

Article Formation of OH Radicals on BiVO₄–TiO₂ Nanocomposite Photocatalytic Film under Visible-Light Irradiation: Roles of Photocatalytic Reduction Channels

Shizu Terao and Yoshinori Murakami *

Department of Materials Engineering, National Institute of Technology, Nagaoka College, Niigata 940-8532, Japan * Correspondence: murakami_mb@nagaoka-ct.ac.jp

Abstract: In this study, we investigated the effects of H_2O_2 addition on OH radical formation on the surfaces of visible-light-irradiated BiVO₄–TiO₂ nanocomposite photocatalysts. Additionally, we examined the possible roles of OH radicals formed by the reduction reaction of H_2O_2 on the visible-light-irradiated surfaces of photocatalytic BiVO₄–TiO₂ nanocomposites. The BiVO₄–TiO₂ nanocomposite photocatalysts were prepared by mixing a BiVO₄ photocatalytic film with commercially available semiconductor particulate TiO₂ photocatalysts. By removing oxygen gas from the photocatalytic reactor, the effects of oxygen molecules on OH radical formation during the visible-light irradiation of BiVO₄–TiO₂ photocatalysts play different roles in OH radical formation because of two characteristic reduction reaction channels: (a) the direct reduction of H_2O_2 on photocatalytic surfaces and (b) the indirect reduction reaction of H_2O_2 by superoxide radical anions (O_2^{-1}).

Keywords: OH radical; BiVO₄; photocatalysis; reduction; H₂O₂

Citation: Terao, S.; Murakami, Y. Formation of OH Radicals on BiVO₄–TiO₂ Nanocomposite Photocatalytic Film under Visible-Light Irradiation: Roles of Photocatalytic Reduction Channels. *Reactions* **2024**, *5*, 98–110. https:// doi.org/10.3390/reactions5010004

Academic Editor: Hugo de Lasa

Received: 1 November 2023 Revised: 16 December 2023 Accepted: 22 December 2023 Published: 22 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Semiconductor photocatalysis has attracted increasing attention because of its diverse applications, including water-splitting reactions for solar energy conversion and the removal of organic pollutants from aqueous solutions or gas phases. Owing to its relatively small optical band gap of approximately 2.4 eV [1,2], monoclinic bismuth vanadate (m-BiVO₄) has been recognized as a promising semiconductor photocatalyst with high photocatalytic activity in the evolution of oxygen and high visible-light absorption capability. Since the discovery of BiVO₄, many new Bi-containing visible light-induced photocatalysts have been reported, including Bi₂WO₆ [3], Bi₂O₃ [4], CaBi₂O₄ [5], BiCu₂PO₆ [6], and Bi₂MoO₆ [7]. However, BiVO₄ is known to have poor carrier transport properties owing to its short electron diffusion length [8,9]. As a result, several attempts have been made to improve the separation of photogenerated electron–hole pairs and increase the charge carrier lifetime in BiVO₄ photocatalysts by coupling them with other metal-oxide semiconductors with appropriate band potentials.

Among visible-light-responsive BiVO₄ photocatalysts, several studies have been conducted on TiO₂/BiVO₄ heterojunction or nanocomposite photocatalysts, often in combination with ultraviolet-responsive photocatalysts. Hu et al. [10] reported the enhanced heterogeneous photocatalytic oxidation of gaseous benzene using TiO₂/BiVO₄ heterojunction photocatalysts under visible-light irradiation ($\lambda > 450$ nm). Zhang et al. [11] reported higher decolorization rates of rhodamine B, and Wetchakun et al. [12] reported the decolorization of methylene blue under solar light irradiation. Both of these studies attributed the higher photocatalytic activity to the increased rate of separation of the photogenerated charge carriers. Son et al. [13] also observed that the photocatalytic degradation rate of gaseous ethylene for BiVO₄–TiO₂ (P25) nanocomposites under visible-light irradiation was significantly higher than that for both bare BiVO₄ and bare TiO₂ (P25)

particles. They also attributed this higher photocatalytic activity to the charge transfer between the n-type BiVO₄ and n-type TiO₂ (P25). To identify highly efficient materials for water oxidation, several researchers [14–16] fabricated nanostructured composite electrodes of BiVO₄–TiO₂, which exhibited enhanced photocurrent efficiencies under visible light irradiation. Polo et al. [17] used an electron acceptor probe for methyl viologen and directly observed the electron transfer from photoexcited BiVO₄ to the TiO₂ conduction band in a TiO₂/BiVO₄ heterojunction. They observed the pronounced ability of the TiO₂/BiVO₄ heterojunction to reduce methyl viologen, indicating enhanced charge separation resulting from the transfer of photoexcited electrons in BiVO₄ to the conduction band of TiO₂ under visible-light irradiation.

Although improvements in the charge separation efficiency of $TiO_2/BiVO_4$ heterojunction photocatalysts have been reported, there is a lack of research clarifying the influence of OH radical formation by the heterojunction under visible-light-responsive BiVO₄ in combination with other semiconductor photocatalysts. Kohtani et al. [18] investigated the photodegradation reactions of polycyclic aromatic hydrocarbons over BiVO₄ and Ag-BiVO₄ and indicated the crucial role of OH radicals in the degradation of polycyclic aromatic hydrocarbons. Zhang et al. [19] investigated the yield of OH radicals generated on WO₃ and BiVO₄ photocatalysts under 470 nm LED irradiation. They confirmed that the yield of OH radicals generated on the WO₃ photocatalyst was comparable to that on anatase TiO₂, whereas the yield of OH radicals on BiVO₄ was much lower.

Although various types of TiO₂ photocatalysts are commercially available, there is no clear understanding of their photocatalytic activities or characteristic charge carrier behaviors. In particular, crystal phase and primary particle size have some influence on the charge carrier dynamics of TiO₂ particles. However, only a few studies have been carried out using commercially available TiO₂ powders. The present study examined OH radical formation on BiVO₄–TiO₂ nanocomposite photocatalysts prepared by mixing BiVO₄ photocatalytic films with commercially available semiconductor particulate TiO₂ photocatalysts. We also explored the possible roles of OH radicals formed by the reduction reaction of H₂O₂ on the surfaces of these nanocomposite photocatalysts.

