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Abstract: In the conservation of monumental heritage, the collection and utilization of information are
of primary importance. The Heritage Building Information Modeling (HBIM) procedure harnesses
the potential of three-dimensional models, offering significant advantages in accessing documenta-
tion, interoperability, multidimensionality of intervention design, cost evaluation, and maintenance
management. Our attention here is focused on the Certosa di Pisa (Italy), a large historical complex
built in the 14th century as a monastery of the Carthusian Order, currently in a state of deterioration
and in need of restoration and re-functionalization. The multifaceted nature of this monumental
complex, with its intricate interplay of architectural elements spanning different historical periods
and featuring diverse techniques, poses a significant challenge for structural safety assessment. This
case study presents an opportunity to explore an HBIM approach to streamline the diagnostic process
and facilitate the intervention design phase. The goal is achieved by utilizing an accurate 3D model
enriched with data from multiple sources and automating certain operations for a simplified safety
assessment of masonry structures under both gravity and seismic loads. The usefulness of the HBIM
methodology is highlighted as a valuable tool in the realm of cultural heritage structures for both
practitioners and scholars alike.
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1. Introduction

In recent decades, significant progress has been made in the field of two- and three-
dimensional digital representation, enabling the acquisition of precise models for docu-
menting existing architectural heritage. The generation of 3D models can be achieved
through various techniques, including solid modeling, which can be handled directly or
parametrically controlled, as well as meshes created through triangulation of point cloud
coordinates [1]. These different techniques are typically used in combination, as none of
them individually can guarantee high levels of accuracy, automation, realism, and model
manipulation capabilities while ensuring cost- and time-efficiency for surveying and pro-
cessing [2]. There are many examples showing the application of these techniques in the
field of cultural heritage, facilitating the high-resolution reproduction of historical struc-
tures and objects, as well as the development of integrated interfaces for the documentation
and presentation of multimedia content [3].

Contemporary systems allow not only representation, but also the possibility of en-
riching 3D models with additional information, thus enabling the creation of ontological
models [4,5]. However, when it comes to historical buildings, more research efforts are
needed to effectively manage the numerous and diverse information regarding the con-
struction history, transformations, materials, and state of conservation. A potential solution
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to address these challenges is provided by Building Information Modeling (BIM) systems.
BIM does not refer to a specific object (namely, the 3D model) or software, but rather denotes
a collaborative process for producing and managing structured digital information. The
goal is to create a shared database that goes beyond traditional representations, constituting
a semantically enriched model that centralizes the collection and exchange of information
between stakeholders throughout the entire life cycle of construction [6].

The application of the BIM process in the context of heritage buildings is known as
Heritage or Historical BIM (HBIM) [7]. HBIM involves modeling building elements as
objects in a database library and processing large amounts of data from various sources.
While BIM is well established in the new construction sector, its use in historical building
contexts is relatively new but is progressively expanding due to its significant advantages,
such as quick access to documentation, interoperability in the analysis, multidimensionality
in the design phase, ease of cost assessment at each stage, and improved management of
maintenance and interventions. In fact, having an informed digital model of the building
enables experts to have a comprehensive view that works as a starting point to identify
structural and conservation deficiencies and to simulate different scenarios of intervention.
Review papers [8,9] illustrate the increasing interest in HBIM among researchers.

Unlike the BIM process, which commonly leverages the combination of elements
chosen from a library usually already possessing information, HBIM implies the creation
of a model of the construction, with which data are subsequently associated. The HBIM
process primarily involves a reverse-engineering operation that transforms survey data
into a digital representation of the structure. This process generally consists of three stages:
information acquisition, which entails surveying the geometry and relevant features; infor-
mation processing, which involves creating the actual proprietary model; and data fusion,
which incorporates additional information into the model. During this final stage, the
potential of the HBIM process for information management in historical architecture be-
comes evident. The model can systematically incorporate both quantitative and qualitative
data, allowing for easy extraction when needed. Furthermore, the ability to accommodate
diverse data types and sources promotes collaboration among professionals working on the
same asset in different capacities. A comprehensive and well-organized catalog of gathered
data can play a vital role in different aspects of building restoration and management,
offering valuable assistance, especially during operational phases [10]. This information
often spans various disciplinary domains, and correlating diverse datasets can stream-
line the generation of analyses. Furthermore, the potential exists to employ a dynamic
model that remains continually updatable and expandable, fostering collaboration among
professionals in different roles [11]. The utilization of semantically enriched 3D elements
enables navigation through the model, accompanied by data such as photographs, links,
descriptions, and 2D drawings. Additionally, querying the model facilitates the creation
of thematic maps [12]. This comprehensive approach serves as an effective solution for
synthesizing, organizing, and storing information, which is essential for knowledge acqui-
sition and decision-making in conservation projects. In this interdisciplinary setting, HBIM
methodologies emerge as a promising and efficient tool for the preservation of historical
assets [13]. They provide an effective approach to understanding, preserving, and restoring
historical architecture, with the potential for centralized management of all documentation.
In recent years, some experiments have been conducted in this regard [14–17]. Works have
demonstrated the advantages of applying the method to complex and multilayered his-
torical buildings, highlighting the transformations caused by restoration work. In [18], an
application for studying the architectural history and conservation status of the Cathedral
of St. John the Theologian in Nicosia, Cyprus, is presented, while Ref. [15] focuses on
managing non-geometric information in HBIM and translating the traditional conservation
procedure in the interesting case of the Cathedral of Parma (Italy).

