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Abstract: Soil salinity is a serious problem facing many countries globally, especially those with
semi-arid and arid climates. Soil salinity can have negative influences on soil microbial activity as
well as many chemical and physical soil processes, all of which are crucial for soil health, fertility, and
productivity. Soil salinity can negatively affect physiological, biochemical, and genetic attributes of
cultivated plants as well. Plants have a wide variety of responses to salinity stress and are classified as
sensitive (e.g., carrot and strawberry), moderately sensitive (grapevine), moderately tolerant (wheat)
and tolerant (barley and date palm) to soil salinity depending on the salt content required to cause
crop production problems. Salinity mitigation represents a critical global agricultural issue. This
review highlights the properties and classification of salt-affected soils, plant damage from osmotic
stress due to soil salinity, possible approaches for soil salinity mitigation (i.e., applied nutrients,
microbial inoculations, organic amendments, physio-chemical approaches, biological approaches,
and nano-management), and research gaps that are important for the future of food security. The
strong relationship between soil salinity and different soil subdisciplines (mainly, soil biogeochemistry,
soil microbiology, soil fertility and plant nutrition) are also discussed.

Keywords: salt stress; salt-affected soil; gypsum; biochar; compost; PGPR; mycorrhizae

1. Introduction

Several global problems face modern society. Soil salinity is one of these important global
issues as it negatively affects crop production. The main causes of salt accumulation in soil
include primary salinization from the weathering of rocks and seawater intrusion/spray in
coastal areas and secondary salinization such as the over-use of fertilizers, irrigation with low
quality water, waterlogging, and dumping or spilling industrial brine [1]. Soil salinity is viewed
as soil degradation because soil degradation is viewed as something affecting not only plant
growth, but also soil microbial attributes, soil functionality (e.g., biochemical cycling), and other
soil ecosystem services [2]. Globally, more than 50% of irrigated croplands are experiencing
soil salinization issues, which decreases plant growth, development, and survival [3]. Thus,
soil salinity threatens global food security, and this issue is compounded given our changing
climate [4]. Crop stress damage under soil salinity results primarily from ionic, osmotic, and
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oxidative stress. Plants need to be able to mitigate these stresses through the ionic, osmotic,
and reactive oxygen species (ROS) homeostasis to be tolerant of salts in soil [5,6].

The chemistry of the salts found in soil, including their dynamics and physicochemical
and biogeochemical properties, is very important [7]. Soil rhizosphere microbial communi-
ties, composition and enzyme activities can be changed as a result of soil ionic and osmotic
effects [8]. Soil salinity can influence the availability of soil nutrients, microbial activity,
and the relationships between soil organisms and soil fertility [9] as well as plant nutrition
under such conditions [10]. Thus, there is an urgent need to improve crop productivity
in saline soils through the use of management approaches [11]. Soil salinity management
may include applying mineral nutrients and beneficial elements such as potassium [12],
selenium [13], titanium [14], or silicon [15]. Soil organisms can be used to mitigate salinity
by solubilizing nutrients via microbes [16,17] and mycorrhizal activities [10]. Bio-organic
fertilizers [18,19] or organic biostimulants such as proline [15], biochar [20], compost [21],
humic substances [22], and ascorbic acid [23] can improve crop performance in saline
soils. Nano-management can also help, including using nano-Se [24,25], nano-Si [26], nano-
ZnO [27], nano-CuO [28], nano-gypsum [29], and nano-carbon dots [30]. Soil salinity has a
strong relationship with a variety of global issues, mainly climate change, food security, and
the United Nations Sustainable Development Goals (SDGs). Thus, soil salinity should be
mitigated using innovative strategies that support the SDGs. Soil salinization management
is crucial for achieving several SDGs, such as SDG2 “Zero Hunger”, SDG3 “Good Health
and Well-Being”, and SDG15 “Life on Land” [1,31–33].

Crop response to soil salinity stress is one of the most important topics in agricultural
and environmental sciences. This response mainly depends on plant species and salinity
stress levels, as well as the environmental conditions [34]. The response of plants to salinity
stress can produce a variety of physiological and metabolic changes in the stressed plants
during all growing stages starting from germination, the photosynthesis process, and other
biosynthetic processes [5,35,36]. The level of crop response to soil salinity differs, ranging from
sensitive, moderately sensitive, moderately tolerant, and tolerant depending on the properties
and characteristics of the individual crops [37]. There are many suggested mechanisms to adapt
cultivated crops to different salty soil environments [34]. These proposed mechanisms include
mediating plant hormone signaling [36,38], regulating ion homeostasis [39], activating the
osmotic stress pathway [40], and regulating cell wall organization [41]. Understanding these
mechanisms, including different physiological, biochemical, and molecular responses to salinity
stress, are considered crucial strategies to improve agricultural crop productivity [42,43].

The current study investigated the story of soil salinity stress, the response of crops
under such stress, the main drivers of these stresses, the expected consequences, and
possible management approaches. Perspectives from both soil science and crop response
to soil salinity will be discussed. Soil salinity management and mitigation approaches
(mainly, the application of nutrients, organic amendments, microbial mitigation, and nano-
management) are important issues in this review and will be highlighted.

2. Methodology of the Review

The current study was conducted due to the importance of the topic “soil salinity
and crop response”. Literature searches were conducted using a selection of keywords:
“soil salinity”, “salt stress”, “crop and salinity”, “soil salinity causes”, “salt-affected soils”,
“salinity and soil biogeochemistry”, “salinity and soil microbes”, “salinity and nutrients”,
“salinity and soil fertility”, “soil salinity and GIS”, “salinity mapping”, “soil salinity man-
agement”, “microbial mitigation of soil salinity”, and “nano-management of salinity”. The
selection of the source literature depended on the significance of each source or journal,
where the reputation and impact factor along with name of the authors and their experience
in the studied field were important criteria. The most important databases searched were
ScienceDirect, Springer, PubMed, MDPI, and Frontiers. The publication year (up-to-date
publications from the last seven years were prioritized) and discipline-specific journals
(related to soil and plant sciences) were important factors. The current project was designed
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to investigate the following questions: (1) What are the main causes, problems, and con-
sequences of soil salinity? (2) What are the direct and indirect links between soil salinity
and different soil subdisciplines? (3) What are the distinguishing features of salt-affected
soils? (4) What is role of GIS and remote sensing in the evaluation and mitigation of soil
salinity? (5) What are the main approaches for salt-affected soil management? (6) To what
extent are nutrients, organic amendments, and microbial approaches effective tools for the
mitigation of salt-affected soils? (7) Is nano-management of salt-affected soils a sustainable
strategy? And (8) what are the suggested mechanisms of crop response to soil salinity?
This review is unique because we are not aware of any other reviews focused specifically
on the questions addressed as relates to nano-management of crops in salt-affected soils.