2. Experimental Section

2.1. Materials

Bi(NO₃)₃·5H₂O (0.2–1.0 mmol) and NH₄VO₃ (0.2–1.0 mmol) were dissolved in 10 mL HNO₃ solution (1.0 mol/L) and stirred for 5 min under ambient air, which was followed by 1 min of ultrasonic irradiation. After the color of the mixed solution turned orange, it was mixed with commercially available TiO₂ particles and stirred for 5 min. The orange suspension containing the TiO_2 particles was then ultrasonicated for approximately 5 min and used as a solution for dip-coating the quartz glass. $BiVO_4/TiO_2$ nanocomposite photocatalytic films were obtained by dip-coating quartz glass (diameter: 30 mm) at a rate of approximately 60 cm/min. The obtained nanocomposite films were then annealed in air for 5 min at approximately 600 K (\sim 330 $^{\circ}$ C), and these procedures were repeated three times. Finally, the films were annealed again at approximately 600 K (\sim 330 °C) for 1 h. The TiO_2 powders used in this study were generous gifts from Ishihara Sangyo (ST-01), Showa Titanium (F-1, F-2), Degussa (P25), and Tayca (AMT-100, AMT-600, MT-150A, and MT-500B), and were used without any modification. TiO_2 powders purchased from Wako Co., Ltd. (Tokyo, Japan) (purity \geq 99.9%) were used after further purification. The primary particle sizes and anatase ratios of commercially available TiO₂ powders are listed in Table 1. Analytical grade $Bi(NO_3)_3 \cdot 5H_2O$ and NH_4VO_3 were used without further purification. The crystal form of the prepared thin film was analyzed by X-ray diffraction (XRD, Rigaku, Ultima IV) using a Cu-K α radiation source ($\lambda = 1.541$ Å). Characteristic XRD peaks corresponding to the diffraction patterns of the monoclinic phase of $BiVO_4$ were observed, along with additional peaks attributed to the TiO₂ photocatalytic particles. The thickness of the films was examined using scanning electron microscopy (SEM). We confirmed that all photocatalytic films prepared in this study had a thickness of approximately 50 μ m (see Figure 1a). Elemental analysis of the film surface was performed using energy-dispersive X-ray spectroscopy (EDS) with a thermal emission scanning electron microscope (FESEM, JEOL, JSM-IT200LA) operating at 15 kV, as shown in Figure 1b. Subsequently, the homogeneous distribution of BiVO₄ on the photocatalytic TiO₂ particles was confirmed. In other words, the images presented in Figure 1 confirmed that TiO₂ particles were attached to the glass plate in aggregated particulate forms; among these TiO₂ particles, BiVO₄ photocatalysis served as a mediator for capturing visible light between the TiO₂ particles attached to the glass plate. The Bi/Ti atomic ratios of the photocatalytic films were estimated using EDS and are used in the present discussion. Finally, the optical absorption of the BiVO₄–TiO₂ films was examined using diffuse reflectance spectroscopy with an integrating sphere attached to a UV-VIS-NIR spectrometer (JASCO. V-770). It was confirmed that the optical absorption of these films extended to the visible region because of the absorption of BiVO₄ photocatalysts.

Figure 1. (a) Scanning electron micrograph of the cross-section of a $BiVO_4$ -TiO₂ (ST-01) nanocomposite film. (b) Energy-dispersive spectroscopy (EDS) element mapping image of $BiVO_4$ -TiO₂ nanocomposite films containing ST-01 (anatase, upper figure) and MT-150A (rutile, lower figure) TiO₂ powders.

Table 1. Primary particle sizes and anatase ratios for TiO_2 powders used in the present study. All data regarding the TiO_2 powders were obtained from the suppliers. BET surface area measuremnents were taken from references [20–24].

Name	Anatase Content (%)	Rutile Content (%)	Primary Particle Size (nm)	BET Surface Area (m ² g ⁻¹)	Supplier
ST-01	100	0	7	320 [21,22]	Ishihara Sangyo
F1	90	10	50	26 [23]	Showa Titanuim
F2	60	40	40	-	Showa Titanuim
P25	70 [20]	30	21	32 [21], 49 [22]	Degussa

Name	Anatase Content (%)	Rutile Content (%)	Primary Particle Size (nm)	BET Surface Area (m ² g ⁻¹)	Supplier
AMT-100	100	0	6	6 [21]	Тауса
AMT-600	100	0	30	30 [21], 49 [22]	Тауса
MT-150A	0	100	15	88 [22]	Тауса
MT-500B	0	100	35	38 [23]	Тауса
Wako	100	0	41.5	8.3 [24]	Wako Chemicals

Table 1. Cont.

2.2. Fluorescence Probe Detection of OH Radicals

In this study, OH radicals were detected using the coumarin fluorescence probe technique [25,26]. Briefly, this technique was used to detect 7-hydroxycoumarin, which emits stronger fluorescence than the parent coumarin molecule. By monitoring the fluorescence intensity of 7-hydroxycoumarin at approximately 450 nm (excitation wavelength of 350 nm), the relative yield of OH radicals formed by the photocatalytic reaction of $BiVO_4/TiO_2$ nanocomposite photocatalytic films was estimated. The $BiVO_4/TiO_2$ nanocomposite photocatalytic films was estimated. The $BiVO_4/TiO_2$ nanocomposite photocatalytic films was estimated. The $BiVO_4/TiO_2$ nanocomposite photocatalytic films were placed in a 0.15 mM coumarin solution and were irradiated with LED light at 470 nm (Asahi Spectra, CL-H1-470) with an average power of approximately 50 mW/cm². After visible-light irradiation, OH radicals were measured using the coumarin fluorescence probe method after sampling the LED-light-irradiated 0.15 mM coumarin solution. All experiments using the coumarin fluorescence probe technique were performed more than three times to confirm reproducibility, and the average value was used as the present result.