The HBIM method has recently been used for preventive conservation [19,20], restora-
tion project development, and structural analysis [19,21] of ancient constructions of various
types and materials. Among these, we can mention its application to the ancient Library of
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Salamanca (Spain) for preventive conservation [19], the cloister of Saint-Guilhem-le-Désert
(France) [22], and the Four Courts Palace (Ireland) [23] for surveying and representation of
architectural heritage. In [24], HBIM was used for collecting and organizing data related to
the degradation of existing timber structures; more generally, in [25], the main literature
contributions using HBIM for managing data from diagnostic activities and monitoring of
existing structures and infrastructure are reported. Similarly, in [26], HBIM was applied for
the control and monitoring of the structural safety of the ancient metal bridge O Barqueiro
in Galicia (Spain).

Some attempts have aimed to integrate safety assessment into HBIM, using the model
as the basis for evaluating the structural performance of the construction. In [27], the
algorithm E-PUSH, a computational method to assess the vulnerability of existing masonry
buildings [28], was implemented in connection with the BIM model via Grasshopper [29].

Finally, in [30] and [31], the digital representation of the built environment and the
management of documentation are addressed, respectively, aiming for better utilization
of BIM projects through the use of portable tools and the creation of as-built projects for
structures and infrastructure.

The capabilities of integrating HBIM with GIS have also been explored [9], leveraging
the strengths of this powerful tool that serves various purposes in geographic and urban
contexts, including risk control, planning, analysis, and visualization [32].

For a comprehensive overview of the current state of HBIM implementation and
research trends, Ref. [33] provides a valuable review of the existing literature, and Ref. [34]
reports an analysis of the scientific literature, with insight into the growing number of
experiments conducted by scholars in the field of heritage buildings.

At present, numerous BIM platforms are employed by professionals for tasks such
as modeling, visualizing, assembling, and managing architectural heritage knowledge.
However, despite the increasing applications of BIM technologies in HBIM workflows, the
discipline still lacks a standardized approach to HBIM’s implementation. This limitation
restricts the application of BIM technology and hinders the realization of associated benefits
in the research and preservation of historical structures.

The present work is part of a preliminary study carried out by a multidisciplinary
group of experts from the University of Pisa to evaluate the structural safety of the Certosa
di Pisa (Italy), a monastery of the Carthusian Order established in the 14th century. The
monumental complex, currently in a state of severe deterioration, needs restoration and
re-functionalization. This study, focused on the southwestern section of the Certosa, offers
the opportunity to explore the application of the BIM methodology. Emphasis is placed
on the structural aspects, which require specific strategies to automate some operations
for the safety assessment of the historical and artistic structures in a seismic-activity-prone
area. The objective of this work is to find a methodology for synthesizing and organizing
information to identify critical issues, plan the necessary interventions, and evaluate
their technical feasibility. A procedural framework is established for carrying out the
structural analyses through an operational process that can be easily extended to the entire
monumental complex. This article outlines the fundamental phases of the realization of
the model and highlights the characteristics that make it a valid tool in the knowledge
acquisition phase and in the planning of rehabilitation and restoration interventions.