3. Soil Salinity and Global Issues

The accumulation of soluble salts in soil is referred to as salinization, whereas soil
salinity is expressed as the concentration of soluble salts in soil solutions or extracts by
measuring the electrical conductivity (EC) in dS m−1 at 25 ◦C [44]. This is one of the most
important global issues affecting food security, agricultural production, and environmental
sustainability [7]. Basic information regarding soil salinity is shown in Figure 1. Changing
climates can drive soil salinization through processes such as rising sea levels [45], changing
rainfall patterns [46], increasing air temperature leading to enhanced evaporation [47], and
increased drought events [48]. Recent studies published on global issues related to soil
salinity include a focus on topics such as reducing soil salinization by applying organic
materials that increase net carbon sequestration [49], using drip irrigation [11], and soil-
based technologies [50] for crop production [51].
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Soil salinity is strongly linked to issues including climate change, soil fertility, car-
bon sequestration, food security, and the SDGs. Extended drought periods and rapidly
melting glaciers causing changes in water dynamics have led to a significant decline in agro-
productivity, especially in semi-arid regions [51]. This impact can reduce crop biomass, soil
organic carbon (SOC), microbial biomass carbon (MBC), and the flux of CO2 and CH4 under
soil salinization [49]. The main drivers of soil salinity under climate change are presented in
Figure 2. These drivers of salinization may include the low quality of irrigation water [52],
poor soil drainage [53], increased surface air temperatures [54], the intrusion of salt water
into coastal areas due to global sea level rise [55], and decreased precipitation rates [48]. Soil
salinity may degrade both soils and vegetation [48], hindering global food security [4].

Salt-affected soils are most frequently associated with arid and semi-arid climates,
where the amount of annual precipitation is not sufficient to leach the ions that create
salt-affected soils out of the soil profile. The type of salts that accumulate and where they
are found in the soil profile are determined by the amount of annual average precipitation,
the presence of a source of the salts through either soil parent materials or some external
source (e.g., groundwater, dust deposition, irrigation), and the physical properties of the
soil that regulate water infiltration [56]. However, salt-affected soils can also form in humid
environments given the right set of conditions. For example, sodic soils are found across
southern Illinois in the USA, an area that sees approximately 1220 mm of precipitation per
year. In the case of these soils, it has been proposed that microtopography established by
permafrost during the Wisconsinan glaciation established water distribution relationships
in the soils that allowed for the accumulation of sodium found in the parent materials [57].
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4. Salt-Affected Soil Classification

Salt-affected soils are often classified according to the system developed by Richards [58].
This system is based on a combination of soil pH, the electrical conductivity of the soil
saturation extract (ECe), and the exchangeable sodium percentage (ESP). Using these
indicators, saline soil has a pH < 8.5, ECe > 4 dS m−1, and ESP < 15. Saline–sodic soils
have an ECe > 4 dS m−1 and ESP > 15. And, sodic soils have an ECe < 4 dS m−1,
ESP > 15, and a pH that is typically between 8.5 and 10. It is important to understand the
type of salt-affected soil, because it makes a difference in soil management, mitigation, and
reclamation. While the Richards classification is the most commonly used classification for
salt-affected soils, it is important to note that other classifications exist. These include the
FAO-UNESCO solonchaks and solonetz, which are broadly similar to saline and sodic soils,
and the Russian system [59]. Solonchak (saline) soils have high salinity (ECe > 15 dS m−1)
within 125 cm of the soil surface and are divided into four units (gleyic, orthic, mollic, and
takyric), whereas solonetz (sodic) are sodium-rich soils (ESP > 15) that may include gleyic,
orthic, or mollic subdivisions. US Soil Taxonomy [60], the Canadian soil classification
system [61], and the Australian classification system [62] also include ways of noting salt
accumulation in the classified soils.

It is also important to note that several variables determine how a crop will respond
to salt-affected soils, including the species and variety of the crop and a number of soil
factors [59]. For example, sugar beet and durum wheat are fairly salt tolerant, with little
reduction in yield as ECe increases from 0 to 7 dS m−1. However, maize, soybean, tomato,
and broad bean are much more sensitive to soil salinity, with maize undergoing a rapid
decline in yields once ECe reaches about 2 dS m−1, soybean about 2.5 dS m−1, tomato about
3 dS m−1, and broad bean about 3.5 dS m−1 [63]. Therefore, while 4 dS m−1 is a commonly
used indicator of saline soils, it is not a particularly useful value when estimating the
performance of a given crop. Another classification of saline soils is based on electrical
conductivity and the expected impact on crop growth given that conductivity (Table 1).

Table 1. Soil salinity classes based on expected influence on crop yield. Table based on Stavi et al. [2].

Soil Salinity Class Electrical Conductivity (dS m−1) Crop Response Example Crop Tolerance
Level (dS m−1) *

Non-Saline 0–2 No yield loss Maize (1.7)
Slightly Saline 2–4 Yield is reduced in sensitive crops Peanut (3.2)

Moderately Saline 4–8 Most crops experience
reduced yields Sorghum (6.8)

Strongly Saline 8–16 Only tolerant crops produce
viable yields Rye (11.4)

Very Strongly Saline >16 Only halophytes perform well Halophytes

* Crop tolerance level to soil salinity (ECe, the threshold value) according to FAO [37].

5. Soil Salinity from the Perspective of Different Soil Subdisciplines

All soil subdisciplines can be linked to soil salinity from different points of view. Low
levels of salinity (0–2 dS m−1) are not harmful to many cultivated crops, but higher levels
(>4 dS m−1) can cause considerable yield loss depending on crop tolerance, and several
types of physiological, nutritional, and molecular damage can be realized [1]. In this section,
three of the soil subdisciplines will be explored in detail to understand their links to soil
salinity. Other soil science subdisciplines are briefly addressed in Figure 3.