3. Results and Discussion

3.1. Detection of OH Radicals Formed by the BiVO₄-TiO₂ Photocatalyst

Figure 2a shows the fluorescence spectra obtained by the visible light irradiation of the BiVO₄-TiO₂ (anatase: ST-01) and BiVO₄-TiO₂ (rutile: MT-150A) nanocomposite photocatalysts. As shown in Figure 2a, the fluorescence of 7-hydroxycoumarin was observed at approximately 450 nm by the visible light irradiation of the BiVO₄-TiO₂ photocatalyst. Therefore, the formation of OH radicals on the visible-light-irradiated $BiVO_4$ -TiO₂ photocatalyst was confirmed. Next, we investigated the effect of the amount of TiO_2 particles on the yield of OH radicals formed by the visible-light-irradiated BiVO₄–TiO₂ nanocomposite photocatalysts with the irradiation time fixed at 1 h. The results are presented in Figure 2b. As shown in Figure 2b, the fluorescence intensity of 7-hydroxycoumarin increased with an increase in the amount of TiO₂ particles in the BiVO₄-TiO₂ nanocomposite photocatalysts, which was irreversible for commercially available TiO₂ powders, such as ST-01 (anatase), AMT-100 (anatase), MT-150A (rutile), and MT-500B (rutile). These results can be attributed to the suppression of the recombination of photoexcited electrons and holes in BiVO₄. This is due to the enhanced transfer of photoexcited electrons from the visible-light-irradiated $BiVO_4$ thin film to TiO_2 particles, which is caused by the increase in the amount of TiO_2 particles in the BiVO₄ thin films. However, Figure 2b also shows differences in electron transfer and the suppression of charge recombination between TiO_2 particles. This indicates that the number of OH radicals formed on the TiO₂ particles of ST-01(anatase) and AMT-100 (anatase) appeared to be much higher than those on the TiO_2 particles of MT-150A (rutile) and MT-500B (rutile), despite having the same amount of TiO_2 in the $BiVO_4$ -TiO₂ nanocomposite photocatalysts. To further investigate the differences in the charge transfer rates from $BiVO_4$ to TiO_2 particles (ST-01 (anatase), AMT-100 (anatase), MT-150A (rutile), and MT-500B (rutile)), we studied the OH radical formation on the visiblelight-irradiated BiVO₄ nanocomposite photocatalytic films with various other commercially available TiO₂ particles. Figure 3 shows the relationship between the fluorescence intensity of 7-hydroxycoumarin and primary particle size of TiO_2 . As shown in Figure 3, the number

of OH radicals formed through the photoexcited electron transfer from the visible-lightirradiated BiVO₄ thin film to TiO₂ particles was independent of the particle size and crystal phase of TiO₂ except for the two commercially available TiO₂ particles, ST-01 and AMT-100, which have a very small primary particle size of less than 10 nm. Dibbell et al. [27] reported the dependence of electron transfer on the distance between CdS quantum dots and TiO_2 nanoparticles. They concluded that the electron injection yield decreases with increasing the chain length of bifunctional mercaptoalkanoic acid and interparticle separation. For the plasmonic excitation of Au $-TiO_2$ photocatalysts, Du et al. [28] reported that for all TiO₂ nanoparticle diameters, the plasmon-induced electron injection yields were almost the same within the experimental error with efficiencies of approximately 20-50%. However, the charge recombination decay was strongly dependent on the particle diameter of TiO_2 . Our results are similar to those of the plasmon-induced electron injection yields observed in the plasmonic excitation of $Au-TiO_2$ photocatalysts, which showed almost the same yields for all TiO₂ nanoparticle diameters. However, higher yields of OH radicals were obtained for the two commercially available TiO₂ particles, ST-01 and AMT-100, which have small primary diameters. The reason for this has not been clarified yet. Liu et al. [29] investigated the effect of particle size on the liquid-phase photooxidation of phenol using nanometer-sized TiO_2 crystals. They observed that the reaction rate constants for the photocatalytic decomposition of phenol were maximized when the anatase TiO_2 particles were approximately 10 nm. The optimal particle size for the photocatalytic oxidation of phenol is attributed to the competing effects of volume recombination, surface recombination, migration of photogenerated electrons and holes, light absorption, defects, and surface area. Similar effects may be important in our present results, where nanocomposites of the BiVO₄ thin films with two commercially available TiO₂ particles, ST-01 and AMT-100, exhibit a higher quantum yield of OH radicals.

Figure 2. (a) Fluorescence spectra of 7-hydroxycoumarin obtained after 1 h visible LED light irradiation of the BiVO₄–TiO₂ (anatase: ST-01) (solid line) and BiVO₄–TiO₂ (rutile: MT-150A) (dashed line) nanocomposite photocatalysts at 470 nm. (b) Dependence of the Ti/Bi ratio in the BiVO₄–TiO₂ nanocomposite film on the fluorescence intensity of 7-hydroxycoumarin formed during 1 h visible LED light irradiation at 470 nm. This BiVO₄–TiO₂ nanocomposite film was placed in a 0.15 mM coumarin aqueous solution. The commercially available TiO₂ particles used for the BiVO₄–TiO₂ nanocomposite film were ST-01; anatase (•), AMT-100; anatase (•), MT-150A, rutile (**■**), and MT-500B, rutile (**□**). For all these experiments, the excitation wavelength was set to 350 nm. Additionally, the Ti/Bi ratios estimated through the EDS measurements were used in the figure.

Figure 3. Relationship between the fluorescence intensity of 7-hydroxycoumarin formed during 1-h visible LED light irradiation at 470 nm and the primary particle sizes of the TiO₂ particles. For this purpose, the BiVO₄–TiO₂ nanocomposite film (Ti/Bi ratio was fixed at 20:1) was placed in a 0.15 mM coumarin aqueous solution. Various commercially available TiO₂ powders listed in Table 1 were used. The names of the commercially available TiO₂ powders have also been indicated in the above figure, and their primary particle sizes were taken from Table 1. For all these fluorescence measurements, the excitation wavelength was set to 350 nm.

