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Abstract: Currently, there is significant interest in developing algorithms for processing electrodermal
activity (EDA) signals recorded during sleep. The interest is driven by the growing popularity and
increased accuracy of wearable devices capable of recording EDA signals. If properly processed and
analysed, they can be used for various purposes, such as identifying sleep stages and sleep-disordered
breathing, while being minimally intrusive. Due to the tedious nature of manually scoring EDA
sleep signals, the development of an algorithm to automate scoring is necessary. In this paper, we
present a novel scoring algorithm for the detection of EDA events and EDA storms using signal
processing techniques. We apply the algorithm to EDA recordings from two different and unrelated
studies that have also been manually scored and evaluate its performances in terms of precision,
recall, and F1 score. We obtain F1 scores of about 69% for EDA events and of about 56% for EDA
storms. In comparison to the literature values for scoring agreement between experts, we observe a
strong agreement between automatic and manual scoring of EDA events and a moderate agreement
between automatic and manual scoring of EDA storms. EDA events and EDA storms detected with
the algorithm can be further processed and used as training variables in machine learning algorithms
to classify sleep health.

Keywords: electrodermal activity (EDA); wavelet transform; sleep; EDA events; EDA storms

1. Introduction

Thermoregulation is a delicate task, deviations from a relatively tight temperature
range can lead to organ failure and death. During wakefulness, thermoregulation keeps
brain and organ temperatures in homeostasis. During sleep, thermoregulation aligns
core body temperature (CBT) with the circadian rhythm [1]. Notably, during rapid eye
movement (REM) sleep, a significant reduction in thermoregulatory capabilities has been
observed. This decrease has been explained through energy considerations: during REM
sleep, the brain’s activity resembles wakefulness and it requires more energy, which re-
duces the energy available for thermoregulation [2]. One of the mechanisms used by the
sympathetic nervous system (SNS) to decrease CBT is sweat, which enables heat dissipation
through vaporisation [3]. Abnormal sweat patterns have been observed in connection with
sleep-related breathing disorders [4]. Particularly, obstructive sleep apnoea (OSA) is known
to cause excessive sweating [5]. A person with OSA repeatedly stops breathing [6], which
hinders heat dissipation by means of exhalation and triggers heat dissipation by means of
sweating instead.

Since, during sleep, sweat dynamics vary depending on sleep stage and health condi-
tions, analysing sweat dynamics provides means to determine the latter two. Furthermore,
sweat dynamics strongly relate to SNS activations, which provides a unique opportunity
to study the SNS with minimal external disturbance. A proxy for capturing changes in
sweat production is measuring fluctuations in the electrical properties of the skin caused
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by changes in skin hydration levels. They are measured indirectly either by measuring the
resistance or the conductance of the skin, after externally applying a voltage (exosomatic
method), or by measuring the voltage of the skin without externally applying a voltage
(endosomatic method). One commonly refers to the resulting signal as the electrodermal
activity (EDA) signal [7,8]. Despite being the less commonly used method, the endosomatic
method is easier to implement [9] and provides “more” physiological insight. We refer the
reader to [8] for more details about the two methods.

The first experimental observations of EDA date back to 1860s [7]. However, using
the EDA signal became popular only in recent years due to the rise of wearable devices
able to record EDA signals [9,10]. During wakefulness, the EDA signal has been used
to monitor students’ engagement in the classroom [11], to detect epileptic seizures [12],
to assess task-induced stress [13], and to classify emotions [14], to cite but few applications.
While the use of the EDA signal during wakefulness is relatively well established now,
the use of the EDA signal for assessing sleep is a relatively new field and most algorithms
have been developed in the last two years. During sleep, EDA signals are typically used to
detect sleep stage [15], to predict sleep quality [16], and to predict the presence of OSA [17].

