technique has also been successfully applied to an aerodynamic problem
where the use of the method has uncovered the natural and underlying behavior of the lift
component in the complex fluid system.

The disadvantage of the proposed method is that the computational cost and memory
requirements are significantly higher compared to the state-of-the-art STFT techniques.
However, this cost is negligible in applications where (1) the preparation of the measure-
ment setup takes days or even weeks, or (2) no real-time processing is needed.

The authors plan to further enhance the algorithmic part of the methodology in
order to find computationally more efficient solutions (such as possible usage of parallel
computing) to further increase the performance of the proposed framework and to decrease
the memory needs.
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