3.2. Effects of H_2O_2 Addition for OH Radical Formation by the Visible Light Irradiated BiVO₄-TiO₂ Photocatalyst

To understand the potential roles of OH radical formation through the photocatalytic reduction of H_2O_2 on BiVO₄–TiO₂ nanocomposite photocatalysts, we examined the effects of H_2O_2 addition on the amount of OH radicals formed on the surfaces of photocatalytic BiVO₄ films mixed with several commercially available TiO₂ particles (Anatase: ST-01, Wako, Rutile: MT-150A, MT-500B) under visible-light irradiation. Serpone et al. [20,30] proposed the formation of OH radicals via the photocatalytic reduction of H_2O_2 on the TiO_2 surface. Li et al. [31] investigated the decomposition of H_2O_2 on TiO_2 surfaces under visible-light irradiation. They observed OH radicals formed on the TiO₂ surfaces by the photocatalytic decomposition of H_2O_2 under visible light irradiation and supported the mechanism reported by Serpone et al. [20,30]. Figure 4 shows that the amount of OH radicals increased with an increase in H₂O₂ concentration in the 0.15 mM coumarin solution containing the BiVO₄–TiO₂ nanocomposite photocatalytic film. These results indicate that OH radicals are generated during the photocatalytic reduction of H_2O_2 on the surfaces of $BiVO_4$ and TiO_2 . It was also confirmed that the number of OH radicals increased with an increase in the concentration of H_2O_2 , irrespective of the type of crystal phase of TiO₂ (anatase or rutile) in the $BiVO_4$ -Ti O_2 nanocomposite photocatalytic film. These results are similar to those obtained in a previous study by Hayashi et al. [32], in which they used a visible-light-induced plasmonic Au–TiO₂ photocatalyst. They also found that OH radicals were generated only in the presence of H_2O_2 by the visible-light plasmonic excitation of the Au– TiO_2 photocatalyst. In addition, they observed an increase in the number of OH radicals in various crystal phases of TiO_2 (anatase or rutile) by adding H_2O_2 to the Au–TiO₂ plasmonic photocatalyst. From these results, they concluded that OH radicals were formed by the photocatalytic reduction of H_2O_2 on the surface of TiO₂ by electrons in the TiO₂ conduction band. These electrons migrate from the plasmonically excited Au

nanoparticles. In contrast, Hirakawa et al. [33] observed a decrease in OH radical formation on the anatase form of TiO₂ photocatalytic powders because of the addition of H₂O₂ to the TiO₂ suspension. Although the reasons for such different trends—the increase or decrease in the amount of OH radicals between the photocatalytic reactions of visible-light-irradiated BiVO₄–TiO₂ nanocomposite or plasmonic Au–TiO₂ photocatalysts and UV-irradiated TiO₂ photocatalysts—have not yet been clarified, it may be attributed to the surface conditions and the presence of holes in TiO₂.

Figure 4. Dependence of H_2O_2 concentration on the fluorescence intensity of 7-hydroxycoumarin formed by the 1 h visible LED light irradiation (470 nm) of the BiVO₄–TiO₂ nanocomposite photocatalytic film suspended in a 0.15 mM coumarin aqueous solution. (a) Anatase form of TiO₂ particles: ST-01 (•), Wako (\circ). (b) rutile form of TiO₂ particles: MT-150A (**■**), MT-500B (**□**). Experiments were repeated more than three times, and the error bars for the data are also illustrated in the figure. For these experiments, the Ti/Bi ratio for the BiVO₄–TiO₂ nanocomposite film used was fixed at 20:1, and the excitation wavelength was set to 350 nm.

To further investigate the relative roles of BiVO₄ and TiO₂ in OH radical formation at the reduction site of the $BiVO_4$ -Ti O_2 nanocomposite photocatalysts, we examined the increase in the number of OH radicals formed on the BiVO4 thin-film photocatalysts upon the addition of H_2O_2 . The results are shown in Figure 5. First, an increase in the number of OH radicals was observed on the BiVO4 thin-film photocatalyst under visible-light irradiation. To confirm the differences in the excitation wavelengths of $BiVO_4$, we also investigated the OH radical formation on a bare BiVO₄ thin-film photocatalyst under UV light irradiation. An increase in the number of OH radicals was observed on the BiVO₄ thin-film photocatalyst under UV irradiation, which was similar to the results for the visible-light-irradiated BiVO₄ thin-film photocatalyst. However, the increase in the number of OH radicals on the UV-irradiated BiVO₄ thin-film photocatalyst was much larger than that in the non-irradiated BiVO₄ thin-film photocatalyst. This indicates that the OH radicals were formed via photocatalytic reduction at the conduction band of the BiVO₄ thin-film photocatalyst. We speculated that the increase in OH radical formation for the UV-irradiated $BiVO_4$ thin-film photocatalyst was large because the excitation energy of UV light is higher than that of visible light. Furthermore, we observed that the amount of OH radicals formed by the visible-light irradiation of the bare BiVO₄ thin-film photocatalyst was much smaller than that formed by the visible-light irradiation of the BiVO₄–TiO₂ nanocomposite thin film photocatalyst (Figure 5). Zhang et al. [19] and Nakabayashi et al. [34] have already reported the generation of OH radical on the BiVO₄ photocatalyst by photocatalytic water oxidation. The present results indicate that OH radical formation by water oxidation at the surface of the BiVO₄ photocatalyst increased when the photocatalytic films were mixed with commercially available TiO₂ photocatalytic powders. This supports our conclusion that the photoexcited electron transfer from the visible light-irradiated BiVO₄ thin film to TiO₂ particulates, along with the suppression of the recombination reaction of photoexcited electrons and holes in BiVO₄, resulted in an increased amount of OH radicals formed by water oxidation at the BiVO₄ surface in the BiVO₄–TiO₂ nanocomposite thin film.

Figure 5. Fluorescence intensity of 7-hydroxycoumarin formed by the 1 h visible LED light irradiation (470 nm) of the bare BiVO₄ photocatalytic film (the first left bar) and the 1 h UV LED light irradiation (350 nm) of the bare BiVO₄ (the second left bar) and BiVO₄–TiO₂ (Anatase: ST-01, Anatase: MT-150A, Rutile) nanocomposite photocatalytic films (the second right and right bars). These films were suspended in 0.15 mM coumarin aqueous solutions with 1 mM H₂O₂ (\blacksquare) and without H₂O₂ (\square). The commercially available TiO₂ particles (Anatase: ST-01, Anatase: MT-150A, Rutile) listed in Table 1 were used. For all measurements, the Ti/Bi ratio for the BiVO₄–TiO₂ nanocomposite film used was fixed at 20:1. The excitation wavelength for the fluorescence measurements was set to 350 nm.

