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Abstract: In high-altitude experiments to study the central cores of EAS at E0 ≳ 1016 eV (√s ≳ 5 TeV) 
using X-ray emulsion chambers and ionization calorimeters, phenomena such as the coplanarity of 
the arrival of the most energetic particles in super families of γ-rays and hadrons and а so-called 
Tien Shan effect (too slow absorption of cascades initiated by high-energy hadrons in the calorim-
eter) were observed. These effects could not be reproduced within the framework of theoretical 
models of the 80s and 90s. The coplanarity is explained via a process of coplanar generation of the 
most energetic secondary particles in interactions of super high-energy hadrons with nuclei of air 
atoms. Perhaps the Tien Shan effect could be explained using a high cross section for the generation 
of fragmentation-region charmed hadrons. To study these phenomena, a new set of detectors has 
been developed, including the world’s highest high-mountain ionization calorimeter, “Had-
ron-55”. This paper presents the initial experimental results. 
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1. Introduction 
Modern experiments with cosmic rays use several models of the interaction of high- 

and ultra-high-energy hadrons with the nuclei of air atoms and the generation of sec-
ondary particles, as well as the development of the so-called extensive air showers (EASs) 
in the atmosphere. However, all these models cannot accurately reproduce the entire set 
of observed characteristics of EASs. 

In the 1970s, when studying EASs at the high-mountain scientific station Tien Shan 
(3340 m a.s.l.), a slowdown in the absorption rate of high-energy hadron cascades (≳10 
TeV) was observed in the so-called Big Ionization Calorimeter (BIC). The BIC had a lead 
absorber with the total thickness of 850 g/cm2 (about five mean free paths (m.f.p.s) for the 
interaction of protons in lead) [1–5]. It was found that the absorption length L(Eh) of the 
hadronic component in EAS cores in the BIC grows with increasing hadron energy Eh. It 
was shown after the discovery of charmed particles that this effect can be explained by 
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5 TeV)
using X-ray emulsion chambers and ionization calorimeters, phenomena such as the coplanarity of
the arrival of the most energetic particles in super families of γ-rays and hadrons and a so-called
Tien Shan effect (too slow absorption of cascades initiated by high-energy hadrons in the calorimeter)
were observed. These effects could not be reproduced within the framework of theoretical models
of the 80s and 90s. The coplanarity is explained via a process of coplanar generation of the most
energetic secondary particles in interactions of super high-energy hadrons with nuclei of air atoms.
Perhaps the Tien Shan effect could be explained using a high cross section for the generation of
fragmentation-region charmed hadrons. To study these phenomena, a new set of detectors has been
developed, including the world’s highest high-mountain ionization calorimeter, “Hadron-55”. This
paper presents the initial experimental results.

Keywords: cosmic rays; ionization-neutron calorimeter; scintillation detector; ionization chambers;
hadron cascade; extensive air shower (EAS); Monte Carlo simulation

1. Introduction

Modern experiments with cosmic rays use several models of the interaction of high-
and ultra-high-energy hadrons with the nuclei of air atoms and the generation of secondary
particles, as well as the development of the so-called extensive air showers (EASs) in
the atmosphere. However, all these models cannot accurately reproduce the entire set of
observed characteristics of EASs.

In the 1970s, when studying EASs at the high-mountain scientific station Tien Shan
(3340 m a.s.l.), a slowdown in the absorption rate of high-energy hadron cascades (
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10 TeV)
was observed in the so-called Big Ionization Calorimeter (BIC). The BIC had a lead absorber
with the total thickness of 850 g/cm2 (about five mean free paths (m.f.p.s) for the interaction
of protons in lead) [1–5]. It was found that the absorption length L(Eh) of the hadronic
component in EAS cores in the BIC grows with increasing hadron energy Eh. It was shown
after the discovery of charmed particles that this effect can be explained by assuming that
in hadronic interactions the cross section for the production of such particles, which carry
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away a significant fraction of the energy of the interacting hadrons, reaches ~30% of the
inelastic proton–nucleus cross section [6].

An ionization calorimeter with a thickness of about six (or more) hadron interaction
mean free paths could help study this very interesting effect.