Soil microbes have a promising role in the mitigation of soil salinity through the allevi-
ation of and reduction in oxidative stress by endophytic and rhizospheric microbes [64]
and in acting as significant selective agents on their host plants [65] in an eco-friendly
approach [42]. The nutrient uptake by plants under salinity stress is controlled by the
salinity level, ions present, plant species, and soil amendments. This depends on soil
properties including soil pH and other biological, physical and chemical properties which
control the bioavailability of nutrients to be taken up by the plants [66,67]. This may reflect
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many approaches related to soil fertility and plant nutrition in the mitigation of soil salinity
through integrated nutrient management [68]. The interplay between different soil science
branches and soil salinity can be noted in the biogeochemical perspective of microbial diver-
sity and functions in saline soils [69]. Planting salt-tolerant crops is an effective approach,
but producing new tolerant cultivars is needed [70].
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5.1. Soil Biogeochemistry

Soil biogeochemistry is the science that studies the cycling of elements in the rhi-
zosphere or the agroecosystem through chemical, physical, biological, and geological
processes and the interactions between living and non-living components of soils [71].
This discipline studies the effects of soil salinity on agricultural productivity through bio-
geochemical influences on soil organic carbon, soil microorganisms, land desertification,
greenhouse gas (GHG) emissions, and biodiversity [7]. Topics mainly focus on the impact
of biological, chemical, and geological processes in soil on controlling the dynamics, distri-
bution, and behavior of salts in the rhizosphere and groundwater [72], on one side, and
on cultivated plants on the other [8]. These processes have a large impact on soil produc-
tivity, quality, and degradation [73]. It is important to manage soils in agroecosystems so
that soil biogeochemical processes promote soil health or quality [74]. One common soil
management practice that impacts the relationships between soil biogeochemistry and soil
salinity is the application of organic amendments that increase the complexity of microbial
networks (Figure 4) [75].
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and exchangeable sodium percentage (ESP) and increasing nutrient uptake by plants, soil biological
activity, soil organic carbon (SOC), microbial biomass carbon (MBC), and dissolved organic carbon
(DOC). Adapted from [49,75].

Several studies have investigated the role of organic amendments in mitigating soil
salinity and increasing microbial biomass (MBC), dissolved organic carbon (DOC), the
bioavailability of nutrients (NPK and other nutrients), and the activity of many enzymes
such as catalase, urease, phosphatase, invertase, and phenol-oxidase [76]. Studies into this
relationship have involved applying compost [52], biochar [77], manure [76], vermicom-
post [78], and combinations of biochar and compost [20], biochar and vermicompost [79],
and titanium, gypsum, and biochar composite [80]. Effective management of saline soils de-
pends on reducing the soluble salt content and/or the ESP of the soil and the accumulation
of sodium ions (Na+) in cultivated plant tissues [81]. The influence of OM amendments on
soil pH is variable and depends on the specific characteristics of both amendments and
soils. For instance, biochar can have alkaline pH values that may increase soil pH [95,96].
The expectation is that OM amendments will usually lead to an increase in SMB, SOC, DOC
and available nutrients, as presented in Figure 4 [96–99]. There is still a need for additional
studies that investigate soil biogeochemistry and how it interacts with salt-affected soils.
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5.2. Soil Microbiology

Soil microbes are very important to soil health or quality. Important functions car-
ried out by microbes include the decomposition of organic matter, nutrient cycling, C-
sequestration, and promoting soil fertility (Figure 5). Soil microbiology in saline soils
mainly focuses on the relationship between soil salts and microbial structure, abundance,
and activities. The mitigative role of microbes on cultivated plants under salinity stress is
a very important issue [8,82,83]. The main soil microbial taxa that enhance the tolerance
of cultivated plants under salinity stress include arbuscular mycorrhizal fungi (AMF),
Trichoderma spp., Pseudomonas spp., Bacillus spp., Enterobacter spp., and Serendipita indica [8].
Plant–microbe interactions in salt-affected soils alter the rhizomicrobiomes in ways that
promote plant growth [84]. This microbial role has been applied successfully under treated
wastewater irrigation in saline soils during the cultivation of bioenergy crops [85]. Building
microbial communities able to enhance plant growth under salinity stress through the use
of OM is a crucial objective or strategy [86]. There is still a need for considerable research
into the role and function of soil microorganisms in salt-affected soils.
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5.3. Soil Fertility and Plant Nutrition

Although sodium, chloride, calcium, magnesium, and other ions have important
roles in plant nutrition, the high content of Na+ and/or Cl− in salt-affected soils can
cause stress in cultivated plants. Elevated levels of other nutrients (Ca, K, Mg, etc.) can
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also cause nutrient imbalances, negatively affecting crop yields [100]. Salinity can reduce
enzyme activity [87], soil respiration [88], soil microbial biomass [89], and the bacterial
growth rate [90], all of which influence biogeochemical cycling [91] which impacts soil
fertility [9,92]. Soil salinity stress is aggravated in polluted environments, where cultivated
plants suffer from soil nutrient and water uptake that are insufficient to meet their needs [90].
Extra stress on cultivated plants has been documented in saline soils polluted with heavy
metals [93] and organic pollutants [94]. The combination of salinity and pollution can form
high redox potential values, which control the release/uptake/desorption of pollutants
(e.g., As, Cd, Cu, Pb, and Zn) [93]. Polluted saline soils also complicate remediation efforts,
as treatments intended to alter microbial biomass/activity, release/degrade pollutants, and
change nutrient or contaminant bioavailability may not function the same way as they do
in non-polluted or non-saline soils [94].

6. GIS, Remote and Proximal Sensing, and Salinity Mapping

Mapping salt-affected soils using traditional soil survey techniques can be diffi-
cult [101,102]. The combination of geographic information systems (GIS) with geospatially
referenced remote and/or proximal sensing techniques and spatial statistics has opened
new opportunities in the delineation of such soils [103,104], which in turn has promise for
improving crop production [105]. Electromagnetic induction (EMI) and electrical resistivity
(ER) are the most common proximal sensing techniques used to map salt-affected soils [2].
EMI induces eddy current loops in the soil using an electromagnetic field to determine
the apparent electrical conductivity (ECa). A major advantage of EMI is that it does not
require soil contact [106]. The combination of EMI data with models to convert the ECa
values to measures of soil salinity or sodicity and spatial statistics within a GIS can allow
for accurate horizontal and/or vertical representations of the salt content in soils [102,106].
Electrical resistivity is the inverse of ECa. Resistivity data are collected using electrodes that
contact the soil to measure the drop in electrical potential. The spacing between electrodes
influences the depth to which data are collected, and multiple electrodes on one instrument
can collect data at multiple depth intervals. Electrical resistivity is the oldest and probably
most widely used proximal sensing technique to determine soil salinity [107].

