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Abstract: The oxidative C-C cleavage of a C18 substrate is an important transformation in synthetic
organic chemistry, facilitating the synthesis of valuable C8-C9 acids widely used in many industries.
Through a comparative analysis of the catalytic and physicochemical properties of catalysts, com-
prising mono- (Pd or Au) and bimetallic (PdAu) nanoparticles deposited on oxides, oxyhydroxides
and graphite-like carbon material Sibunit (Cp), it was shown that the efficiency of the catalyst in the
oxidative cleavage of 9,10-dihydroxystearic acid relies on the nature of the active component, the
support and the average size of metal nanoparticles (NPs). The dependency of 9,10-DSA conversion
on the average size of metal NPs shows the structural sensitivity of the oxidative cleavage reaction.
Notably, catalysts with an average size of gold particles less than 3 nm exhibit the highest activity.
The nature of the active component and the support material are crucial factors determining the
process selectivity. Among the catalysts studied, the most effective for the oxidative cleavage of
9,10-DSA is a material based on Au NPs deposited on Cp.

Keywords: oxidative C-C cleavage; 9,10-dihydroxystearic acid; supported metal NPs; structural
sensitivity

1. Introduction

Nowadays, the importance of developing new sources of energy and chemicals cannot
be overestimated. According to British Petroleum (BP) [1], Earth’s oil reserves amount
to ~1.7 trillion barrels. At the current consumption rate, this supply should only last for
47 years, i.e., until 2070. Additionally, according to a previous BP report [2], natural gas
reserves are expected to last until 2069. Thus, the search for new renewable resources is
extremely relevant, as confirmed by numerous studies in this direction [3–9].

Biomass emerges as a sustainable alternative, capable of replacing conventional raw
materials in an environmentally friendly manner. Statistics show that in 2015, the world
produced 11.9 billion tons of biomass, with 61% originating from agriculture and 39% from
forestry [10]. Various methods can be employed to extract fatty acids from agricultural raw
materials [11–13]. Subsequently, these fatty acids find applications in diverse fields, such as
oilfields, organic synthesis, medicine and polymer production [14–17]. Nevertheless, an
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alternative and promising approach involves the catalytic cleavage oxidation of biomass-
derived fatty acids to produce valuable organic compounds, such as azelaic, pelargonic,
suberic and caprylic acids.

Azelaic acid (AA) has applications in several industries. In cosmetics, it is used to
treat acne, reduce inflammation and improve skin texture. In pharmaceuticals, AA is a
component of medications used in the treatment of various skin diseases. In addition, the
potential for using AA as a monomer to create biodegradable plastics is substantial, sug-
gesting its role in the development of environmentally friendly materials [11], suggesting
its role in the development of environmentally friendly materials [18].

Pelargonic acid (PA) is applied in agriculture for the production of weed and pest
control agents. In addition, PA can be used in the manufacture of paints and coatings with
enhanced properties [19,20].

Both suberic acid (SA) and caprylic acid (CA) have a wide range of medical applica-
tions. SA can be used as an inhibitor of angiogenesis (formation of new blood vessels),
a crucial aspect in the treatment of some diseases. CA has potential applications as an
antimicrobial agent or fat burner, which makes it valuable in the therapy of various ail-
ments [21,22].

In industry, the above-mentioned acids are typically obtained through methods char-
acterized by a range of significant disadvantages, including the use of explosion and fire
hazardous reagents, the generation of toxic waste and the implementation of complex
technological schemes [23,24]. For example, the production of AA and PA involves the
ozonolysis of oleic acid or linoleic acid, introducing potential hazards due to the use
of flammable and toxic ozone [23]. In the case of SA and CA, the production process
uses nitric acid as an oxidizing agent, which contributes to the formation of poisonous
NO and NO2 [24]. An alternative approach to produce these acids is the oxidation of
biomass-derived substrates using various catalytic systems (Table 1).

Table 1. Production of azelaic and pelargonic acids from various substrates.

№ Substrate * Catalyst Conditions
Conversion

(%)
Yield or Selectivity (%)

Ref.
AA PA SA CA

1 MDS Au/Al2O3

1 mmol of substrate, 0.2 mol % Au,
5 mmol NaOH, 20 mL H2O, 80 ◦C,

5 bar O2

100 86 99 ~7 ~7 [25]

2 9,10-DHSA
CoAc2/

H2WO4/
CH3COONa

360 min, 15 bar O2, 70 ◦C 100 15 56 - - [26]

3 HOSO
CeO2/

Nb2O5/
TiO2 + MeOH

12 bar O2 (180 ◦C), 6 bar N2 (160 ◦C),
5 h - 34 [27]

4 OA Silica-supported
W-oxide

20 g of substrate, 60 mL H2O2 (30%),
150 mL tert-butanol, 1.5 g of catalyst,

130 ◦C, 1 h
79 32 36 - - [28]

5 OA H2WO4
5 g of substrate, 7.5 g H2O2 (60%),
ratio cat/sub = 1/400, 100 ◦C, 24 h 94 60 16 - [29]

6 OA [Fe(OTf)2
(6-Me-PyTACN)]

Solvent – MeCN, 4.5 eq. NaIO4,
100 eq. H2O, 24 h, then H2SO4
(0.5 eq.) in H2O (50 eq.), 12 h,

and NaHCO3 (1 eq.) and catalyst
(1 mol %)

100 85 - - - [30]

7 OA Cr/MCM-41
1 g of substrate, 40 mg of catalyst,

180 ◦C, 8 h, pO2 = 1 Mpa and
pCO2 = 10 MPa

>95 32 32 10 10 [31]
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Table 1. Cont.