In high-altitude XREC experiments, the Pamir (4300 m a.s.l.) [7–9] and Mt. Kanbala [10]
collaborations observed a tendency for the most high-energy particles (and/or narrow
electromagnetic subcascades) with energies E
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10 TeV to arrive coplanarly in so-called γ-
ray–hadron superfamilies with energies ∑Eγ > 700 TeV near the axes of relatively “young”
EASs that have not reached the maximum of their development at the time of registration
at the observational level. These showers are mainly initiated by protons and helium nuclei
of primary cosmic radiation (PCR).

The overall picture is complemented by two γ-ray—hadron families with superhigh
energies (∑Eγ > 1 PeV) and very high coplanarity of the most energetic particles detected
using the emulsion technique at high altitudes in the stratosphere (where the characteristics
of showers are much more sensitive to parameters of first interactions of PCR particles in
the atmosphere). The experiments were carried out on board a balloon (Strana [11–13]) and
a Concorde jet (JF2af2 [14,15]).

The probability of obtaining the entire set of these experimental results is too small
(
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10−10) [16–18] to explain this result via cascade fluctuations.
In general, we can conclude [16] that (1) this phenomenon is associated with the most

energetic particles generated in interactions at the early stage of EAS development; (2) this
process is not reproduced using models based on the quantum chromodynamics (QCDs)
and quark-gluon string (QGS) models applied in high-energy cosmic ray physics; and
(3) the cross section for coplanar particle generation (CPG) is relatively large.

Theoretical concepts relate the generation of coplanar particles to(1) the angular mo-
mentum of the quark-gluon string rotated by interacting hadrons [19]; (2) semihard double
inelastic diffraction [20], accompanied by some stretching of the QGS inside the diffraction
cluster between spectator quarks and one semihard scattered quark of the hadron interact-
ing with the nucleus of an air atom; (3) leading systems with very high spin [21,22]; and
(4) temporary evolution of a three-dimensional space into a two-dimensional one [23,24].

The hypotheses [19–22] imply that the coplanar plane is determined by large transverse
momenta, while the momentum components directed perpendicular to this plane still
have the traditional values inherent in modern models of hadronic interactions. The
hypothesis [23,24] assumes the possibility of temporal evolution of the dimension of space
from three to two dimensions at sufficiently high energies. As a result, this hypothesis does
not require a significant change in the average values of the transverse momenta, but it
postulates their localization in a certain plane.

The aforementioned experimental data observed in the EAS cores show that we do not
yet understand all the features of hadronic interactions. Unfortunately, these phenomena
cannot be studied in experiments carried out at the Large Hadron Collider (LHC). The
specificity of the LHC design allows us to study in detail, mainly, only particles in the
central kinematic region (|η, y|
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4–5). However, it is possible to continue studying these
phenomena in high-mountain experiments with cosmic rays.

The scale of coplanar events observed with XREC, which are characterized by very
high lateral resolution (~100 µm), is small, mostly around 1 cm or less, which is consistent
with selection of events caused by hadron interactions at altitudes of 1–2 km above the
XREC detector. The ionization calorimeter at the altitude of the Tien Shan station has a
much coarser lateral resolution, determined by the width of its ionization chambers (IC)
(~12 cm). In this case, searching for showers with several of the most energetic subcores in
the central region will lead to the selection of events created by hadron–nucleus interactions
at much higher altitudes (~10 km) above the calorimeter, where the produced high-energy
hadrons initiate subcascades arriving at the upper surface of the calorimeter.
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A thick ionization calorimeter will make it possible to study the experimental results
discussed above, namely, the too-slow ionization absorption and the coplanarity of the
arrival of the most energetic subcores in the region of the EAS cores.

Note that in some works (see [25], e.g.,), the authors associate non-standard phe-
nomena observed in studies at Tien Shan High Mountain Scientific Station with EASs
initiated by strangelets (particles of strange quark matter), which may also be present in
the PCR [25].

2. Design of the “Hadron-55” Ionization-Neutron Calorimeter
2.1. Complex Installation “Hadron-M”

The complex installation “Hadron-M” is located at an altitude of 3340 m a.s.l. and
includes an ionization-neutron calorimeter (INC) “Hadron-55” with an area of 55 m2, total
absorber thickness of 1244 g/cm2, nine rows of ICs, and one row of neutron detectors, as
well as two shower systems of scintillation detectors. The effective area of the “Hadron-M”
installation is 30,000 m2. The “Hadron-55” is located in a laboratory building with an
area of 324 m2. An external shower scintillation-detector (SD) system is located outside
the building in concentric circles with radii of 25, 40, and 100 m, with four SDs in each
circular zone. Several neutron counters included in the “Hadron-55” are installed to obtain
information about the interactions of EAS hadrons in the INC absorber.