Remote sensing uses a variety of air- and space-based platforms to collect spatiotem-
poral environmental data. Platforms such as Landsat, Sentinel 1 and Sentinel 2, MODIS,
Advanced Land Observing Satellite (ALOS), and Phased Array L-Band Synthetic Aperture
Radar (PALSAR) have been used to successfully map soil salinity. Remote sensing tech-
niques are often combined with other data sources, such as topographic information, an
analysis of soil samples from select locations in a study area, data on land use and land
cover provided by, for example, the European CORINE database [104], or proximal sensing
data such as EMI [108]. It is common to use indices based on spectral bands to map soil
salinity. The use of vegetation indices (VI) such as NDVI, SAVI, ARVI, SARVI, and EVI
is common, and salinity indices (SI) have also been developed [108]. Machine learning
regression techniques and environmental covariates have been employed to improve on
soil salinity mapping and modeling with both proximal and remote sensing [108,109].
Proximal and remote sensing approaches provide much more data for a lower cost than tra-
ditional field sampling and laboratory analysis approaches, which is a decided advantage.
However, the ground-truthing of proximal and remote sensing data remains crucial, as
these techniques provide a composite of soil and other environmental factors and therefore
are not able to completely replace field sampling, descriptions, and laboratory analysis
of soils [104,106,110].

7. Salt-Affected Soil Management

Salinity has deleterious effects on the soil–plant system, which reduces agro-productivity.
Soil salinity management is a great challenge facing all countries that have salt-affected soils
(Figure 6). There are many approaches for soil salinity management including the tradi-
tional methods (deep tillage, subsurface drainage, leaching, drip irrigation, gypsum appli-
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cation, etc.) and the application of mineral nutrients/beneficial elements, microbial, agents
and nanomaterials [1,50]. There are approximately 952 million ha of salt-affected soils
globally (Figure 7), which represents about 33% of global agricultural land potential [111].
Management is important to crop production in these soils. In general, the suggested
approaches to soil salinity management can be classified into the following groups [50]:

1. Physical approaches (e.g., deep tillage, leaching, subsurface drainage, etc.)
2. The application of inorganic nutrients (e.g., K, Ca, Mg, Se, Si, etc.)
3. Microbial mitigation such as plant growth promoting microbes (PGPM), arbuscular

mycorrhizal fungi (AMF), etc.
4. Organic amendments (biochar, compost, vermicompost, humic substances, etc.)
5. Nano-management (nano-Se, nano-Si, nano-TiO2, nano-ZnO, nano-CuO, nano-C

dots, etc.)
6. Remediation approaches (phytoremediation, phyto-desalination, bioremediation,

biological reclamation, etc.)
7. The growth of salt-tolerant crops, which mainly depends on plant species.
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Plants have ways to cope with soil salinity via alterations in phyto-biochemical path-
ways and changes in chromosomal structures, depending on the degree of adaptation, to
reduce salinity stress [1]. Mitigation may include stimulating the antioxidant enzymes
(e.g., ascorbic peroxidase, catalase, polyphenol oxidase, glutathione reductase, peroxidase,
superoxide dismutase, etc.), inducing phyto-hormones (e.g., cytokinin, ethylene, jasmonate,
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abscisic acid, etc.), regulating ion uptake (mainly Na+), modulating the photosynthetic
pathways, and promoting osmolyte biosynthesis such as proline, polyamines, and glycine
betaine [1]. Highly complex mechanisms protect the main processes in plants, such as
respiration, photosynthesis, and water uptake [1]. This section will discuss the manage-
ment of salt-affected soils, nutrient application, microbial and organic amendments, and
nano-management of soil salinity.
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7.1. Reclamation of Salt-Affected Soils

There are multiple ways (techniques) of using high quality water for salt washing, and
numerous studies address this issue. With flushing, the primary goal is to dissolve salts off
the soil surface and allow them to run off the affected field with the water. When leaching,
the goal is to move salts through the soil profile so that they are below the rooting zone.
Leaching also requires a subsurface drainage system that prevents water from moving
back into the root zone through capillary rise and bringing the salts back with it [2]. There
are negative environmental effects from flushing and leaching. The water used to flush or
leach salts from soil can increase salinity in the rivers that water is discharged to [113], and
important plant nutrients such as K, Ca, and Mg can be leached from the soil as well [2].

Sodic and saline–sodic soils often have poor soil structure due to aggregate dispersion
by Na. Therefore, it is important to build the structure using cations such as Ca2+ that
are typically supplied by gypsum [114] or similar byproducts [115]. The structure allows
water to pass through the soil for leaching, and the Na ions displaced from the soil cation
exchange sites combine with SO4

2− from the gypsum to form leachable Na2SO4. The
salt-enriched water that moves into local rivers causes the same issues as the flushing or
leaching of saline soils, and these techniques are also quite expensive [2].

Phytoremediation is another approach to reclaim or mitigate salt-affected soils. A
common theme in phytoremediation is the use of deep-rooted plants with high water
demand. These plants lower the water table, which prevents the translocation of salts into
the root zone via capillary rise. A wide range of plants have been used for this, from a
variety of grasses to alfalfa, shrubs, and trees. A major advantage of phytoremediation is
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the ability to get food, feed, firewood, and other economically beneficial products from the
land as it is being remediated [1].

More recent research into salt-affected soil remediation has sought to take advantage
of capillary rise to bring salts to the soil surface where they can then be removed. This has
been accomplished using crystallization inhibitors and wicking materials. Crystallization
inhibitors placed on the soil surface induce salt crystal growth at the surface. These crystals
can then be removed, effectively removing salts from the soil. Wicking materials have
fine pores that move water into the wicking material via capillary action. The water then
evaporates, leaving its salts in the wicking material, which can be removed from the
site. While both crystallization inhibitors and wicking materials have shown promise in
laboratory studies, there is a need for field experiments to evaluate the applicability of
these methods in agricultural and other field settings [116].

7.2. Nutrients for Salt-Affected Soil Mitigation

Plant nutrients and beneficial elements can be utilized to mitigate the effects of saline
soil. Essential nutrients for plant growth such as K, S, Ca, and Mg are frequently used, as
are beneficial nutrients like Si and Se. The main ways that nutrients mitigate salinity stress
are summarized in Table 2. These mechanisms involve (1) reducing the uptake of Na+ by
plant roots and reactive oxygen species (ROS) accumulation, (2) increasing the activity
of enzymatic antioxidants, e.g., catalase (CAT), superoxide dismutase (SOD), ascorbate
peroxidase (APX), and glutathione reductase (GR), (3) preventing membrane degrada-
tion and osmotic injury, (4) enhancing photosynthetic pigment contents (chlorophyll and
carotenoids), and (5) upregulating antioxidant enzyme encoding genes [117]. Applied
nutrients can also support cultivated plants under irrigation with saline water, as has been
reported for alfalfa [118], onion [119], and dry bean [120].

Table 2. The role of selenium and silicon in mitigating salt stress in soil, irrigated water, and exogenous
salt stress.

Plant Species Applied Nutrient Dose Salinity Level Effects Refs.

Squash
(Cucurbita pepo L.)