2. Materials and Methods
2.1. The Certosa di Pisa

The Certosa di Pisa is a large historical complex located in the Municipality of Calci,
a small town near Pisa. In the Val Graziosa, on the slopes of Monte Pisano amidst olive
and cypress trees (Figure 1), the Certosa was originally established in 1366 as a monastery
of the Carthusian Order of San Bruno [35]. It underwent significant enlargement between
the 17th and 18th centuries, resulting in its current Late Baroque appearance (Figure 1).
Currently, the site is partially used by the University of Pisa, managing the Museum of
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Natural History, and partially by the Ministry of Culture, overseeing the National Museum
of the Monumental Charterhouse of Calci.
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The complex comprises multiple buildings, each serving specific functions (Figure 2).
The western façade houses a building aggregate known as Case Basse, which spans ap-
proximately 150 m and consists of two aboveground stories. This structure hosted various
services for the charterhouse, including the pharmacy, San Sebastiano Chapel, and the
parlor, which were accessible to residents as well. In front of the Case Basse there is the
actual cloistered monastery, an imposing three-story edifice with the main façade facing
west, separated from the Case Basse by a large green area called Corte d’Onore. At the
center of the complex there is the church, originally built for the exclusive use of the monks.
The church features a grand double-ramp staircase, a magnificent façade covered in white
marble and decorated on the tympanum by a statue of the Assumption surrounded by
angels (Figure 2).

Next to the church there are the sacristy, the chapels, the chapter house, the lodgings
for the lay brothers, and the buildings dedicated to rural activities. At the rear of the
church there is the Great Cloister (Chiostro Grande), lined with the fifteen cells of the
monks (Celle dei Padri), as well as the worship rooms, the refectory, and the chapter house.
Other cloisters in the southwestern portion are the Chapter House Cloister (Chiostro del
Capitolo), overlooked by the chapel, and the Granduca (or Foresteria) Cloister (Chiostro
del Granduca o della Foresteria), surrounded by the dwellings of the lay brothers.

By around 1390, essential spaces for Carthusian life had been completed, including
the church with several chapels, the chapter house, a portion of the monks’ cells in the
Great Cloister, the cells for the lay brothers, the refectory, and the kitchens [36,37]. In the
second half of the 14th century, there was a primarily decorative activity, which came to a
halt at the end of the 15th century, when the monastery experienced a period of economic
hardship due to renewed tensions between Pisa and Florence. In the early 17th century, a
significant renovation phase ensued, involving modifications and expansions of the rooms
around the Granduca Cloister, along with the addition of new cells in the Great Cloister. In
this period, alterations were also made to the Case Basse, and a new entrance was created
in line with the church.

The final significant construction phase that shaped the current appearance of the
Certosa di Pisa took place in 1764. In this period, the Corte d’Onore was nearly doubled in
size, a bell tower was erected (which remained unfinished), and a large granary was built in
the northern area of the complex. However, starting from 1809, the Carthusian community
had to face increasingly unfavorable political and economic circumstances, which led to
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a deep crisis and the near cessation of building activities. Following the suppression of
religious orders by Napoleon Bonaparte, the Certosa lost all of its properties, and the monks
were compelled to leave.
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After the restoration of ecclesiastical communities by Leopold II, the Carthusians
returned as secular monks, and some restoration work was carried out. However, after
the definitive suppression of religious orders upon the establishment of the Kingdom of
Italy, all assets were transferred to the State Property. Fortunately, the law recognized the
immense value of the monastic complex, declaring it to be of monumental importance.
This fact contributed to the preservation of the Certosa di Pisa from alterations by private
individuals, unlike what happened to other Italian Carthusian monasteries.

In 1869, a portion of the southern area was entrusted to the Royal Conservatory of
Sant’Anna, resulting in some transformations that were later reversed. From 1871, for
almost a century, the monks were allowed to remain in the monastery but were compelled
to share the space with other institutions. In 1888, the Carthusian monastery temporarily
served as an artillery unit, and in 1915 the non-monastic portion was used as a barracks,
followed in 1916 by a reserve hospital and from 1917 to 1919 by a hospital for prisoners of
war of the Austro-Hungarian army. In 1972, the last monks definitively left the Carthusian
hermitage, which in 1979 was partially assigned to the University of Pisa and transformed
into a museum. Currently, the complex is managed jointly by the University of Pisa, which
occupies most of the rooms in the northern section as the Museum of Natural History,
and by the Ministry of Culture, with the National Museum of the Monumental Certosa di
Calci, which occupies most of the rooms in the southern section. The cells of the monks
are managed by both administrations: the northern cells are managed by the Ministry of
Culture, and the southern ones by the University of Pisa. The ground floor and the second
floor of the monastery are mainly used as exhibition spaces that are open to the public,
with some areas intended for storage and warehouses. Additionally, certain rooms on the



Heritage 2024, 7 1855

second floor serve as offices for university staff, and there are accommodations available
for staff members in the Case Basse.