Analysing or scoring EDA sleep recordings mainly consists of detecting EDA events
and EDA storms. EDA events are oscillations in the EDA signal with well-defined ampli-
tude and frequency [18]. These oscillations are not uniformly spread throughout the night.
They are more commonly found in non-REM sleep 2, slow wave sleep (SWS), and late-night
REM sleep [19,20]. Moreover, it has been observed that abnormal EDA patterns are caused
by OSA [21]. EDA storms are time intervals with a significant number of EDA events.
They have been first described by Burch [22] as consisting of “a minimum of 5 galvanic
skin response peaks per minute for ten consecutive minutes of sleep”. Currently, several
alternative definitions, both for EDA events and EDA storms, exist; we refer the interested
reader to [23]. In this work, because we apply the endosomatic method for recording the
EDA signal, we use the EDA event definition given in [18]; that is, we consider changes in
skin potential with amplitude > 50 µV and duration > 1.5 s. The endosomatic method is
less commonly used because it records oscillations that are not only monophasic but also
biphasic or triphasic and, thus, the recorded EDA events are more difficult to interpret. On
the other hand, as mentioned previously, it provides “more” physiological insight. While
for exosomatic recordings, several algorithms for the detection of EDA events have been
developed using signal processing [24], model-based analysis [25], and convex optimisa-
tion [26]; to our knowledge, none have been developed for endosomatic recordings. Note
that several alternative definitions of an EDA event have been proposed in the literature
for exosomatic recordings. A summary is given in [23].

A common problem that affects EDA recordings, particularly ones of longer duration,
is the presence of artefacts in the signal, i.e., the presence of sudden and out-of-scale spikes.
Artefacts have different causes [20]. The most prominent ones are movements during sleep
and a poor connection between skin and electrodes. To address this problem, supervised as
well as unsupervised machine learning (ML) techniques have been proposed for artefact
detection in EDA signals [24,27].

In this paper, we present a novel algorithm for the automatic detection of EDA events
in endosomatic recordings. We use a traditional signal processing approach rather than
a supervised ML one for two reasons. The first one is the relative scarcity of scored
endosomatic EDA sleep signal datasets. Manual scoring of EDA events is traditionally not
performed due to the difficulty of distinguishing EDA events from artefacts, the tediousness
of scoring whole-night EDA signals, and the difficulty of interpreting collected information.
The second reason is that the scoring that provides labels for ML algorithms might be
incomplete or even wrong, due to the complexity of the EDA signal. As in [19], we use
wavelet transforms (WT) to identify and remove artefacts. The basic idea behind wavelet
theory is to decompose the signal into a set of wavelets, which are “brief oscillations”,
in order to describe it [28,29]. After removing artefacts, we use the Fourier transform
(FT) to evaluate the oscillations in terms of frequency and amplitude. We then use the
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definitions given by Sano and colleagues [23] to detect EDA events and EDA storms.
Finally, we validate our algorithm against manual scorings. We use data from both healthy
participants and participants with OSA. The participants diagnosed with OSA had various
severities of OSA, ranging from mild to severe.

The remainder of the paper is organised as follows. In Section 2.1, we present the data
used in this work, the instrumentation used to collect it, and the guidelines used to score
EDA signals. In Sections 2.2 and 2.3, we introduce the theoretical foundations of WT theory
and the definition of EDA events. In Section 2.4, we present the algorithm. Sections 2.5–2.9
describe in detail the different parts of the algorithm and the performance indices used
to evaluate the algorithm in Section 2.10. The results are presented in Section 3 and then
discussed in Section 4. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Data Collection

We used data collected in two different research studies. One dataset consists of
20 scored polysomnography (PSG) recordings from a study carried out in Iceland in 2005 [5];
it contains *.ebm files. The other dataset consists of 30 scored PSG recordings that were
made by the Sleep Revolution Project [30] team in 2021–2022. The recordings were exported
from Noxturnal software (noxmedical.com) as *.edf files [31]. A representative EDA signal
is shown in Figure 1.

Figure 1. A sample raw EDA signal from a single night PSG recording is shown.

EDA manual scoring was performed using either Somnologica software (Somnologica
Science 3.3.1; Flaga Inc., Reykjavik, Iceland) for the 2005 recordings or Noxturnal software
(Nox Medical, Reykjavik, Iceland) for the 2021–2022 recordings. The sleep technologists
applied a high-pass filter with cut-off frequency fh,cuto f f = 0.3 Hz and a low-pass filter
with cut-off frequency fl,cuto f f = 10 Hz. After filtering the signal, they used the following
definition: an EDA event is a change in skin potential > 50 µV and of duration > 1.5 s [5].
Sleep technologists categorised sleep stages using the recommended scoring rules [32,33].
For the automatic signal analysis, segments labelled “awake” were removed.