2.2. Design of the ”Hadron-55”

The diagram of the calorimeter, consisting of an upper part (the so-called gamma
block) and a lower part (the so-called hadron block) is shown in Figure 1 (Figure 4, [26]).
The gamma block and the hadron block are separated vertically by 2.2 m for experiments
related to the search for charmed particles.
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The gamma block consists of two IC rows, namely, 100 chambers in the first row and
138 chambers in the second one, separated by lead, with a total thickness of 3 cm + 1.5 cm +
22 cm = 26.5 cm (310 g/cm2).

The hadron block consists mainly of the iron absorber with cavities in which ionization
chambers are installed. First of all, this block is used to measure the energy released in
the absorber material via the hadronic component arriving in the EAS cores. This makes
it possible to study in more detail characteristics of the interactions of cosmic radiation
particles and the mass composition of primary cosmic rays. The hadron block contains 7 IC
rows (144 chambers in each row) located in a mutually perpendicular position with an iron
absorber between the rows.

Figure 2 shows the layout of nine rows of ionization chambers of the gamma block
and hadron block of the calorimeter. The X coordinate axis is directed across the even rows
of chambers (rows 2, 4, 6, 8) and allows determination of the position of the shower core
along the X axis with an accuracy of the chamber width (12 cm). The Y axis is directed
across the ionization cameras of the odd rows (rows 1, 3, 5, 7) of cameras, which also makes
it possible to determine the Y coordinates of the shower axis.
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Characteristics of ionization chambers (IC):

• The lengths of the chambers are 400 cm (1st row) and 300 cm (rows 2–9).
• The IC width is 11.5 cm, and the height is 6 cm.
• The case material is copper block that is 2 mm thick.
• The chambers are filled with argon gas under a pressure of 4.5–5 atm.
• The central thread diameter is 3 mm.
• The total number of chambers is 1200 pieces.

2.3. Registration and Analysis of Experimental Data from “Hadron-M”

The database system of the complex installation “Hadron-M” operates under the
control of the PostgreSQL server program, which can be accessed via a local network using
remote client programs with specific requests for data processing. The database is available
at www.tien-shan.org (accessed on 21 December 2023).

The experimental data bank of the “Hadron-M” installation has a two-level structure.
The first-level bank (Bank-0) contains real experimental physical events, as well as test

www.tien-shan.org
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events, in the form of recorded codes of pulse amplitudes of each detector, which are
summed and converted into a binary ADC code. The test-event registration mode, used for
operational control of the calorimeter, is intended to analyze the operation of individual
channels of the registration system. The second-level bank (Bank-1) contains data that was
initially recorded in physical mode in Bank-0, but which takes into account the calibration
characteristics for each individual channel. In this case, the ADC codes are converted into
ionization values, which, in turn, are converted into millivolts, which are proportional to
the energy Ecal of the EAS hadron component released in the calorimeter.

The EAS power (number of charged particles, Ne) is determined as the sum of particles
in all chambers of the eight rows of the INC.

The number of particles Nij in each i-th chamber of the j-th row is calculated as the
result of dividing the amplitude of the signal at the output of the chamber amplifier, Uk, by
the corresponding value of the standard signal from the passage of one charged particle,
Uoe, i.e., Nij = Uk/Uoe.

To determine the amplitude of the signal from a single particle, Uoe, a test bench is
assembled, including an ionization chamber, an amplifier combined with an ADC (analog-
to-digital converter), and a computer. The amplitude spectrum of pulses generated by
single background cosmic-ray particles is recorded using this test bench.

The peak value of the spectrum is taken as the amplitude of the signal from one
charged particle, namely, Uoe = 0.39 mV/particle.

To take into account the variation of argon gas pressure in the ionization chambers
(~10%) and channel gains (~20%), the calibration of registration channels is regularly
performed at the installation. The calibration is stored in the computer memory for each
channel Nij and is taken into account when forming the database.