At present, the buildings of the Certosa di Pisa are generally in a state of decay, with
considerable deterioration in the timber floors, roofs and, in some cases, in the masonry
materials. This deterioration is often caused by factors such as water infiltration from roofs
or rising damp from the ground, both capable of significantly compromising the integrity of
the masonry. Furthermore, the fragmentation of governance, stemming from the existence
of two separate administrations, is having a detrimental impact on resolving these critical
issues, ultimately exacerbating the deterioration.

The University of Pisa recently acknowledged the necessity of restoring and re-
functionalizing the entire complex. They initiated an extensive study, engaging various
experts within the university. The southwestern area was selected as a case study for a pilot
project, focusing on the cenobitic region, the Granduca Apartments, the Granduca Cloister,
and the Chapter House Cloister.

2.2. Investigation of the Southwest Portion of the Certosa di Pisa

Investigating the structures of the monumental complex required significant effort
due to their large dimensions, numerous construction phases, and transformations with
various uses over time, as well as the extensive decorative elements covering most surfaces.
In 2018, a survey campaign was conducted, employing both manual measuring and laser
scanners. Additionally, a series of onsite tests were planned and executed to identify the
construction elements and their interconnections accurately. To achieve this, specific forms
were prepared containing the test list, indicating the position and purpose of each test,
describing the room where the test would occur, and recording the presence of decorative
elements within it. The forms also included details about equipment, execution methods,
estimated costs, and priority levels for each investigation. The survey aimed to characterize
the main masonry typologies in the area, utilizing the Masonry Quality Index (MQI)
method [38] to estimate strength values for each masonry type. The materials identified
include bricks for the vaults and walls, sandstone for the columns of the cloisters, and
locally sourced stone, primarily quartzite from the nearby Monti Pisani, used for the general
masonry. Three main masonry macro-categories were identified: stone masonry with
irregular geometric bond patterns, mixed stone and brick masonry with chaotic geometric
bond patterns, and brick masonry with lime mortar. Due to the limited number of tests,
the masonry was also mapped by analogy, where the identified masonry typology was
extended to areas believed to belong to the same construction phase. A similar approach
was also taken for vault types, as investigating their internal structure was often impractical.
Additionally, connection deficiencies between wall panels at the interface of different
construction phases were hypothesized and later verified through specific investigations.
Extensive explorations of the roofs were conducted, with attempts made to assess the
physical and mechanical properties of the timber whenever feasible. Concurrently, load
values were measured in approximately forty metal tie-rods. This provided an opportunity
to employ innovative techniques using acoustic measurement [39]. The investigation
included analyzing crack and deformation patterns, creating a three-dimensional geometric
model for exploration, and assessing material types and their continuity. These efforts
greatly facilitated the identification of underlying causes of instability symptoms, structural
deficiencies, potential active mechanisms, and primary seismic vulnerabilities.

Based on these observations, intervention proposals were formulated, and additional
investigations were recommended to evaluate their feasibility. In this context, the HBIM
played a crucial role by synthesizing all collected data and enabling their visualization
on the three-dimensional model. The HBIM model has proven invaluable for synthe-
sizing information and guiding decision-making regarding intervention strategies and
further investigations.
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2.3. Creation of the HBIM Model: A Workflow for Semantic Modeling and Data Fusion

The southwestern portion of the Certosa has a volume of approximately 40,500 m3.
The creation of the HBIM model entailed three primary phases: information acquisition,
data processing, and data fusion, all executed using Autodesk Revit (r. 2020) [40] and Au-
todesk AutoCAD (r. 2020) [41] software. The geometric survey conducted by the A.S.T.R.O.
Laboratory at the University of Pisa primarily relied on a three-dimensional point cloud
generated from a Leica Scan Station C10 laser scanner (Figure 3). In instances where sup-
plementary information was required, manual measuring was conducted, complemented
by archival research.
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The point cloud data were imported into Autodesk ReCap Pro (r. 2020) [42] for
cleaning and segmentation, streamlining their management and processing. Subsequently,
each region of interest was exported in the .rcp format, compatible with Autodesk Revit.
The digitized survey was seamlessly integrated with the direct geometric survey to im-
prove accuracy, furnish references, conduct detailed surveys, and correct deficiencies in
shaded areas.

Thematic data acquisition was conducted concurrently to align with the objectives of
the HBIM model. This involved identifying the construction time of structural elements;
determining masonry, vault, and floor types; assessing deterioration conditions and ma-
terial pathologies; documenting the symptoms of instability of the structures, including
cracking and deformation patterns; and mapping the positions of the performed in situ
tests. A scan-to-BIM approach was employed, which entailed the creation, manipulation,
and positioning of native BIM components in direct reference to the point cloud.