The data collected in 2005 are described in [5]. Recordings from the Sleep Rev-
olution Project are of persons with either diagnosed or suspected OSA. The average
apnoea–hypopnoea index (AHI) is 14.6, the standard deviation is 14.7, and values range
from 0.9 to 57.3. Both studies received the approval of the National Bioethics Commit-
tee and the Data Protection Authority of Iceland (Sleep Revolution VSN-070). Informed
consent was obtained by participants prior to data collection.

2.2. Wavelet Transforms

In the literature, WTs have been applied to various biophysical signals, such as elec-
trocardiogram and electromyography signals [34,35]. Recently, WTs have been used for
pre-processing EDA signals, particularly for artefact detection [24,36]. By properly choosing
the mother wavelet, we can distinguish those parts of the signal that resemble the shape of
measurement noise or of motion artefacts in order to exclude them.
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In this work, we use the discrete wavelet transform (DWT) and the stationary wavelet
transform (SWT), which is a continuous transform. In the following, we provide a brief
description of the WT; a detailed introduction to wavelets can be found in [37]. The WT is
similar to the fast FT (FFT) or discrete FT in the sense that they are all linear operations.
While the basis functions of FFT are sines and cosines, WTs allow for the use of more
complex basis functions [38]. The other main difference between the FFT and the DWT is
that wavelets are localised in space. The sine and cosine functions used in the FT are not.
Moreover, when using FFT coefficients to reconstruct a signal, sharp changes in the original
signal may cause the appearance of ringing artefacts in the reconstruction, which can be
confused with actual artefacts. A popular mother wavelet used to limit the effect of sharp
changes due to measurement noise is the haar function [27], which is shown in Figure 2.

Figure 2. The figure shows that haar function. We use it to limit the effect of sharp changes due to
measurement noise.

In this work, we employ the SWT for the identification of motion artefacts in the
data. This choice was motivated by the time-invariant nature of these artefacts, as well as
their lack of susceptibility to causing undesirable ringing artefacts. As candidate mother
wavelets, we use the functions db44 and coif3; see Figure 3 and Figure 4, respectively. Both
wavelet functions are frequently used in biomedical applications. Moreover, the coif3
wavelet resemblance the characteristic shape of motion artefacts [36,39].

Figure 3. The db44 function.

Figure 4. The coif3 function.
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After choosing the candidate mother functions, the choice of decomposition level
(DL) is most critical. We use the DL with minimum entropy as recommended in [40].
Additionally, the entropy of a signal is related to the number of coefficients needed to
properly describe the signal [40]. Therefore, choosing the DL with the lowest entropy
allows minimising the number of coefficients needed to represent the signal. In this work,
we considered Shannon entropy as a measure. It is defined by

Esh = −∑
i

y2
i ln(y2

i ), (1)

where y is the signal [40]. For different DL, the Shannon entropy of the signal shown
in Figure 1 is given in Table 1, where the entropy values for db44 and coi f 3 are similar.
Importantly, we obtain similar results for all other EDA signals in the datasets (not shown).
Thus, DL 1, which has the lowest entropy, seems to be the most appropriate for artefact
detection. Since coif3 resemblances the characteristic shape of motion artefacts, we use it
for artefact detection, that is, we exploit the similarity between this mother wavelet and
motion artefacts. Note that the haar function was used to smooth the signal.

Table 1. Shannon entropy for different mother functions and decomposition levels for the signal
shown in Figure 1, measured in bits.