Foliar Se (24 mg
per plot = 16.5 m2) EC = 9.45 dS m−1

Minimized ROS; reduced Na+

uptake; improved photosynthetic
capacity, leaf integrity, nutrient

homeostasis; enhanced
antioxidant enzymes (CAT, SOD)
and enzymatic gene expressions;
and regulated Na+ homeostasis

[117]

Dry bean
(Phaseolus vulgaris L.)

Foliar Se at 5 and
20 ppm

Irrigation water at
EC = 0.6, 1.6, 3.0, and

4.8 dS m−1

Se foliar application can reduce
negative impacts of salinity during
dry bean production which may
differ in case of seed coating or
direct application to soil. The
applied foliar Se at 5 ppm was

better than 20 ppm in improving
plant growth under salinity stress

[120]

Pea (Pisum sativum L.) Calcium silicate
(14% Si)

Exogenous salt at
5 dS m−1 NaCl

Si promoted high soluble protein
content, plant biomass, and yield
because it reduced Na+ transport

[121]

Cucumber
(Cucumis sativus L.) 1.5 mM Si as K2SiO3

Exogenous salt at
75 mM NaCl

Si inhibited salt stress by reducing
shoot Cl− and Ca2+ contents in

cucumber shoot seedlings grown
in deep water culture

[122]
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Table 2. Cont.

Plant Species Applied Nutrient Dose Salinity Level Effects Refs.

Watermelon
(Citrullus lanatus L.) Silicon (4 mM) Saline water at

3 dS m−1

Combined arbuscular mycorrhizal
fungi and Si promoted growth,
antioxidant enzyme activities,

yield parameters, and pigment
and mineral content

[123]

Cucumber
(Cucumis sativus L.) Silicon at 200 mg L−1 EC = 4.49 dS m−1

Si mitigated salinity under heat
stress by increasing Si content in

leaves; regulating water losses via
transpiration, and increasing the

uptake of N, P, K, Mg, and Se

[24]

Sweet basil
(Ocimum basilicum L.)

Foliar and soil Si
applied at 100 ppm

Salt applied at 1.5, 3.0,
6.0, and 9.0 g NaCl

kg−1 soil

Applied Si maintained
photosynthetic pigment, water
status, ion homeostasis, redox

status; alleviated oxidative injury;
and upregulated antioxidant

enzymes

[124]

Strawberry
(Fragaria × ananassa Duch.)

Se applied at 1 mg L−1

(Na2SeO4)
Salt applied at
40 mM NaCl

The combined application of H2S +
Se inhibited free radicals by 84%,

promoted vitamin C, anthocyanin,
and antioxidants (CAT, SOD, POX)

content, reduced MDA content,
and protected the

photosynthetic system

[125]

Millet
(Panicum miliaceum L.)

Se at 1, 5 and 10 µM as
Na2SeO3

150 mM NaCl

Se enhanced antioxidant enzymes
(SOD, CAT, APX, and GR),

decreased H2O2 content, and
regulated Na+ transporters

[126]

Faba bean (Vicia faba L.) Foliar Se at 2.5, 5.0, 7.5,
and 10.0 mg L−1 EC = 6.26 dS m−1

Se at 5 mg L−1 alleviated plant
oxidative stresses, produced the

highest yield and related
components and had the greatest
nitrogenase activity and lowest

MDA values

[13]

Abbreviations: Reactive oxygen species (ROS), malondialdehyde (MDA), catalase (CAT), superoxide dis-
mutase (SOD), and peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), electrical
conductivity (EC).

Many plant nutrients and beneficial elements have been reported to be effective in
the mitigation of salt stress in nano form, including selenium, silicon, titanium oxide,
and zinc oxide. Silicon can alleviate salinity stress by enhancing tolerance mechanisms
at different plant growth stages of deposition or uptake as mono-silicic acid [127]. Many
reviews have documented silicon’s role in combating salt stress such as mediating crop re-
sponse to salinity [128], enhancing biochemical and physiological processes in plants [129],
supporting rhizospheric microbe communities [130], and alleviating drought and salinity
stress in crops [130,131]. Alleviating salt stress with Si can be achieved by decreasing lipid
peroxidation and oxidative stress and improving ion homeostasis and photosynthetic abil-
ity [129]. Other plant nutrients and beneficial elements exhibit similar behaviors, including
potassium [132], selenium [133], and calcium [80].

7.3. Microbial Mitigation of Salt-Affected Soil

The rhizosphere is a crucial biological hotspot in soil. Biological activities in the
rhizosphere include many microbial and plant enzyme activities, and the microbial counts
are enormous. Typical populations in rhizospheric soil are 109, 107, 106, and 103 bacteria,
actinomycetes, fungi, and algae per gram of soil, which is around 50–100 times higher than
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the bulk soil [134]. Soil microbes can support cultivated plants in their mitigation of salinity
stress (Table 3; Figure 8). These soil microbes may include arbuscular mycorrhizal fungi
(AMF), Trichoderma spp., Serendipita indica, Enterobacter spp., Bacillus spp., Pseudomonas
spp., and others [8]. Soil mitigation, remediation and restoration of salt-affected soils using
microbes have received considerable attention. Several organic amendments (e.g., farm
manure, biochar, and bio-organic fertilizers) have the ability to alleviate soil salinization by
increasing the complexity of microbial networks, altering plant responses to salt-affected
soils [75]. The role of halotolerant rhizobacteria in the mitigation of soil salinity stress also
has certain mechanisms, which may include improving the photosynthesis rate, producing
antioxidants, facilitating the accumulation of osmolytes, decreasing Na+ ions, maintaining
water balance, enhancing the germination rate, and maintaining well-developed plant
fractions (e.g., roots and shoots) under salinity stress conditions [135]. The ameliorative
impact of bio-organic fertilizers for crop production in salt-affected soils has also been
demonstrated, e.g., in [19,136]. PGPB can support cultivated plants under salinity stress by
degrading ACC (the enzyme 1-aminocyclopropane-1-carboxylic acid) deaminase, which
acts as a precursor of ethylene in all higher plants. The mechanism of salt stress tolerance
might be linked to the synergetic functioning of ACC deaminase, which produces bacilli
as bioinoculants and facilitates the accumulation of trehalose [137]. More studies on the
contribution of PGPR to salinity stress tolerance in crops can be found in [138–140].

Table 3. Response of soil microbial communities to soil salinity under different agricultural practices
or environmental conditions, as reported in some studies published during the first half of 2023
regarding plants grown in salt-affected soils.

Main Microbes Environmental Conditions Main Findings Refs.