Figure 5 shows that H₂O₂ addition increased the fluorescence intensity of 7-hydroxycoumarin for all the $BiVO_4$ -TiO₂ photocatalytic films and bare $BiVO_4$ photocatalytic films. As shown in Figure 5, H₂O₂ addition also increased the amount of OH radicals on both the BiVO₄-TiO₂ nanocomposite film and BiVO₄ photocatalytic thin film under visible light irradiation. However, the ratio of increase in the amount of OH radicals on the BiVO₄-TiO₂ nanocomposite photocatalysts was smaller than that on the BiVO₄ thin film after H_2O_2 addition under visible light irradiation (Figure 5). The variation in the ratio of the increase between the visible light-irradiated $BiVO_4$ – TiO_2 nanocomposite film and $BiVO_4$ thin film may be attributed to their different abilities for OH radical formation. During the photocatalytic reduction reaction, the BiVO₄ photocatalytic surface may exhibit a greater ability for OH radical formation than the TiO₂ surface. However, this is not true because the conduction band of $BiVO_4$ is more positive than that of TiO_2 . When $BiVO_4$ is in contact with TiO_2 , its conduction band becomes more negative than that of TiO₂ because of the matching Fermi levels of both semiconductors. The band shifts of BiVO₄ and TiO₂ when BiVO₄ and TiO₂ are in contact with each other were also proposed by Wetchakun et al. [12] and Song et al. [13]. Furthermore, Shi et al. [35] and Wang et al. [36] reported band shifts of $BiVO_4$ and TiO_2 such that the conduction band edge of $BiVO_4$ became more negative than that of TiO_2 . Our present experimental observation, indicating that the ability of OH radical formation on the TiO₂ photocatalytic surface was smaller than that on the BiVO₄ surface for the visible light-irradiated BiVO₄–TiO₂ nanocomposite films, could be evidence for the matching Fermi levels of the BiVO₄ film and TiO₂ particles in the BiVO₄–TiO₂ nanocomposite thin film. Thus, the conduction band edge of $BiVO_4$ became more negative than that of TiO_2 even when the BiVO₄ film was in contact with commercially available TiO₂ particles.

3.3. Influence of Oxygen on OH-Radicals Formation on the BiVO₄ and the BiVO₄–TiO_{2,} Nanocomposite Photocatalysts

In our previous study [32], we discussed the following two plausible reaction channels for OH radical formation during the photocatalytic reduction of H_2O_2 on visible-light-irradiated plasmonic Au–TiO₂ photocatalysts: the direct reduction channel (3) and indirect reduction channel via superoxide anion radical (O_2^-) formation (4).

Au-TiO₂ + hv
$$\rightarrow$$
 e⁻ + positive charge in Au (1)

$$e^- + O_2 \rightarrow O_2^- \tag{2}$$

$$H_2O_2 + O_2^- \to OH^- + OH + O_2$$
 (3)

$$H_2O_2 + e^- \to OH^- + OH \tag{4}$$

The mechanism of OH radical formation was investigated by degassing oxygen gas using nitrogen gas. The influence of the amount of OH radicals formed by the irradiation of plasmonic Au–TiO₂ photocatalytic powders was also discussed. If OH radicals were generated via reaction (3), degassing oxygen would inhibit OH radical generation because reaction (3) involves the superoxide radical (O₂⁻), which is formed by the photocatalytic reduction of oxygen molecules. We observed that the degassing of oxygen reduced the amount of 7-hydroxycoumarin because coumarin reacts with OH radicals; however, the ratios of decrease were not less than half regardless of the use of commercially available TiO₂ powders in the plasmonic Au–TiO₂ photocatalysts. Thus, we concluded that the main channel for OH radical formation during the plasmonic Au–TiO₂ photocatalyst-induced photocatalytic reduction of H₂O₂ is reaction (4).

In the present study, the degassing of oxygen was performed for the visible-lightirradiated bare BiVO₄ photocatalysts and BiVO₄–TiO₂ nanocomposite photocatalysts. To remove oxygen from the photocatalytic reaction system, a flow of N₂ gas was used in a closed glass flow photocatalytic reactor. To ensure the complete removal of oxygen from the reaction system, N₂ gas was flowed for more than 5 min before initiating the photocatalytic reaction through irradiation. Moreover, a dissolved oxygen meter was used to determine the amount of dissolved oxygen in the coumarin solution, in which the bare BiVO₄ and BiVO₄–TiO₂ nanocomposite photocatalytic films were immersed.

The results of these experiments are shown in Figure 6. For comparison, the visiblelight-irradiated BiVO₄ and the UV (365 nm)-irradiated BiVO₄ photocatalytic films were investigated, and the results are shown in Figure 6.

For the UV- and visible-light-irradiated BiVO₄ photocatalytic films, oxygen degassing increased the amount of OH radicals because of the inhibition of O_2^- formation, which facilitated the direct photocatalytic reduction of H₂O on the BiVO₄ surface via the reaction channel of Equation (4).

In contrast, for the visible-light-irradiated BiVO₄–TiO₂ nanocomposite photocatalysts, oxygen degassing decreased the amount of OH radicals. If OH radicals were formed via reaction (4), degassing oxygen would enhance OH radical formation because of the inhibition of O_2^- formation. Thus, for visible-light-irradiated BiVO₄–TiO₂ nanocomposite photocatalysts, oxygen plays an important role in OH radical formation. For BiVO₄–TiO₂ nanocomposite photocatalysts, OH radicals were also formed by the reaction of Equation (3). This reaction, of Equation (3), known as the Haber–Weiss Reaction [37], occurred after the photoexcitation of the BiVO₄–TiO₂ forming O₂⁻. During the electron migration from BiVO₄ to TiO₂, photoexcited electrons might be captured in the trapped sites in the BiVO₄–TiO₂ nanocomposite photocatalysts, and such trapping processes in the visible-light-irradiated BiVO₄–TiO₂ nanocomposite photocatalysts might cause such a difference in the mechanism of OH radical formation. The results are presented in Figure 7. According to our previous study [32], the main channel for OH radical formation during plasmonic Au–TiO₂-induced reduction of H₂O₂ is the direct photocatalytic reduction of H₂O on the BiVO₄ surface via the reaction channel of Equation (4).