2.4. Experimental Data from the “Hadron-55”

Figure 3 shows the dependence of the density of charged particles in the ionization
chambers of the “Hadron-55”, ρe cal, m−2, on the amount of matter of the absorber, averaged
over all recorded showers, regardless of the location of the fall of the main EAS core.
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Figure 4 shows the dependence of the shower power (the number of registered charged
particles in the ionization chambers) of the “Hadron-55” calorimeter, Ne cal, on the amount
of the absorber matter, averaged over a hundred showers, the main cores of which arrived
on the surface of the calorimeter. The RMS errors shown in Figure 4 characterize only
fluctuation deviations of the characteristics of individual showers from the average values.
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Figure 4. Dependence of the number of charged particles registered by the “Adron-55” ICs, Ne cal, on
the amount of absorbent matter (g/cm2) of the “Hadron-55” INC, averaged over showers, the cores
of which arrived on the surface of the calorimeter.

Recall that the two leftmost points in Figures 3 and 4 refer to the gamma block, i.e.,
they characterize mainly the low-energy electron–positron and muon components. The
remaining points on the graph are mainly determined by EAS hadrons, which interact
directly in the absorber matter, producing particles, in particular neutral π0 mesons, which
almost immediately decay into γ-rays, which initiate electron–photon cascades in the dense
absorber matter.

It can be seen that although the spectra are naturally qualitatively similar to each other,
there are also some differences. In particular, the rightmost point in Figure 4, corresponding
to an absorber thickness of 1018 g/cm2, is located noticeably higher than the previous point,
which corresponds to a depth of 940 g/cm2. Further research is needed to explain this
experimental result, which, on the one hand, may have physical reasons (e.g., being similar
to the Tien Shan effect [1]) and, on the other hand, can be explained using methodological
reasons (e.g., edge effects).

In particular, a large-scale simulation of both the EAS development in the atmo-
sphere and the processes of recording EAS particles in the “Hadron-55” calorimeter are
absolutely necessary.

3. Simulation of EAS Development in the Atmosphere
3.1. Simulation of Nucleus-Initiated EAS Development

A simulation of the development of EASs, initiated by protons and nuclei of primary
cosmic radiation of ultra-high energies, and consisting of a huge number of hadrons,
electrons, positrons, γ-rays, and muons at the observation level, was started. The simulation
results using the standard CORSIKA7.7500 software package [27] were obtained in the
form of observable EAS characteristics (type, momenta, time, and angles of arrival of each
particle at the observation level).

When using the CORSIKA package, it is possible to choose from several models of
interaction of hadrons with atom nuclei in the atmosphere. For our calculations, we used
the QGSJET II-04 [28] model, based on the ideologies of quark-gluon strings and quantum
chromodynamics, which explain the generation of hard hadron jets with significant trans-
verse momenta. The model has demonstrated promising outcomes in measuring hadron
production at accelerator energies [28–31].
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The development of vertical EASs initiated by various primary cosmic nuclei (from
protons to iron nuclei, Fe) with energies of 1, 10, 30, and 100 PeV was simulated, starting
from the boundary of the atmosphere (112.83 km above sea level, CORSIKA standard) to
the level of the “Hadron55” location. The following energy thresholds were used when
simulating: 30 MeV for electrons/positrons and gamma-rays and 1 GeV for hadrons and
muons. The lateral and energy characteristics of e±, γ, µ, and hadrons were obtained at
various threshold values, Ethr.

3.2. Simulation of Strangelet-Initiated EAS Development

A simulation of the development of EAS initiated by so-called strangelets, i.e., hy-
pothetical PCR particles of strange quark matter (SQM) [25], was also started. The main
differences between strangelets and traditional nuclei are, firstly, the much larger contribu-
tion of strange quarks, and secondly, the much larger baryon number. SQM can be divided
into three classes [25] depending on value of the baryon number As:

(1) Block SQM: As > 107. In a large volume of SQM, the following equality holds for the
ratio of the number of quarks: nv = nd = ns, while its electric charge is zero.

(2) Stable SQM particles (strangelets) (102 < As < 107). The model estimate of the stability
region of strangelets is As > 300–1000. In fact, such strangelets are quasi-nuclei
with a lower density (compared to ordinary nuclei) and a positive electric charge
Z = (0.03–0.1) As.