The considerable number of obstacles and furnishings, together with the complexity
of the architectural structure, made identifying shapes quite challenging. Converting 3D
scanning data into editable solid CAD models required cloud segmentation and shape
reconstruction, which in this case could only be achieved manually. Furthermore, the
limitations in Revit’s capabilities for creating complex shapes meant that the construction
of three-dimensional objects was executed primarily by generating parametric shapes on
a case-by-case basis. Customized content was indispensable due to the unique nature
of architectural heritage elements, unlike the standardized components typically found
in new constructions. Freeform modeling programs, such as Autodesk AutoCAD, were
utilized to model and mesh complex geometric elements like vaults and cracks using
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NURBS geometry. As for vaults, 3D generating curves extracted from the point cloud were
utilized to create surfaces, which were then processed and meshed (Figure 4). Each surface
was individually modeled, resulting in a total of 205 units. This process involved tracing
construction lines and creating a Revit family file (.rfa) up to its final placement within
the structure. During this phase, the simplification of geometry inevitably led to a loss
of information, such as irregularities on wall or vault surfaces. To address this, the three-
dimensional points detected within the file were preserved, enabling useful comparisons
with the simplified geometry when necessary (Figure 3c). The resulting model is depicted
in Figure 3d. Once the geometry of all components was established, additional relevant
data and information were incorporated in a structured manner, associating them with each
individual BIM element. Following the processing phase, an extensive digital database was
developed, compiling the documentation and information generated during the survey
work, which were then refined and synthesized according to specific procedures.
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The model was designed to receive and store any data relevant to it. In contrast to a
new construction project, where necessary parameters are typically pre-implemented in
BIM software, incorporating customizable attributes is often required for existing build-
ings. These attributes can be integrated into the model to accommodate various types of
information as needed. To achieve this, new project parameters are added to existing items
concerning the properties of various elements. These are obtained by defining the name
and type of the parameters, the section under which the parameters will be grouped and,
finally, the category to which they will refer.

Constructing the database necessitated designing data entry methods tailored for his-
torical buildings. For instance, a workflow was devised to streamline the three-dimensional
modeling of cracks, totaling approximately 480 cracks, and their subsequent integration
into the HBIM model. These cracks were modeled based on visible traces in the point cloud,
supplemented by an extensive photographic survey capturing the vertical and vaulted
surfaces to unveil connections between vertical and horizontal crack patterns.

The development of the HBIM model encompassed a thorough workflow integrating
diverse software tools and methodologies to capture and integrate both geometric and
thematic data, culminating in a refined digital representation of the historical construction.

To represent cracks on construction elements with complex geometry, such as vaults, a
process was devised. Initially, the vault mesh was superimposed onto the point cloud using
Autodesk AutoCAD. Cracks were delineated using spline curves, which were subsequently
extruded to generate surfaces. Within the Revit model, cracks were positioned after defining
a new generic metric model family in the Autodesk Revit .rfa file format. On vertical walls,
cracks were directly drawn in Revit using solid modeling functions. The point cloud was
superimposed on the model to accurately trace the course of the crack, aided by detailed
photographic documentation collected onsite. Extrusion along the traced path yielded the
creation of an additional element.
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The outcomes of the conducted testing investigations, along with their corresponding
executive reports, were seamlessly integrated into the model. Specialized forms were
utilized for this purpose, showcasing the position of each test in plan, offering images, and
providing graphical representations of the surrounding structures, encompassing their
historical transformations. The survey results were presented in conjunction with geometric
dimensions of the structures or surveyed stratigraphy. Figure 5 depicts the form filled out
with data related to investigation number 9. As can be observed in the figure, the general
form contains both information about the investigation and details about the surrounding
environment and the historical uses of the room where the investigation took place. This is
useful for the approval of the test by the responsible Superintendence Office, for which the
general information form is intended.
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Figure 5. The form related to investigation 9.