Bacterial and fungal
communities

Salinized grassland soils
(pH 9.31 and EC 3.93 dS·m−1)

Natural restoration decreased the salinity of
grassland soils (pH to 8.32 and soil EC

1.36 dS·m−1), improved soil fertility and the
abundance of bacterial and fungal phyla

Acidobacteria increased, whereas Ascomycota
decreased, respectively.

[141]

Bacteria and fungi Coastal salt marsh ecosystem
in a microcosm experiment

Bacilli had high salt tolerance, while Bacteroidota
was more sensitive. SOM can regulate salt stress
by controlling microbial activities, metabolism,

and C-sequestration in coastal salt marshes.

[142]

Fungal decomposers

Soil microcosm study
incorporating wheat and

maize straws under
salinity stress

Straw increased soil DOC, SOC, NH4
+-N and

MBC contents but reduced NO3
−-N, and fungal

diversity. It strengthened the fungal
decomposers Cephalotrichum and Coprinus and
Schizothecium under light and severe salinity

[143]

Soil microbial community Abandoned salinized
farmland

The reclamation of abandoned salinized
farmland can be promoted by the activity of soil
microbes by improving soil’s physical properties

(FC, Ks, BD), nutrient status, and microbial
metabolic activity (CAT and UR)

[89]

Prokaryotic dominated
community

Climate-smart land use in arid
saline soils

Treated wastewater irrigation amended with
gypsum promoted the cropping system

(switchgrass and sorghum) due to a
copiotroph-dominated prokaryotic community

and the buildup of SIC and SOC stocks for
C-sequestration

[85]

Halophilic micro-organisms Saline soils in semi-arid and
arid Mediterranean regions

Sustainability in marginal reclaimed soils under
Mediterranean climate can be achieve with

plant-based technologies and soil halophytes
(bacteria and AMF)

[50]
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Table 3. Cont.

Main Microbes Environmental Conditions Main Findings Refs.

Soil bacterial and fungal
community

Salt-affected anthropogenic
alluvial soil (field experiment)

Vertical rotary tillage mitigated soil salinity by
increasing salt leaching, macro-aggregates, and

organic carbon. Soil microbial communities
shifted through the evolution of microbes better

adapted to the altered micro-habitats.

[144]

Soil microbial community Coastal saline–sodic soil
polluted with microplastics

Microplastic type, dose, and size decreased soil
microbial diversity (fungi are more sensitive
than bacteria). Polyethylene had a stronger
negative impact than polypropylene on the

saline–sodic soil ecosystem.

[145]

Soil bacterial community Salinized soil polluted with
dibutyl phthalate

Pollution and salinity stress changed the
structure/composition of the bacterial

community, soil invertase and β-glucosidase
enzyme activity, and soil C cycle.

[146]

Soil bacterial (B) and fungal
(F) community Saline–sodic soil

Lignite bioorganic fertilizer promoted soil
microbial communities (B+F), stability, functions,

Ks, and sunflower–microbe interactions by
altering core rhizo-microbiomes under

saline–sodic conditions

[84]

Actinomycetes and fungal
community

Salinized oil-polluted
coastal soils

Bio-amendments (biochar, SMS) enhanced the
degradation of crude oil pollution by enhancing
bio-stimulation, bio-augmentation, mitigating

microbial community abundance, and
promoting physical/chemical properties of

the soil

[94]

Soil bacterial community Salinized soil in a microcosm
experiment

Integrated microbial approach for sustainable P
and soil salinity management through integrated

utilization of P-accumulating bacteria and
P-solubilizing bacteria via P-leaching by
promoting soil aggregation and alkaline

phosphatase levels

[82]

Halophilic bacteria Saline–sodic soil

Applying marlstone and cultivating Jerusalem
artichoke reduced salinity stress by increasing

halophilic bacteria (e.g., Thioalkalivibrio and
Thiohalobacter), DOC, N-fixation capacity, and

soil aggregates

[147]

Abbreviations: dissolved organic C (DOC), soil organic C (SOC), microbial biomass C (MBC), bulk density (BD),
saturated hydraulic conductivity (Ks), field capacity (FC), catalase (CAT), urease (UR), soil inorganic carbon (SIC),
arbuscular mycorrhizal fungi (AMF), spent mushroom compost (SMS).

7.4. Organic Amendments

Organic amendments applied to salt-affected soils (i.e., saline, sodic, and saline–sodic
soils) have been effective in mitigating soil salinity stress for plants and microorganisms.
Several kinds of organic amendments have been utilized, such as compost, manure, and
biochar, all of which represent crucial sources of SOM which increase the complexity of
microbial networks and promote nutrient uptake by plants and soil microbial activity in salt-
affected soils [75]. The mitigation of soil salinity stress with organic amendments has been
reported with biochar and its composite materials e.g., in [80,148–150]. Examples of the
effects of biochar and its combination with other amendments on cultivated plants under
salt stress are shown in Figure 9. There are many modified biochar (BC) forms, including
ordinary BC, nanoparticle (NP)-sized BC, acidified BC, and acidified NP-BC [151]. To
improve crop production in salt-affected soils, it is recommended that biochar be applied
in combination with other amendments such as BC + fertilizers [152], BC + titanium
gypsum [80], sulfur-modified BC [153], Ca-modified BC [154], BC and polyacrylamide [155],



Soil Syst. 2024, 8, 11 16 of 29

Fe-modified BC [152], silica modified BC [156], BC and humic acid [157], and BC-based
nanocomposites [158].
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7.5. Nano-Management of Salt-Affected Soils

Soil salts cause deleterious impacts on crop productivity due to oxidative stress that
results from the generation of ROS. This weakens the plant’s defense system, causing lipid
peroxidation, plasma membrane destruction, and DNA deterioration [27]. Nanomaterials
have been shown to be anti-stressors and can mitigate soil salinity stress through multiple
mechanisms (Figure 9). These mechanisms may include improving the ability of stressed
plants to retain K+ and exclude Na+, producing nitric oxide, maintaining ROS homeostasis,
increasing α-amylase activity, and decreasing lipoxygenase activity [159]. Examples of
the role nanomaterials have in mitigating salt stress are presented in Table 4. The appli-
cation of nanomaterials to promote tolerance in stressed plants has received a great deal
of attention recently. Nanomaterials have shown potential as an effective, economical,
and sustainable approach for efficient agro-production. Nanomaterials have the ability
to increase plant tolerance to salt by protecting the photosynthesis process, detoxifying
ROS, and alleviating ionic and osmotic stress [159]. Nanomaterials that have been investi-
gated to improve the tolerance of salt-stressed plants include nano-selenium [28], nano-
gypsum [29], nano-biochar [158], silica nanoparticles (NPs) [26], cerium oxide NPs [160],
carbon nanodots [30], titanium dioxide NPs [161], carbon nanotubes [162], and nano-
zinc [15]. In general, nanomanagement has become an important approach in modern

https://www.flaticon.com/free-icon/
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farming to reduce stresses such as salt stress [163], drought stress [164], and soil degrada-
tion stress [165], and has been shown to be a possible sustainable solution for the mitigation
of climate change [166].