(3) Unstable SQM particles: As < 100.

Theoretical uncertainties do not allow us to unambiguously select the class of SQM
for EAS simulation.

Therefore, it is reasonable to start EAS simulation with stable strangelets, assuming
that As = 2000 and considering the strangelet as a very large quasi-nucleus, for which the
interaction cross section in air is equal to σs-air ≈ σpp (As

2/3 + Aair
2/3).

Let the average path to the first interaction of a strangelet be λ1
s = 1 g/cm2. In

this interaction, some of the baryons interact and leave the body of the strangelet, both
individually and as ordinary nuclei.

With each interaction, free ordinary nuclei with mass Ai are formed. Moreover, the
heavier the nucleus, the less likely it is to be born. In calculations, it is assumed that primary
nuclei belong to one of the main groups. Therefore, in each of the strangelet interactions,
one or several nuclei with masses A = 1 (protons), 4 (He), 12 (C), 32 (S), or 56 (Fe) are born.

In reality, in each Poisson interaction, the number of breakaway nucleons Nnucl is
sampled with an average number of breakaway nucleons 〈Nnucl〉 = 12, which then form a
nucleus or nuclei from the given set.

The interaction cross section for the remaining part of the strangelet at each subsequent
k + 1-st interaction will be determined by the baryon number Ak

s. Naturally, for each k-th
residue of the strangelet, the average ranges rank as λk

s > . . . > λ2
s > λ1

s.
During the development of an EAS, more than a hundred interactions of the strangelet

take place until it is completely disintegrated into individual protons, neutrons, and nuclei
of various atomic weights, initiating independent subcores within the central core of an EAS.
All resulting subcascades are traced to the observation level (3340 m a.s.l.) with thresholds
of 30 MeV for electrons/positrons and gamma-rays and 1 GeV for muons and hadrons.

To simulate cascades from protons and nuclei produced during the breakup of
strangelets and the observed characteristics of EASs, the standard CORSIKA package
and the QGSJET II-04 model are used.

3.3. First Results of the Simulation of EAS Development

A simulation of vertical EASs initiated by protons, iron nuclei, and strangelets with
energy E0 = 100 PeV was carried out.

Figure 5 shows the energy spectra of hadrons with energies Eh > 100 GeV in these
showers. It can be seen that the spectrum of hadrons in proton-initiated EASs is the flattest,
and it even contains hadrons with energies Eh > 300 TeV. Accordingly, the hadron spectrum
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in the EAS initiated by strangelets is the softest. This is not surprising, since initially in
strangelets with As = 2000, the energy per nucleon is only Enucl = 50 TeV. In fact, hadrons
with maximum energy are nucleons of the primary strangelet that have passed through the
atmosphere without a single interaction at the observational level.
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Figure 5. Energy spectra of hadrons with energy Eh > 100 GeV in EASs initiated by PCR protons, iron
nuclei, and strangelets with energy E0 = 100 PeV.

Figure 6 shows the dependence of the average hadron energy (at Eh > 100 GeV) on the
distance from the EAS axis in proton-, iron-, and strangelet-initiated showers with energy
E0 = 100 PeV. It can be seen that the average energy of hadrons in proton-initiated showers
is noticeably higher than in iron-initiated showers. The difference is even greater compared
to showers from strangelets. However, this is to be expected based on the spectra presented
in Figure 5.
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Figure 7 shows the lateral distributions of hadrons (at Eh > 100 GeV) in showers
initiated by protons, iron nuclei, and PCR strangelets with energy E0 = 100 PeV. It can be
seen that the distribution at large distances from the axis in proton EASs is approximately
five times lower than the distribution in EASs from strangelets.
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nuclei, and strangelets with energy E0 = 100 PeV.

Similar distributions have been obtained for electrons/positrons and muons.

4. Simulation of the “Hadron-55” Response to the Passage of EAS Particles
4.1. Physical Foundations

To simulate the passage of EAS particles through the “Hadron-55” calorimeter, the
Hadr55 program was developed based on the Geant4 package (versions 4.11.0 and 4.11.1.1) [28].
A three-dimensional model of the “Hadron-55” calorimeter and the characteristics of the
materials of which it consists were entered into Geant4.

Electromagnetic interactions were simulated according to the physical list
G4EmStandardPhysics_opt3 [28].