The database’s logical organization was established to utilize the design parameters,
indexing the location of each element by floor, room, and element unit, along with technical
and descriptive characteristics. Information regarding imported elements and the relation-
ships between them was meticulously entered along with the results of the onsite tests.
Logical markings, such as rectangles denoting tests on vertical elements with corresponding
masonry typology, circles representing tests on vaults, and dots indicating the degree of
connection between adjacent walls, were employed for this purpose (Figure 6).
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2.4. Automation of Structural Analyses in the BIM Environment

Another objective of this study was to devise automated and updateable calculation
procedures in a BIM environment for the safety assessment of masonry structures. For
this purpose, the simplified analysis of masonry walls under static loads was chosen
according to the Italian standard [43]. To evaluate seismic safety, limit analysis based
on the kinematic approach with rigid blocks was selected to predict the Peak Ground
Acceleration (PGA) that may cause collapse of the structure, adopting both force-based
and displacement-based criteria. This appeared correct, recognizing that out-of-plane
mechanisms are often observed in old buildings during shaking, due to some peculiar
characteristics that were also recognized in the present case study: the lack of effective
connections between horizontal structures and walls, or between adjacent walls, as well as
the considerable slenderness of walls, even when such connections are effective.

The goal of analysis automation was accomplished by harnessing BIM’s capabilities
to extract geometric parameters, such as areas and volumes, from the model and adapt-
ing the HBIM methodology accordingly. The initial phase of automating the calculations
entailed enriching the model by integrating all essential information into the BIM envi-
ronment. Primarily, the static assessment of masonry elements necessitates determining
the weights of the overlying structures, along with the loads acting on them and their
respective eccentricities.

The analysis encompassed both dead and live loads. Load influence areas for each
vertical element were identified and depicted by horizontal entities with specific stratigra-
phy. Subsequently, the BIM elements were enriched by inputting design parameters from
various categories, including geometric dimensions, layer thickness, and the self-weight of
the constituent materials.

Once parameter values were assigned, querying the HBIM model generated real
tables, referred to as abacus views, containing information derived from the properties
of individual elements, such as the loads acting on each element and their corresponding
eccentricities. However, due to Revit’s inability to perform cross-object operations (opera-
tions involving parameters of different objects), an external program was necessary: in this
case, Microsoft Excel (r. 16.0.) [44]. The connection between Revit’s property tables and the
corresponding data tables in the Excel sheet was established using a plugin called Ideate
BIMLink (r. 2020) [45]. This facilitated the automation of the procedure and streamlined
updates based on new survey campaigns.

Following the guidelines outlined in the Italian Building Code (Section 4.5.6, [43]), the
safety assessment of masonry elements under vertical loads was performed on ten sections
of 1-meter-wide masonry walls.



Heritage 2024, 7 1860

Regarding the seismic collapse mechanisms, the automation encompassed both linear
and nonlinear verifications. Potential mechanisms were initially identified, taking into
account the unique characteristics of the building, including construction phases, three-
dimensional crack patterns, and the presence of effective metal tie-rods or other safety
measures in critical areas. The main mechanisms involving the top portions of the structure
were selected. Due to uncertainties regarding the degree of connection between orthogonal
wall elements and between floors and the façade, the simple or compound overturning
of panels around a hinge with a horizontal or inclined axis was preferred, assuming
one-sided connection of the panel. To streamline this analysis, in order to automatically
extract the coordinates of the centroids of all bodies involved in the kinematic motion,
a program was developed utilizing Autodesk Dynamo© (r.1.0) [46], an open graphical
programming software platform that manages geometrix parameters. These coordinates
were then exported to specially designed Excel spreadsheets.

3. Results and Discussion

The results obtained from the model are manifold and demonstrate its ability to
provide the technician with a comprehensive view of the structure and the symptoms of
instability, thereby facilitating the formulation of intervention proposals and highlighting
any new knowledge needs. Structural diagnosis is facilitated through three-dimensional
modeling, but also, and above all, through the integration of information from various fields,
including historical analysis, surveys, onsite tests, and crack patterns. The safety assessment
phase leverages the results of the previous phase and some simple automatic procedures
that can be implemented on the model. Finally, the formulation of design proposals is
enabled with the contribution of all collected information and a geometric model capable
of accommodating both intervention needs and new knowledge requirements that may
arise, both in view of the implementation of the same design ideas and from the results of
structural analyses.

3.1. The Knowledge Phase

The resulting model collects various information on structures such as floors, vaults,
and masonry walls; construction phases of the historical building; load measurements
on metal tie-rods; three-dimensional representations of crack patterns on vertical walls
and vaults; and the results of approximately 80 onsite tests. The model allows one to
generate plans, elevations, sections, detail drawings, and tables. The first interesting
result is the representation of load-bearing elements. This product, which facilitates the
understanding of the organization of the structural system, represents the first step towards
the diagnosis and planning of interventions, especially in such a complex context of spaces
and shapes. Figure 7 displays two examples of three-dimensional views of the horizontal
structures—those of the attic rooms and the first floor, respectively—accompanied by tables
containing detailed information on each element.