Soil Syst. 2024, 8, x FOR PEER REVIEW 25 of 38 
 

 

 
Figure 9. Impact of biochar (including nano forms) and its combination with other amendments on 
mitigating plant stress in salt-affected soils. Sources: [150,159]. Images from 
https://www.flaticon.com/free-icon/, accessed on 22 September 2023. 

7.5. Nano-Management of Salt-Affected Soils 
Soil salts cause deleterious impacts on crop productivity due to oxidative stress that 

results from the generation of ROS. This weakens the plant’s defense system, causing lipid 
peroxidation, plasma membrane destruction, and DNA deterioration [27]. Nanomaterials 
have been shown to be anti-stressors and can mitigate soil salinity stress through multiple 
mechanisms (Figure 9). These mechanisms may include improving the ability of stressed 
plants to retain K+ and exclude Na+, producing nitric oxide, maintaining ROS homeostasis, 
increasing α-amylase activity, and decreasing lipoxygenase activity [159]. Examples of the 
role nanomaterials have in mitigating salt stress are presented in Table 4. The application 
of nanomaterials to promote tolerance in stressed plants has received a great deal of 
attention recently. Nanomaterials have shown potential as an effective, economical, and 
sustainable approach for efficient agro-production. Nanomaterials have the ability to 
increase plant tolerance to salt by protecting the photosynthesis process, detoxifying ROS, 
and alleviating ionic and osmotic stress [159]. Nanomaterials that have been investigated 
to improve the tolerance of salt-stressed plants include nano-selenium [28], nano-gypsum 
[29], nano-biochar [158], silica nanoparticles (NPs) [26], cerium oxide NPs [160], carbon 
nanodots [30], titanium dioxide NPs [161], carbon nanotubes [162], and nano-zinc [15]. In 
general, nanomanagement has become an important approach in modern farming to 
reduce stresses such as salt stress [163], drought stress [164], and soil degradation stress 

Figure 9. Impact of biochar (including nano forms) and its combination with other amendments on
mitigating plant stress in salt-affected soils. Sources: [150,159]. Images from https://www.flaticon.
com/free-icon/, accessed on 22 September 2023.

Table 4. Examples of the roles nanomaterials (nanonutrients) can take in mitigating salt stress.

Plant Species Nanomaterial Dose Soil Conditions Suggested Effects Refs.

Safflower
(Carthamus tinctorius L.)

BNC-MgO +
BNC-MnO at 25 g kg−1

soil
EC = 6 and 12 dS m−1

Nanocomposites improved the
growth of roots and shoots by
enhancing nutrient uptake by
plants, lowering soil SAR, ESP,

and osmotic stress, and decreasing
salt toxicity

[167]

Rice (Oryza sativa L.) Foliar-applied Si-NPs
(20 mg L−1) Salts at 100 mM

Exogenous Si-NPs alleviated salt
stress toxicity and promoted

carotenoids, chlorophyll content,
total soluble protein content, and
antioxidants (CAT, SOD, POX);
Si-NPs protected plants from

oxidative stress by triggering the
expression of HKT genes

[168]

https://www.flaticon.com/free-icon/
https://www.flaticon.com/free-icon/


Soil Syst. 2024, 8, 11 18 of 29

Table 4. Cont.

Plant Species Nanomaterial Dose Soil Conditions Suggested Effects Refs.

Common bean
(Phaseolus vulgaris L.)

Bio-Si-NPs (2.5 and
5.0 mmol L−1) EC = 7.8 dS m−1

Bio-Si-NPs at 5 mmol L−1

decreased malondialdehyde,
electrolyte leakage, and heavy

metals (Pb, Cd, and Ni) in leaves
and pods of beans compared to the

control grown on polluted
saline soils

[169]

Cucumber
(Cucumis sativus L.)

Bio nano-Se at
25 mg L−1 EC = 4.49 dS m−1

Bio nano-Se increased K+ content
in leaves, regulated osmotic

balance, and controlled stomatal
opening under both soil salinity

and heat stresses

[24]

Rapeseed
(Brassica napus L.)

ZnO-NPs at 25, 50, and
100 mg L−1 Salts at 150 mM

ZnO-nano-priming enhanced the
development of seedlings via

reducing ROS accumulation, the
biosynthesis of pigments, osmotic
protection, increasing antioxidant
enzymes, and enhancing economic

yield under saline conditions

[170]

Rapeseed
(Brassica napus L.)

Se (IV) or bio-Se-NPs at
50, 100 and

150 µmol L−1

Salts at 150 and
200 mM

Biological Se-NPs were preferable
in improving phenotypic

attributes, germination rate,
photosynthetic efficiency and

osmolyte accumulation versus Se
(IV) for seedlings without any

toxicity under salt stress

[171]

Rice (Oryza sativa L.) Zinc sulphate NPs (5
and 10 mg kg−1 soil) Saline–sodic soil

ZnSO4-NPs (10 mg kg−1) were
recommended to promote rice

growth and yield under salinity
stress due to improved soil

chemical properties (SAR and pH),
uptake of nutrients, and enhanced

physiological attributes

[27]

Maize (Zea mays L.) Nano-rock phosphate
at 1140 P kg ha−1

Reclaimed soil
(pH 8.39, ECe
3.84 dS m−1)

Suitable P-solubilizing bacteria
increased the efficiency of
nano-rock phosphate by

promoting P-mobilization and/or
solubilization and increasing root

carboxylate secretions and
P-biochemical fertility due to

decreased rhizosphere pH

[172]

Tomato
(Solanum lycopersicum L.)

Functional carbon
nanodots at 8 and

16 mg kg−1 (FCNs)

Saline–sodic stress
(EC = 4.9 dS m−1)

The nano form alleviated stress on
tomato growth and productivity

due to the up-regulating of
photosynthesis, increasing

antioxidants, enhancing osmotic
adjustment, promoting uptake of
nutrients, increasing soil enzyme
activities, and decreasing soil pH

and salinity

[30]

Pumpkin
(Cucurbita pepo L.)

Nano-priming with
TiO2 (60 ppm)

Irrigated with
saline–sodic water

(5.2 dS m−1)

Nano-priming resulted in the
highest values of proline, SOD,
TAC, and K+/Na+, respiration,

and the lowest values of Na+ and
MDA under saline soil

(4.8 dS m−1)

[173]
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Table 4. Cont.