Mother Function DL 1 DL 2 DL 3 DL 4

db44 0.0059 0.0228 0.0815 0.3572

coif3 0.0060 0.0219 0.0789 0.3599

2.3. Events Frequency Range

As mentioned previously, EDA signals can be recorded either exosomatically or
endosomatically. Most devices and wearables, such as the Empatica E4 watch and the
WatchPATTM, record EDA exosomatically. The recorded signal is simpler, because it does
not distinguish between monophasic, biphasic, and triphasic oscillations. However, these
three different types of oscillations have different physiological meanings. Since endoso-
matic recording distinguishes between them [41], it is more valuable from an information
theoretical point of view. The EDA signals considered in this work were recorded endoso-
matically. The procedure is described in the paper by Arnardóttir and colleagues [5].

For an EDA sleep signal oscillation to be considered an EDA event, it must have a
certain duration. In the literature, different values are given for this duration. Edelberg
suggests 1.2 s to 4 s [42], while Venables and Christie suggest 1 s to 3 s [43]. We use these
values to define the following EDA oscillation frequency range of interest:

fs,min =
1

max(3 s, 4 s)
= 0.25 Hz,

fs,max =
1

min(1.2 s, 1 s)
= 3 Hz. (2)

This means that we consider triphasic oscillations that last for around 1 s and monopha-
sic oscillations that last for around 4 s. We assume that significant signal fluctuations of
higher frequencies are either motion artefacts, recording errors, or non-relevant EDA events.

2.4. Algorithm

The algorithm was developed using MATLAB [44]. The respective flow diagram is
shown in Figure 5, while a brief description of the different parts is given in the following.

• Data loading. First, files containing the EDA signal, the manually scored events,
and sleep stages are loaded. After loading, signal pre-processing is performed.

• Signal pre-processing. WTs are used to smooth the original signal, before down-
sampling the signal and applying a band-pass filter. A haar discrete WT (DWT) is
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applied to the filtered signal, detail coefficients are hard thresholded, and an inverse
DWT is applied to obtain a smoothed signal.

• Artefact detection. Motion artefacts are detected using WTs on the non-smoothened
signal. Parts of the EDA signal that strongly resemble a specific wavelet are consid-
ered artefacts.

• Event detection. The pre-processed signal is segmented into non-overlapping time
windows. Then, the FFT is applied to each segment and thresholds are used in the
time domain as well as frequency domain to detect EDA events. Respective parts of
the signal are stored in an array.

• Artefact removal. Signal segments that are considered artefacts are removed from the
above array.

• Wake epoch removal. Signal segments marked as waking periods are also removed.
• Storm detection. Finally, EDA storms are detected using their respective definitions.

2.5. Re-Sampling

The EDA signals from the two different studies are sampled at different frequencies.
The sampling frequency in the 2005 study was 10 Hz, while the one in the study that was
performed as part of the Sleep Revolution Project was 200 Hz. To reduce computational
time, the latter signals are down-sampled to 35 Hz using the MATLAB® function resample.
The Nyquist–Shannon theorem states that it is possible to reconstruct oscillations of 3 Hz
with a sampling frequency as low as 6 Hz. However, such low sampling frequencies cannot
distinguish between the phasic and tonic components and, therefore, lead to a significant
loss of information [45]. Because of this, we down-sample the signals from 200 Hz to 35 Hz.
Note that while a higher sampling frequency guarantees more accurate readings, there are
no phenomena of interest at frequencies > 35 Hz.

Data Loading

Down-Sampling and Filtering

Haar Smoothening

Segmentation

FFT

Threshold Check

Artefact Detection

Wake Epochs Removal

Storm Detection

Figure 5. Flow diagram of the algorithm developed in this work. After applying a band-pass filter,
the signal is processed in two different ways in parallel. One branch is for EDA event detection,
while the other one is for motion artefact detection. The outputs of the two branches are then
merged and artefacts removed. The final steps consist of removing periods of wakefulness and EDA
storm detection.
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2.6. Signal Pre-Processing

As mentioned in the introduction, event detection is performed by evaluating the
results of applying the FFT to 4 s segments. To avoid causing ringing, during the pre-
processing phase, we use the DWT with the haar function as the mother function. Af-
ter computing DWT approximate coefficients and detail coefficients, the latter ones are
hard thresholded by factor t, where

t = σ ·
√

2 · ln(n), (3)

σ is the standard deviation of the detail coefficients, and n is the length of the signal [46].
After hard thresholding, an inverse DWT is applied and the signal reconstructed.