Figure 6. Effect of oxygen degassing on the fluorescence intensity of 7-hydroxycoumarin formed during the photocatalytic reaction on the visible-light-irradiated (LED, $\lambda = 470$ nm) BiVO₄–TiO₂ (ST-01: Anatase) and BiVO₄–TiO₂ (MT-150A: Rutile) nanocomposite photocatalytic films. These films were immersed in 0.15 mM coumarin aqueous solution. For comparison, the effect of oxygen degassing on the fluorescence intensity of 7-hydroxycoumarin formed during the photocatalytic reactions on visible-light-irradiated BiVO₄ films (LED, $\lambda = 470$ nm) and UV-light-irradiated BiVO₄ films (LED, $\lambda = 365$ nm) in 0.15 mM coumarin aqueous solution was also investigated. For these fluorescence measurements, the Ti/Bi ratio for the BiVO₄–TiO₂ nanocomposite film used was fixed at 20:1. The concentration of H₂O₂ was fixed at 1 mM, and the excitation wavelength was set to 350 nm ((\Box) without O₂ (\blacksquare) with O₂).

Figure 7. Schematic for the proposed mechanism for OH radical formation by H_2O_2 reduction on the BiVO₄ photocatalyst and the indirect mechanism for the reaction of O_2^- and H_2O_2 on the BiVO₄–TiO₂ nanocomposite photocatalyst.

Plasmonic Au–TiO₂ photocatalysts generate hot electrons in Au nanoparticles and inject them into the conduction band of TiO₂, as previously investigated by several researchers [38,39]. These hot electrons play key roles in OH radical formation via reaction channel (4). One plausible explanation for the difference in the reaction channels of OH radical formation from H₂O₂ between BiVO₄ and BiVO₄–TiO₂ nanocomposite photocatalysts is the distinct reactivities of the trapped and hot electrons. There are several discussions on the reaction rates [40] and reaction sites [41] of trapped electrons during molecular oxygen reduction on the conduction band of TiO₂ photocatalytic reactions. However, no studies have investigated the different reactivities of free and trapped electrons in the photocatalytic reduction of H₂O₂. However, Losada et al. [42] used density functional theory to study the reaction of H_2O_2 with the surface of a transition metal oxide. There have been several previous discussions on whether OH radicals are formed by the reduction of H_2O_2 via reaction channel (4). Nosaka et al. [43] concluded that reaction (4) did not occur during the photocatalytic reaction of TiO₂. They determined the redox potential for reaction channel (4) as +0.73 V vs SHE at pH 7. Yu et al. [44] determined the redox potential for reaction channel (4) as +0.1 V vs SHE, which was close to the value reported by Nosaka et al. [43]. Because of the potential of the conduction band edge of BiVO₄, that of TiO_2 is more negative than the redox potential for reaction (4). Therefore, reaction (4) could proceed in the present reaction system containing the bare BiVO₄ photocatalytic film or BiVO₄–TiO₂ nanocomposite photocatalytic film under-visible light irradiation if only the redox potential is considered. These speculations remain unclear because of the lack of direct evidence, such as the detection of superoxide anions in the present photocatalytic reaction system. Recently, hydroxide-based co-catalysts for heterogeneous photocatalysis have been developed, and the authors have discussed enhanced electron migration and hydrogen evolution [45,46]. The use of other photocatalysts, such as hydroxide-based photocatalysts, may contribute to a better understanding of the roles of photocatalytic reduction channels in OH radical formation from H₂O₂ using BiVO₄-TiO₂ nanocomposite photocatalytic systems.

Further studies to detect other active oxygen or intermediate species, such as superoxide anion radicals, in the photocatalytic reaction system are necessary to clarify the mechanism proposed in this study.

4. Conclusions

We investigated the formation of OH radicals on visible-light-responsive BiVO₄ nanocomposite films mixed with commercially available TiO₂ particles. We observed that the amount of OH radicals formed by the photoexcited electron transfer from the visible-light-irradiated BiVO₄ thin film to TiO₂ particles was independent of the particle size and crystal phase of TiO_2 except for two commercially available TiO_2 particles with primary particle sizes of less than 10 nm. The effects of H_2O_2 addition on OH radical formation were also examined to investigate the possible role of OH radical formation in the reduction reaction of H_2O_2 on the surfaces of the BiVO₄–TiO₂ nanocomposite photocatalysts. An increase in the number of OH radicals with increasing H₂O₂ concentration was observed for the visible-light irradiated BiVO₄–TiO₂ nanocomposite photocatalyst irrespective of the crystal phase of TiO_2 (anatase or rutile). The amount of OH radicals formed by the visible-light irradiation of the BiVO₄ film photocatalyst was much smaller than that formed by the visible-light irradiation of the $BiVO_4$ -TiO₂ nanocomposite film photocatalyst. This indicates that the electron transfer from $BiVO_4$ to TiO_2 suppressed the charge recombination reaction of electrons and holes in the BiVO₄–TiO₂ nanocomposite thin-film photocatalyst. In addition, we observed that the ratio of the increase in the amount of OH radicals upon adding H2O2 to the visible-light-irradiated BiVO4-TiO2 nanocomposite photocatalysts was smaller than that of the $BiVO_4$ photocatalytic film. We also discussed the reduction potentials of the BiVO₄ thin-film photocatalyst and BiVO₄-TiO₂ nanocomposite photocatalyst under visible-light irradiation.

Next, we confirmed the role of oxygen in OH radical formation during the photocatalytic reduction of H_2O_2 on the BiVO₄–TiO₂ nanocomposite film under visible light irradiation. Oxygen degassing was also performed for the visible-light-irradiated BiVO₄ and BiVO₄–TiO₂ nanocomposite films. Different mechanisms were suggested for OH radical formation during the photocatalytic reduction reaction of H_2O_2 in the presence of visible-light-irradiated bare BiVO₄ and BiVO₄–TiO₂ photocatalytic films. In the present study, measurements of the superoxide radicals (O₂⁻) were not carried out. As superoxide radicals are one of the key species in the photocatalytic reduction reaction, measurements of other intermediates, such as O₂⁻, would help in understanding the mechanism.