Simultaneously, it is possible to create views depicting the structures built during
specific time periods, providing information about the construction phases. Figure 8 shows
the built environment in the first and second phases, with elements constructed during
each period highlighted in red.

HBIM also facilitates the collection and synthesis of information relating to tests
on materials and structures. In addition, the model includes details such as images,
observations, geometric data, and results obtained. The example depicted in Figure 9
shows an axonometric view of a section of the building’s west side, viewed from the
interior, with details regarding the location and results of onsite tests provided within the
accompanying documentation.
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Figure 8. The first two construction phases of the Certosa di Pisa.

A virtual tour implemented in an HTML environment not only allows designers to
navigate smoothly within the model and explore its geometric features, but also enables
them to access and read the information contained within the model. This not only enhances
the perception of space but also activates sensitivity towards the structure’s static behavior.
Figure 10 showcases a screenshot of the virtual tour of the Granduca Cloister, highlighting
a hotspot that enables visualization of the results of an onsite test with plaster removal,
allowing exploration of the underlying geometric bond pattern.
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Figure 10. Screenshot of a virtual tour of the Granduca Cloister.

The materials map represents a second important outcome achieved once the fusion
of data in the model has been completed, in preparation for the structural analysis phase.
The materials map is obtained by incorporating experimental and survey data, along with
a variety of indirect information deduced from the analysis of the building’s evolution over
time [47]. Figure 11 illustrates the map of masonry macro-categories on the first-floor plan,
annotated with indications of the various construction periods.

In this study, masonry was classified into three main categories: M1, M2, and M3, along
with subcategories based on the constituent materials of the units and their arrangement.
The initial phase of the structural diagnosis of the southwest portion of the Certosa relied
heavily on this outcome. It was supplemented by information concerning issues affecting
the structures, materials, and decorative elements. In this context, the model showcases its
ability to visualize the crack pattern in three-dimensional mode, displaying them on both
faces of the walls through the transparency option.
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Figure 11. Map of wall macro-categories—first-floor plan of the study area.

Through cutaways and elevations, it is possible to observe the correspondence of
cracks on both surfaces of the same wall and between adjacent walls. This is crucial for
conducting structural diagnoses, especially in complex situations, providing significant
assistance in interpreting symptoms of instability, potential local mechanisms, or deteriora-
tion. Figure 12 shows some significant perspective images from the HBIM relating to the
Granduca Cloister, the vault of the ancient refectory, and other portions of the southwestern
side of the monastery furrowed by well-visible cracks.
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Widespread cracks are found near the openings, with clear signs of lintel precarious-
ness, and on the intrados of the vaults, indicating the absence of elements to counteract
thrusts. The availability of a three-dimensional model proved to be very useful for evaluat-
ing crack patterns, especially their correspondence with the observed deformations, which
can be directly deduced from the analysis of the point cloud [48].
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3.2. Structural Safety Assessment

The previous considerations were useful for analyzing the maintenance status of
the southwestern portion of the Certosa, as well as the safety of the structural elements,
highlighting various problems, including deterioration of materials and specific situations
that must be promptly addressed to guarantee the building’s safety, as well as regarding
seismic actions.

In this context, automating structural analyses within a BIM environment can help pro-
vide an initial overview of areas in need of more detailed assessments. In Figures 13 and 14,
some results are shown regarding the static analysis of the masonry walls and the seismic
analysis of the collapse mechanisms, respectively. In Figure 13, a graduated color bar from
green to orange represents the safety level of each wall panel under gravity loads: green
indicates safety levels higher than 2, while orange indicates values close to 1. Figure 14
shows some portions of masonry that could be affected by seismic collapse mechanisms.
These include the loggia at the southwestern corner and decorative elements on the upper
part of the façade, visualized in the HBIM, along with the numerical results included
in the object’s property sheet. Overall, the seismic analysis revealed high vulnerability,
particularly in slender elements, vaults supporting partitions, and upper portions of walls
at elevated positions.
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In general, the structural safety assessment showed that the horizontal structures
are mostly insufficient in their original sizing and lack a suitable degree of safety where
deterioration has weakened the materials or made thrust-counteracting elements ineffective.
Furthermore, the lack of connection between adjacent walls, whether belonging to the same
construction phase or to different phases, was found throughout the building, making it
particularly vulnerable to seismic activity.