We then apply a bandpass filter, with a range [0.25 Hz–10 Hz], to reduce the contribu-
tion of noise as well as of signal drift. Furthermore, we set the filter upper frequency limit
to 10 Hz to be more consistent with the data collected in the 2005 study. Bandpass filtering
concludes the pre-processing phase.

2.7. Artefact Detection

Applying WT to a segment of the signal that has a shape similar to the one of the
chosen mother wavelet will lead to coefficients with a larger magnitude. Therefore, for arte-
fact detection, we used coif3 as the mother function, since it resembles typical motion
artefacts [36]. After computing the SWT coefficients, they are thresholded and non-zero
signal segments are marked as artefacts. Signal segments with significant high-frequency
contributions—that is, for frequencies > 3 Hz—are considered to be artefacts and are
labelled accordingly. An example of an artefact is shown in Figure 6.

An example of an artefact detected in the frequency domain is shown in Figure 7.
The power spectrum has high-frequency contributions that are larger than the threshold.
Consequently, this specific 4 s segment is marked as being an artefact. Note that we also
consider the 10 s of signal preceding and the 10 s of signal succeeding an artefact as being
an artefact. The reason behind this is that, often, the onset of artefact oscillations as well as
their end are marked by weak oscillations that could be erroneously considered events.

Figure 6. Example of an artefact. The signal exhibits a sudden voltage drop followed by high-
frequency oscillations.
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Figure 7. Example of an artefact’s power spectrum. The high-frequency contribution exceeds the
threshold. Thus, the segment is labelled an artefact.

2.8. EDA Event Detection

As mentioned previously, EDA events have frequencies in the range of 0.25 Hz to 3 Hz.
Within this frequency range, we only consider EDA oscillations whose amplitudes are
between 50 µV and 500 µV. For event detection in the frequency domain, we segment the
signal and transform individual signal segments using the FFT. To obtain the segments,
the signal is sliced into non-overlapping time windows of constant duration T = 4 s. This
allows us to detect events with a frequency as low as 0.25 Hz.

Then, we multiply the FT coefficients by 2/N, where N is the number of coefficients,
and compute their absolute value. If any of these values lies between 50 µV and 500 µV
then the segment is marked as an event; see Figures 8 and 9. In Figure 8, the displayed
signal segment has oscillations of frequencies between 0.25 Hz and 3 Hz whose amplitudes
are significant. Hence, the algorithm labels this segment as an EDA event. In Figure 9,
the power spectrum in the frequency range between 0.25 Hz and 3 Hz does not show
oscillations of relevant amplitudes. Hence, this segment is not labelled as an EDA event.

Figure 8. An EDA event is detected: the power spectrum of frequencies between 0.25 Hz and 3 Hz
exceeds the EDA event threshold.
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Figure 9. An EDA event is not detected: the power spectrum does not exceed the EDA event threshold.

2.9. EDA Storm Detection

Detection of EDA storms is important for using the EDA signal to assess key aspects
of sleep health such as the presence of disordered breathing, one of which is OSA [17]. Our
algorithm labels a one-minute window, that contains two or more EDA events, as an EDA
storm. An example of an EDA storm is shown in Figure 10.

Figure 10. An example of an EDA storm.

2.10. Performance Indices

We use three indices to quantify algorithm performances, which we explain in the
following. We compute them for both EDA events and EDA storm detection. For this
evaluation, we use manual scoring. Note that EDA storms were not scored during the
manual EDA scoring process. For this reason, we devised a pseudo-manual EDA storm
scoring by considering a one-minute window, that contains two or more EDA events, being
an EDA storm, just as before in the automatic scoring.
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2.10.1. Precision

Precision P is the ratio between the number of true positives and the number of
predicted positives. In this work, the number of true positives is the number of EDA
events (storms) detected by the algorithm that overlap with manually scored EDA events
(storms). We denote this number by noverlap,e, (noverlap,st) and the number of manually
scored EDA events (storms) by nmanual, e (nmanual, st). The number of predicted positives
is the number of automatically detected EDA events (storms). We denote this number by
ndetected,e (ndetected,st).