Author Contributions: Y.M., writing and editing; S.T., formal analysis and investigation. All authors have read and agreed to the published version of the manuscript.

Funding: This study received no external funding.

Data Availability Statement: The data presented in this study are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO₄ Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. *J. Am. Chem. Soc.* 1999, *121*, 11459–11467. [CrossRef]
- 2. Zhang, Z.; Wang, W.; Shang, M.; Yin, W. Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO₄ photocatalyst. *Catal. Commun.* **2010**, *11*, 982–986. [CrossRef]
- 3. Huang, C.; Chen, L.; Li, H.; Mu, Y.; Yang, Z. Synthesis and application of Bi₂WO₆ for the photocatalytic degradation of two typical fluoroquinolones under visible light irradiation. *RSC Adv.* **2019**, *9*, 27768–27779. [CrossRef] [PubMed]
- Ai, Z.; Huang, Y.; Lee, S.; Zhang, L. Monoclinic α-Bi₂O₃ photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation. *J. Alloys Compd.* 2011, 509, 2044–2049. [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi₂O₄ under Visible-Light Irradiation. *Angew. Chem.* 2004, 116, 4563–4566. [CrossRef]
- Murakami, Y.; Chatchai, P.; Nosaka, Y. Developments of the Efficient Water-splitting Electrodes under the Visible Light Irradiation. Electrochemistry 2009, 77, 44–50. [CrossRef]
- Stelo, F.; Kublik, N.; Ullah, S.; Wender, H. Recent advances in Bi₂MoO₆ based Z-scheme heterojunctions for photocatalytic degradation of pollutants. *J. Alloys Compd.* 2020, 829, 154591. [CrossRef]
- Abdi, F.; Savenije, T.J.; May, M.M.; Dam, B.; Krol, R. The Origin of Slow Carrier Transport in BiVO₄ Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. J. Phys. Chem. Lett. 2013, 4, 2752–2757. [CrossRef]
- 9. Ziwritsch, M.; Muller, S.; Hempel, H.; Unold, T.; Abdi, F.F.; Krol, R.; Friedrich, D.; Eichberger, R. Direct Time-Resolved Observation of Carrier Trapping and Polaron Conductivity in BiVO₄. ACS Energy Lett. **2016**, *1*, 888–894. [CrossRef]
- Hu, Y.; Li, D.; Zheng, Y.; Chem, W.; He, Y.; Shao, Y.; Fu, X.; Xiao, G. BiVO₄/TiO₂ nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. *Appl. Catal. B Environ.* 2011, 104, 30–36. [CrossRef]
- 11. Zhang, L.; Tan, G.; Wei, S.; Ren, H.; Xia, A.; Luo, Y. Microwave hydrothermal synthesis and photocatalytic properties of TiO₂/BiVO₄ composite photocatalysts. *Ceram. Int.* **2013**, *39*, 8597–8604. [CrossRef]
- Wetchakun, N.; Chainset, S.; Phanichphant, S.; Wetchakun, K. Efficient photocatalytic degradation of methylene blue over BiVO₄/TiO₂ nanocomposites. *Ceram. Int.* 2014, 41, 5999–6004. [CrossRef]
- 13. Song, X.; Li, Y.; Wei, Z.; Ye, S.; Dionysiou, D. Synthesis of BiVO₄/P25 composites for the photocatalytic degradation of ethylene under visible light. *Chem. Eng. J.* **2017**, *314*, 443–452. [CrossRef]
- 14. Ho-Kimura, S.; Moniz, S.J.A.; Handko, A.D.; Tang, J. Enhanced photoelectrochemical water splitting by nanostructured BiVO₄– TiO₂ composite electrodes. *J. Mater. Chem. A* **2014**, *2*, 3948–3953. [CrossRef]
- 15. Resasco, J.; Zhang, H.; Kornienko, N.; Becknell, N.; Lee, H.; Guo, J.; Briseno, A.L.; Yang, P. TiO₂/BiVO₄ Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. *ACS Cent. Sci.* **2016**, *2*, 80–88. [CrossRef] [PubMed]
- Cheng, B.; Yang, J.; Cho, H.; Wu, J. Fabrication of an Efficient BiVO₄–TiO₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Appl. Mater. Interfaces 2016, 8, 20032–20039. [CrossRef] [PubMed]
- 17. Polo, A.; Grigioni, I.; Dozzi, M.; Selli, E. Sensitizing effects of BiVO₄ and visible light-induced production of highly reductive electrons in the TiO₂/BiVO₄ heterojunction. *Catal. Today* **2020**, *340*, 19–25. [CrossRef]
- 18. Kohtani, S.; Tomohiro, M.; Tokumura, K.; Nakagaki, R. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO₄ photocatalysts. *Appl. Catal. B. Environ.* **2005**, *58*, 265–272. [CrossRef]
- 19. Zhang, J.; Nosaka, Y. Generation of OH radicals and oxidation mechanism in photocatalysis of WO₃ and BiVO₄ powders. *J. Photochem. Photobiol. A Chem.* **2015**, 303–304, 53–58. [CrossRef]
- Liu, G.; Wum, T.; Zhao, J.; Hidaka, H.; Serpone, N. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO₂ Dispersions. *Environ. Sci. Technol.* 1999, 33, 2081–2087. [CrossRef]
- Nosaka, A.Y.; Fujiwara, T.; Yagi, H.; Akutsu, H.; Nosaka, Y. Photoinduced Changes of Surface and Adsorbed Water in TiO₂ Photocatalytic Systems as Studied by Solid State ¹H-NMR Spectroscopy. *Chem. Lett.* 2002, *31*, 420. [CrossRef]
- 22. Zhang, J.; Nosaka, Y. Mechanism of the OH Radical generation in Photocatalysis with TiO₂ of Different Crystalline Types. J. Phys. Chem. C 2014, 118, 10824–10832. [CrossRef]
- 23. Murakami, Y.; Endo, K.; Ohta, I.; Nosaka, A.Y.; Nosaka, Y. Can OH Radicals Diffuse from the UV-Irradiated Photocatalytic TiO₂ Surfaces? Laser-Induced-Fluorescence Study. J. Phys. Chem. C 2007, 111, 11339–11346. [CrossRef]
- 24. Deguchi, S.; Shibata, N.; Takeuchi, T.; Fujiwara, Y.; Isu, N. Photocatalytic Hydrogen Production from Aqueous Solution of Various Oxidizing Sacrifice Agents. *J. Jpn. Petroleum. Inst.* **2010**, *52*, 95–100. [CrossRef]