Plant Species Nanomaterial Dose Soil Conditions Suggested Effects Refs.

Maize (Zea mays L.)
Nano-soaking (40, 60

and 80 ppm) of
TiO2-NPs

200 mM NaCl in a
culture system

Nano-priming at 60 ppm was the
most effective dose to mitigate salt
stress on seedlings by increasing

K+ uptake, the relative water
content, total phenolic and proline

contents, and SOD, CAT, and
PAL activities

[174]

Strawberry
(Fragaria × ananassa Duch.)

ZnO-NPs (15 and
30 mg L−l) Salts at 35 and 70 mM

15 mg L−l alleviated stress by
decreasing accumulated toxic ions

and increasing CAT, POX, K+

uptake, proline content, and leaf
anatomical features

[175]

Abbreviations: Total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), pheny-
lalanine ammonia lyase (PAL), biochar-based nanocomposite (BNC), electrical conductivity (EC).

8. Crop Response to Soil Salinity and Mechanisms

Salts in soil have detrimental effects on functional processes in both soil and plants.
Soil physico-chemical (e.g., BD, infiltration, aeration, soil water potential, soil aggregates,
soil fertility) and biological (e.g., soil enzyme and microbial activity and biodiversity)
properties are negatively impacted by high soil salt content [2,176]. Salt-affected soils
cause biochemical, physiological, and molecular alterations in crops (Figure 10) [1,177].
The negative impacts of salt-affected soils on crop production can be mitigated through
soil management techniques. Many of these techniques are focused on enhancing soil
properties, such as soil structure and soil nutrient ratios. Amendments applied to the soil to
achieve this include gypsum and related compounds [76], biochar [154], compost [52], earth-
worms [178], microbial inoculants [50], vermicompost [79], and electro-remediation [179].
Other approaches to improve plant response to salinity stress include afforestation [180],
seed priming [173], genetic improvements to crops [181], using crops that are salt tolerant
(halophytes) [50], and agroforestry [182]. Some approaches depend on utilizing both soil
and plant management in a synergic manner [50].

Several mechanisms have been suggested to explain how plants are able to mitigate
stresses imparted by soil salts [40]. The pathway of any suggested mechanism primarily
depends on the applied materials and management approaches used. However, certain
groups of physiological, biochemical, and molecular plant attributes are responsible for
driving these mechanisms. In general, the mechanisms include activating the osmotic stress
pathway, regulating ion homeostasis, mediating plant hormone signaling, and regulating
the cell wall composition [36,40,43,183,184]. Si-NPs have been shown to alleviate salinity
stress in rice plants by triggering physiological and genetic repair mechanisms [168]. The
plant gene transporters of both Cl− and Na+ are linked with salinity tolerance which may
vary from species to species and/or even within cultivars [185]. The control of Cl− uptake
and its translocation in plants is due to slower loading into the xylem, root efflux, and
intracellular compartmentation [185].

Plant response to salt stress is primarily through ionic and osmotic stress. This leads
to the formation of many signals in plants, including the hyperosmolality of Na+, the
accumulation of Ca2+, the activation of ROS signaling, and the alteration of phospholipid
composition. These signals can activate plant adaptive processes to alleviate salt stress
through maintaining an ion balance and osmotic homeostasis, inducing phytohormone
signaling and regulating cytoskeleton dynamics and the cell wall structure [184]. High-
affinity potassium transporters (HKTs) have been broadly characterized in different plants
and have been shown to play a critical role in salt tolerance by excluding Na+ ions from the
sensitive shoots of plants, mediating Na+ import due to their transport selectivity, and they
may mediate Mg2+/Ca2+ permeability across the plasma membrane of plant cells [183].
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Therefore, several mechanisms can be illustrated for each applied amendment or approach
that are linked to particular genes.
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High concentrations of salt ions can change the ion concentrations in the plant cell
wall, which are sensed by specific receptors or sensors such as receptor-like kinases (RLKs)
and glycosyl inositol phosphoryl ceramide (GIPC). These sensors can activate signal-
ing pathways such as the salt overly sensitive (SOS) pathway to re-distribute ions and
achieve homeostasis [6]. Osmotic potential forms from changes in the balance between
ion concentrations inside and outside of plant cells, a process which is monitored by spe-
cific sensors such as nicotinamide adenine dinucleotide phosphate (NSCCs), through the
high-osmolarity glycerol (HOG) pathway to regulate the synthesis of organic osmolytes
(e.g., betaine and proline). Osmotic homeostasis is achieved via the uptake of ions. Plants
generate and accumulate ROS through plasma membrane-bound nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase under saline conditions, which manages ROS
homeostasis through secondary metabolites [6].

9. Conclusions and Future Perspectives

As demonstrated in this review, there is still a crucial need for more information about
crop production in salt-affected soils and a number of issues that need additional investiga-
tion. These include: (1) Reliable, accurate mapping of global salt-affected soil distribution.
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It is important to know the spatial extent of each subtype of these soils (e.g., saline, sodic,
and saline–sodic) to allow appropriate management and mitigation efforts to maximize
crop production. Proximally and remotely sensed data that are georeferenced with GPS,
analyzed with advanced spatial statistical techniques, and mapped with GIS show promise
to help with this. (2) Saline soils have historically been determined by measuring electrical
conductivity, which is quick, easy to measure, and inexpensive. However, there are many
different ions involved in saline soils, and the exact challenges facing crop production
depend on the types of ions present and their individual concentrations. Electrical con-
ductivity does not provide this information. There is a need to identify easy and relatively
inexpensive methods to provide information on the types and relative abundance of differ-
ent ions present in saline soils. (3) It is important that we continue to investigate how the
soil microbiome can contribute to crop production in salt-affected soils. (4) Nanotechnology
shows great promise in promoting crop production in salt-affected soils, but these studies
are in their early stages, and both the pros and cons need additional study, including the
potential negative environmental effects of the use of nanomaterials. (5) It is possible to
remediate salt-affected soils, but traditional techniques based on flooding, leaching, and
structure building are often expensive and can create their own environmental issues.
Opportunities like phytoremediation, crystallization inhibitors, and wicking materials need
additional investigation. It is also important that more innovative research is conducted on
salt-polluted soils, such as those impacted by petroleum production.

Crop production under soil salinity faces many global issues, especially in the era of
climate change. These issues may impact the production of different crops, both from crop
variety (e.g., maize, wheat, rice, etc.) and crop use (e.g., food, energy, and forage crops)
perspectives. The global scientific community should work on saving arable lands for these
necessities. Sustainable solutions for global food, energy, and water security and the SDGs
must be prioritized. These strategies should be built on the nexus of water–energy–food
along with a focus on soil security.
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