P =
noverlap

ndetected
. (4)

2.10.2. Recall

Recall R is the ratio between the number of true positives and the number of actual
positives, which is the number of manually scored EDA events (storms) in this work.

R =
noverlap

nmanual
. (5)

2.10.3. F1-Score

The F1 score is the harmonic mean of precision and recall.

F1 = 2 · PR
P + R

. (6)

3. Results
Algorithm Performance

The algorithm’s performances are summarised in Tables 2 and 3. Table 2 shows the
performance when the algorithm is used to score the recordings from the 2005 study. Table 3
shows the performance when the algorithm is used to score the collected recordings within
the Sleep Revolution Project.

Table 2. The performance of the algorithm scoring EDA signals from the 2005 study.

Index Average Median Minimum Maximum Standard Deviation

Pevent 73.7% 77.4% 11.1% 100% 19.5%

Revent 66.1% 67.4% 8.9% 95.3% 22.4%

F1event 68.9% 68.9% 9.9% 100% 20.5%

Pstorm 50.3% 47.6% 0.0% 100% 26.6%

Rstorm 62.6% 65.4% 18.8% 100% 18.2%

F1storm 51.5% 53.6% 0.0% 82.4% 20.2%

Table 3. The performance of the algorithm scoring EDA signals recorded by the Sleep Revolution
Project team.

Index Average Median Minimum Maximum Standard Deviation

Pevent 68.9% 76.5% 16.7% 91.8% 19.7%

Revent 77.8% 79.8% 16.7% 96.1% 14.7%

F1event 71.4% 78.0% 16.7% 89.7% 15.6%

Pstorm 49.8% 49.5% 0.0% 97.2% 26.0%

Rstorm 75.9% 78.9% 0.0% 100% 20.7%

F1storm 56.6% 57.6% 0.0% 95.6% 22.1%
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To assess whether there is a statistically significant difference in performance when
the scoring algorithm is applied to either dataset, we perform a two-sample t-tests, where
we compare a set of indices from one study to the respective set from the other study. The
results are shown in Table 4. We discuss them in the following section.

Table 4. The p-values of two-sample t-tests are shown, where we compare a set of indices from one
study to the respective set from the other study.

Pevent Revent F1event Pstorm Rstorm F1storm

0.3937 0.0300 0.6167 0.9458 0.0237 0.5012

4. Discussion

The p-values in Table 4 show that the differences in Precision and F1 performance of
the automatic scoring algorithm, when applied to either one of the two datasets, are not
statistically significant. This suggests that our algorithm is robust to differing sampling fre-
quencies and sleep technologists, who score the EDA signals. When applying the algorithm
to the EDA recordings from the two different studies and evaluating its performance, we
obtain F1 scores with an average of 68.9% and of 71.4% for EDA events and of 51.5% and
56.6% for EDA storms. The low agreement for EDA storm detection and, to a lesser extent,
the moderate agreement for EDA event detection are partially misleading. The low average
of F1storm scores stems from the definition of F1 scores and, thus, is caused by having some
low Pstorm values while the Rstorm average is similar to the Revent average. The consistency
between the two recall performances further confirms that the relatively low average value
for F1storm scores is exclusively caused by the existence of some low Pstorm value. They arise
because EDA storm automatic and manual scoring is different.

One issue is the absence of a definition in the literature for the maximum length of
an EDA event. Because of this, a manual scorer might label as one EDA event what the
automatic scoring algorithm presented in this paper labels as multiple EDA events. Also,
since manual scorers do not score EDA storms but rather consider them a long-lasting EDA
event, we consider a long-lasting manually scored EDA event to be an EDA storm. This
differs from how the algorithm scores EDA storm, as it rather follows what the literature
considers an EDA storm. We graphically represent this in Figure 11. The figure shows
another issue in EDA event detection. While the manual and the automatic scores identify
the EDA events, the associated performance indices are low because of misalignment in
the onset of the detected EDA events.