Hadronic interactions were simulated using the FTFP_BERT model, which is used
in Geant4 by default and assumes the reproduction of elementary interactions using the
Fritiof parton model and Bertini model of the intranuclear cascade [28].

4.2. Geometry of the Mathematical Model “Hadron-55”

The geometry of the calorimeter was constructed based on its general appearance shown
in Figures 1 and 2, as well as specific data on ionization chambers and absorber layers.

The densities of lead and iron are defined as 12.5 and 7.8 g/cm3, respectively. The IC
structure is reproduced in accordance with the description: body material is copper with a
density of 8.92 g/cm3, external dimensions are 400 cm × 11.5 cm × 6 cm for the first row
and 300 cm × 11.5 cm × 6 cm for subsequent rows; and the IC wall thickness is 2 mm.

Currently, the response of neutron counters is not simulated and is approximated only
via homogeneous polystyrene blocks 10 cm thick with a density of 1.032 g/cm3.

4.3. The Saved Information

In Geant4, an event is considered to be the whole set of phenomena that occur after
entering the detector of a single particle (hadron, γ-ray, muon, etc.). In our case, the event
is considered to be the passage of some part of the EAS particles through the calorimeter,
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and the total energy release of these particles in each of the ionization chambers is of
interest. The final image of the shower in energy releases is saved in the text file ioni_nch_*,
where * means the specification of the event (type and energy of the particle). The same
file contains information about the number of charged particles entering each ionization
chamber. The saved information can be changed and/or supplemented.

As an example, Figure 8 shows tracks from a single proton with energy of 5 GeV. It
is challenging to depict all tracks of an EAS event in the calorimeter due to the multitude
of tracks.
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Figure 8. Image of tracks (in green) from a single proton with an energy of 5 GeV.

4.4. Resources Required for Simulating Events in the Calorimeter

The simulation of the passage of EASs through the calorimeter takes place in two
stages. In the first stage, where the cascade of particles in the air must be calculated and
the particles that have reached the observation level recorded, CORSIKA is used. At the
second stage, some of these particles that fall on the calorimeter are traced through the
calorimeter structures using Hadr55.

The simulation of a particle cascade in the atmosphere from ultra-high-energy primary
pulse particles places serious demands on the computers used: the simulating time for one
event varies from ~3 min at energy E0 = 1 PeV to 3–4 h at E0 = 100 PeV. The volume of
output binary files can reach several gigabytes per event (depending on the thresholds that
are set).

Utilizing CORSIKA results for simulating calorimeter processes demands even more
time. At the selected thresholds (30 MeV for electrons and γ-rays and 1 GeV for muons and
hadrons), the number of traceable secondary particles for primary energies of 100 PeV can
reach tens of millions. Tracking 10,000 secondary particles takes from 1 to 40 min with an
average time of several minutes, and tracking tens of millions of particles takes a thousand
times longer, i.e., a few days. Such a large spread is due to the wide energy spectrum of the
incident particles: low-energy particles are quickly absorbed, and higher-energy particles
cascade, requiring significant simulating time. As a result, tracking one EAS initiated by a
particle of primary cosmic radiation with energy of 100 PeV takes 2–3 days on one nucleus.
The disk space requirements in the tracking process are about 1 GB per event, if we select
only the particles falling into the calorimeter from the CORSIKA output file and place them
in a text file from which the Hadr55 code will read them. At the end of the calculation, only
a small text file of about 50 kb remains.
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Thus, the simulation of a large number of events in a calorimeter requires a separate
server or servers capable of generating artificial events around the clock.

5. Conclusions

The first experimental results of studies of EAS cores were obtained at an altitude of
3340 m a.s.l. using the high-altitude ionization calorimeter “Hadron-55” with an area of
55 m2 and a thickness of about six proton m.f.p.s for interaction.

In EASs, the cores of which arrive at the upper plane of the “Hadron-55”, the average
intensity of hadrons at great depths is higher than for the totality of all showers. In the first
case, there is a tendency to slow down the absorption of hadrons.

The simulation of EASs initiated by PCR protons, iron nuclei, and hypothetical
strangelets of primary cosmic rays and simulation of processes of the passage of EAS
cores through the “Hadron-55” calorimeter have begun.

Experimental and simulated results are very preliminary.
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