In this case, limit analysis based on the kinematic approach appeared advantageous
because it is particularly simple and easily automatable, thus making it extendable to a
very large number of elements. However, as shown in [49], all current analysis methods
for identifying potential mechanisms fail to provide realistic predictions, including this
one. This makes it clear that more efforts should be employed to improve knowledge and
develop methodologies that provide predictions closer to the real behavior of masonry
structures. Other seismic vulnerability factors, such as vertical discontinuities of the walls,
poor construction quality, and numerous historical modifications, were identified almost
everywhere. However, there is uncertainty in assessing the extent and quality of the
materials and the load-bearing sections, and in determining the exact position of loads. The
analysis indicated no pathologies related to soil behavior affecting the entire building, but
it generally highlighted high seismic vulnerability of the structures.

3.3. Intervention Design and New Knowledge Needs

Based on the results of the structural safety assessment, it is possible to devise in-
tervention proposals, as well as new knowledge needs, where onsite analyses and safety
evaluations do not result in a reliable conclusion. The preliminary consolidation project
includes interventions addressing recurring issues to achieve structural safety and reduce
seismic vulnerability. These interventions include the reconstruction of timber floors with
degraded or undersized members, employing the same materials and techniques when
individual element replacement is ineffective. Additionally, the project entails the instal-
lation of additional metal tie-rods in vaults, particularly when absent or existing ones
are inefficient. It is also crucial to reduce the load of filling materials on the vaults. Re-
inforcement options for the in-folio vaults of the roof include reinforced mortar overlay
or fiber-reinforced materials, taking into consideration the preservation of decorations on
the intrados. Partitioning walls should be secured to prevent out-of-plane mechanisms
during earthquakes, while those supported by the vaults may need to be demolished or
made safe, potentially through active interventions: for example, by hanging them on a
new load-bearing structure.

The database enables interactive three-dimensional visualization of structural ele-
ments and critical areas, facilitating the identification of those requiring further analysis or
consolidation interventions. Based on this analysis, critical situations and areas needing
further investigation can be identified and visually represented on synthetic maps. This
aids in depicting the current state and identifying the need for new tests for more in-depth
structural analyses, forming the basis for the subsequent consolidation project. Figure 15
illustrates a sample summary map on the plan of the second floor, detailing major critical
issues, new investigations to be carried out, and the macro-categories of intervention types
proposed in this preliminary study.

Regarding the prioritization of interventions for the mitigation of seismic risk, the
recent findings concerning a methodology to assess the macro-seismic risk of monumental
historical buildings [50] could be incorporated into this model, exploiting the availability
of data collected for the Certosa di Pisa in the present study.
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4. Conclusions

The design of consolidation interventions for monumental buildings is a complex
task that demands an understanding of structural behavior through a multidisciplinary
knowledge process. This process initiates with geometric surveys, delves into the construc-
tion history, analyzes material structures, engages in numerical modeling, and ultimately
culminates in the assessment of structural safety. In such cases, knowledge is not acquired
in a single act following a predetermined method; rather, it is achieved through a series of
successive approximations guided by progressive discoveries and subsequent evaluations.
Given the significant artistic and historical value of the structures, this process necessitates
collaborative efforts involving experts specialized in various aspects of the work. To fa-
cilitate this collaboration, systematically organizing the collected data is crucial, enabling
integration and information sharing among different professionals. Additionally, the intri-
cate shapes and articulated volumes of monumental buildings pose challenges in obtaining
accurate geometric surveys, emphasizing the need for a model capable of rendering data
readable and shareable, thereby enhancing knowledge and ensuring interoperability.

While the model presented in this study primarily focuses on the structural aspect of
the building, it also has the ability to incorporate information about decorative elements,
frescoes, architectural details, and the state of conservation of materials. This flexibility
not only streamlines the design of new survey campaigns but also facilitates interventions
that preserve the artistic value of the property. Furthermore, the integration of virtual
and augmented reality in managing information derived from HBIM opens additional
opportunities for consolidating concentrated information within geolocated interactive
interfaces. This enables immediate consultation and enhances the effectiveness of the
model’s utilization. This application showcases the full potential of the HBIM system in
the consolidation of existing monumental buildings, establishing it as a fundamental tool
to guide the decision-making process in cultural heritage conservation projects.

The HBIM environment is extremely rich in potential and can offer various opportuni-
ties in terms of structural assessment, but also more generally in terms of the conservation
of cultural heritage. Future advancements of this work could involve the development of
algorithms for nonlinear static analyses, to be applied to appropriately simplified models
of the construction under examination within the same environment. The aim is to create
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an informed model that can be used as a database for both the physical/architectural and
the analytical/structural disciplines, preserving all relevant information throughout the
entire life cycle of the construction.
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