Figure 11. Difference between manual and automatic scoring.
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In the literature, agreement between different sleep technologists when scoring sleep
stages is categorised using the intraclass correlation coefficient, as outlined by Kuna et al. [47]:
poor agreement for 0–0.2; fair agreement for 0.3–0.4, moderate agreement for 0.5–0.6, strong
agreement for 0.7–0.8, and almost perfect agreement for >0.8. Based on these ranges and
using the F1 score as the relevant performance measure, our algorithm achieves strong
agreement for EDA event detection and moderate agreement for EDA storm detection when
applied to the dataset from the Sleep Revolution Project. For the 2005 dataset, the agreement
for EDA event detection is moderate; however, the value is almost in the strong agreement
range. The agreement for EDA storm detection remains moderate. Notably, we believe
that the performance measures presented in Tables 2 and 3 are rather conservative ones.
In [17], we show that there is a strong correlation between EDA events and EDA storms
detected by our algorithm and sleep stages or the presence of OSA. It might be possible
to increase accuracy in such applications might be obtained by combining the EDA-based
classifier with ML models trained on different signals. For example, one could consider
the electroencephalography (EEG) signal or the electromyography signal [48,49]. Finally,
combining predictions made using either the EDA signal or the EEG signal might yield
new insight into the connections of the different regulatory processes occurring in the brain
during sleep [50].

5. Conclusions

We presented an algorithm that automatically scores EDA events and EDA storms.
To our knowledge, a scoring algorithm for EDA recordings obtained by the endosomatic
method has not been developed previously. Including EDA in sleep studies is not the norm
because of its relative novelty in sleep research and because scoring it is tedious and has
not been properly standardised. We believe that the tool presented in this work provides
valuable means for inclusion by allowing for more accurate and faster manual scorings.
After its employment, sleep technologists can import automatic scoring into the scoring
software and briefly check whether wrongly detected EDA events need to be removed.
The next step is to make the algorithm clearly highlight areas of no interest and grey zones
in the signal, where there is significant activity that might qualify as an event and needs
the attention of an expert technologist.

Moreover, due to its nature, the endosomatic method is much more suitable to be
included in wearables, as it does require externally applying a voltage. Indeed, a few
commercial devices already measure EDA. However, due to its complex nature, the signal
has not been used for assessing sleep, yet. We believe that our work is the first stepping
stone in this direction.

ML models are the current state-of-the-art computational methods for sleep research.
However, research on selecting training variables that effectively reflect physiological
phenomena during sleep is scarce, particularly, in the area of EDA. Given the difficulty of
and ambiguity in scoring endosomatic EDA sleep signals, the training dataset might not be
sufficiently correct to guarantee a correct learning process. For this reason, we abstained
from using ML and rather obtained the measures used in this work from the literature.

Feature engineering is a pivotal step in optimising ML models. It has been shown that
simpler and more interpretable ML models outperform complex models when accompanied
by ad hoc feature engineering. Our algorithm detects EDA events and EDA storms,
phenomena known to be associated with physiological processes during sleep, which can
be used for feature engineering in the future.

Our algorithm has been already successfully used to detect OSA. Thus, it opens the
possibility of not only detecting but also monitoring the progression of OSA without inva-
sive measurements. Moreover, we believe that better integrating EDA in sleep research will
allow us to gain more physiological insight, for instance, by means of network physiology,
which investigates the interactions between different physiological systems. Although sleep
studies record many different physiological signals, network physiology has been rather
neglected. Investigating changes in the topology of the physiological network when EDA
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events and EDA storms occur will help to better characterise the processes underlying
thermoregulation and understand its interaction with other physiological systems.

Thus, in the future, we believe that automatic scoring algorithms, such as the one
presented in this work, will much aid the work of manual scorers, ultimately taking over
this tedious task. Their use will also allow for more thorough standardisation of scoring
and, thus, better interpretability of scoring results from different studies. Finally, they will
also be used to optimise ML algorithms for better determining sleep stages and disease
severity, while allowing for a better understanding of underlying physiological processes
by facilitating the analysis of the correlation between different physiological signals relevant
to sleep. We therefore see the work presented in this paper as a first stepping stone in
this direction.
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