- 25. Louie, G.; Foley, S.; Cabilic, J.; Coffigny, H.; Taran, F.; Valleix, A.; Renault, J.P.; Pin, S. The reaction of coumarin with the OH radical revisited: Hydroxylation product analysis determined by fluorescence and chromatography. *Radiat. Phys. Chem.* 2005, 72, 119–124. [CrossRef]
- Zhang, J.; Nosaka, Y. Quantitative detection of OH radicals for investigating the reaction mechanism of Various visible-light TiO₂ photocatalysts in aqueous suspension. J. Phys. Chem. C 2013, 117, 1383–1391. [CrossRef]
- 27. Dibbel, R.S.; Watson, D.F. Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO₂ Nanoparticles. J. Phys. Chem. C 2009, 113, 3139–3149. [CrossRef]
- Du, L.; Furube, A.; Yamamoto, K.; Hara, K.; Katoh, R.; Tachiya, M. Plasmon-Induced Charge Separation, and Recombination Dynamics in Gold-TiO₂ Nanoparticle Systems: Dependence on TiO₂ Particle Size. *J. Phys. Chem. C* 2009, 113, 6454–6462. [CrossRef]
- Liu, S.; Jaffrezic, N.; Guillard, C. Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO₂ catalysts. *Appl. Surf. Sci.* 2008, 255, 2704–2709. [CrossRef]
- Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N. Evidence for H₂O₂ Generation during the TiO₂-Assisted Photodegradation of Dyes in Aqueous Dispersions under Visible Light Illumination. J. Phys. Chem. B 1999, 103, 4862–4867. [CrossRef]
- Li, X.; Chen, C.; Zhao, J. Mechanism of Photodecomposition of H₂O₂ on TiO₂ surfaces under Visible Light Irradiation. *Langmuir* 2001, 17, 4118–4122. [CrossRef]
- 32. Hayashi, T.; Nakamura, K.; Suzuki, T.; Saito, N.; Murakami, Y. OH radical formation by the photocatalytic reduction reactions of H₂O₂ on the surface of plasmonic excited Au-TiO₂ photocatalysts. *Chem. Phys. Lett.* **2020**, 739, 136958. [CrossRef]
- 33. Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O₂ and OH radical formation in anatase and rutile TiO₂ suspension as the effect of H₂O₂ addition. *Appl. Catal. A Gen.* **2007**, *325*, 105–111. [CrossRef]
- 34. Nakabayashi, Y.; Nishikawa, M.; Saito, N.; Terashima, C.; Fujishima, A. Significance of Hydroxyl Radical in Photoinduced Oxygen Evolution in Water on Monoclinic Bismuth Vanadate. *J. Phys. Chem.* C 2017, 121, 25624–25631. [CrossRef]
- 35. Shi, L.; Xu, C.; Zhang, H.; Liu, Z.; Qu, X.; Du, F. Facile fabrication of hierarchical BiVO₄/TiO₂ heterostructures for enhanced photocatalytic activities under visible-light irradiation. *J. Mater. Sci.* **2018**, *53*, 11329–11342. [CrossRef]
- Wang, Y.; Lu, N.; Luo, M.; Fan, L.; Zhao, K.; Qu, J.; Guan, J.; Yuan, X. Enhancement mechanism of fiddlehead-shaped TiO₂-BiVO₄ type II heterojunction in SPEC towards RhB degradation and detoxification. *Appl. Surf. Sci.* 2019, 463, 234–243. [CrossRef]
- 37. Kehrer, J.P. The Haber–Weiss reaction and mechanisms of toxicity. *Toxicology* **2000**, *149*, 43–50. [CrossRef] [PubMed]
- Furube, A.; Du, L.; Hara, K.; Kato, R.; Tachiya, M. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO₂ Nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852–14853. [CrossRef]
- 39. Du, L.; Furube, A.; Hara, K.; Kato, R.; Tachiya, M. Ultrafast plasmon-induced electron injection mechanism in gold–TiO₂ nanoparticle system. *J. Photochem. Photobiol. C* **2013**, *15*, 21–30. [CrossRef]
- 40. Bahnemann, D.W.; Hilgendorff, M.; Memming, R. Charge Carrier Dynamics at TiO₂ Particles: Reactivity of Free and Trapped Holes. *J. Phys. Chem. B* **1997**, *101*, 4265–4275. [CrossRef]
- Henderson, M.; Epling, W.S.; Peden, C.H.; Perkins, C.L. Insights into Photoexcited Electron Scavenging Processes on TiO₂ Obtained from Studies of the Reaction of O₂ with OH Groups Adsorbed at Electronic Defects on TiO₂(110). *J. Phys. Chem. B* 2003, 107, 534–545. [CrossRef]
- Losada, C.M.; Johansson, J.; Brinck, T.; Jonsson, M. Mechanism of H₂O₂ Decomposition on Transition Metal Oxide Surfaces. J. Phys. Chem. C 2012, 116, 9533–9543. [CrossRef]
- Nosaka, Y.; Nosaka, A.Y. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. [CrossRef]
- Yu, T.; Breslin, C.B. Review—2D Graphene and Graphene-Like Materials and Their Promising Applications in the Generation of Hydrogen Peroxide. J. Electrochem. Soc. 2020, 167, 126502. [CrossRef]
- 45. Xie, L.; Hao, J.-G.; Chen, H.-Q.; Li, Z.-X.; Ge, S.-Y.; Mi, Y.; Yang, K.; Lu, K. Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. *Catal. Commun.* **2022**, *162*, 106371. [CrossRef]
- Wei, Y.; Hao, J.-G.; Zhang, J.-L.; Huang, W.-Y.; Ouyang, S.-B.; Yang, K.; Lu, K.-Q. Integrating Co(OH)₂ nanosheet arrays on graphene for efficient noble-metal-free EY-sensitized photocatalytic H₂ evolution. *Dalton. Trans.* 2023, *52*, 13923–13929. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.