№ Substrate * Catalyst Conditions
Conversion

(%)
Yield or Selectivity (%)

Ref.
AA PA SA CA

8 9,10-DSTG CuFe2O4
1 wt% catalyst, 80 ◦C, stirring

500 rpm, pO2 = 25 bar, 5 h 96 70 52 - - [18]

9 OA -

2 g of substrate, flow rate for OA
1 mL/min, flow rate for O3/O2

500 mL/min, 0 ◦C, solvent—50 mL
of acetone:H2O (95:5)

- 84 - - - [32]

10 SO V2O5/TiO2
1 g of substrate, 30 wt. % of catalyst,

TBHP (20 volume), 80 ◦C, 12 h - 66 - - - [33]

11 VDFE Ru(OH)x/γ-
Al2O3

4 g of substrate, 12 mL dodecane,
60 mL H2O, 6 mol % of catalyst,

pO2 = 5 bar
99 83 86 6 4 [34]

12 OA KMnO4/NaOH/
TEBAC

2 g of substrate, 2 g of KMnO4, 0.2 g
TEBAC, 50 mL H2O, 50 ◦C,

8 h
100 96 81 - - [35]

13 OA WO3·H2O
1 g of substrate, 7.5 mL of

tert-butanol, 4 mL of H2O2, 0.45 g of
catalyst, stirring 400 rpm, 120 ◦C, 5 h

100 77 69 - - [36]

14 OA Surfactant-
capped NPs WO3

2 g of substrate, 15 mL of
tert-butanol, 6 mL of H2O2, 0.9 g of

catalyst, 120 ◦C, 5 h
95 58 24 - - [37]

15 OA ACO-Ru (2%)

0.5 mmol of substrate,
solvent—H2O/MeCN/AcOEt

(4/2/1), 8 equivalents of NaIO4,
100 mg of catalyst, stirring 1500 rpm,

r.t., 24 h

53 16 16 - - [38]

16 OA CBO-Ru (2%)

0.5 mmol of substrate,
solvent—H2O/MeCN/AcOEt

(4/2/1), 8 equivalents of NaIO4,
100 mg of catalyst, stirring 1500 rpm,

r.t., 24 h

100 75 75 - - [38]

* MDS—methyl-9,10-dihydroxystearate; 9,10-DHSA—9,10-dihydroxystearilic alcohol; HOSO—High oleic sun-
flowers oil; OA—Oleic acid; 9,10–DSTG—9,10-Dihydroxystearic triglyceride; SO—Triadica sebifera seed oil;
VDFE—Vicinal diol fatty esters.

In the considered studies, various catalytic systems and substrates were used for the
synthesis of C8-C9 acids. The best result was obtained using the Au/Al2O3 catalyst [25],
with a yield of 86% for AA and 99% for PA, with minimal formation of SA and CA. The
high activity of the catalyst in this study is attributed to the small size of gold nanoparticles
and their interaction with the support surface. However, other physicochemical properties
of the catalyst and their influence on the oxidative C-C cleavage activity of the C18 substrate
were not explored. Additionally, when using Al2O3 as a support, its instability in an
alkaline medium should be taken into account [39].

Table 1 also presents the results of other studies [30,34,35,38], where relatively high
yields of AA (75–96%) and PA (69–86%) were obtained. Nevertheless, these described
catalysts either involve complex multicomponent systems or operate under specific process
conditions, which imposes certain difficulties in their practical implementation.

Thus, it is obvious that in order to establish scientifically grounded approaches to select
the most effective, economical, environmentally feasible and technically viable methods to
intensify biomass processing into valuable chemical products, it is necessary to conduct
systematic studies. This is particularly relevant to the choice of catalyst, also taking into
account issues related to its deactivation [40–47] and, accordingly, the choice of its operating
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conditions. Therefore, the aim of this work is to elucidate the catalyst characteristics that
determine its efficiency in the oxidative cleavage process of 9,10-dihydroxystearic acid.
This investigation focuses on mono- (Pd or Au) and bimetallic (Pd-Au) nanoparticles
deposited on oxides, oxyhydroxides and graphite-like carbon material Sibunit (Cp) through
a comparative analysis of their catalytic and physicochemical properties.

2. Materials and Methods

As catalytic systems for the comparative study, Au/AlOOH_S5, Au/AlOOH_C, Au/
La2O3/TiO2, Au/CeO2/TiO2, Pd/Cp-NH4OH, Au/Cp-NH4OH and PdAu/Cp-NH4OH
materials were chosen. These materials previously demonstrated efficiency as catalysts in
processes such as low-temperature CO oxidation and liquid-phase oxidation of n-octanol,
glycerol, 5-HMF and betulin [39,48–52]. Other than Au/Cp-NH4OH material, it is used for
the first time. They exhibit significant variations in their physicochemical properties.

2.1. Preparation of Supports and Synthesis of Catalysts
2.1.1. Modification of Titanium Oxide

Titania Degussa P25 (45 m2/g, nonporous, 70% anatase and 30% rutile, purity > 99.5%,
Merck, Darmstadt, Germany) was used as starting support. MeTiO2 supports with a molar
ratio Ti/Me = 40 (where Me represents La or Ce) were synthesized by impregnation of
the initial titanium oxide with aqueous solutions of La(NO3)3·6H2O and Ce(NO3)3·6H2O
nitrates (Merck, Darmstadt, Germany). Subsequently, the samples were dried at room
temperature for 48 h and at 110 ◦C for 4 h, followed by calcination at 550 ◦C for 4 h.

2.1.2. Modification of Sibunit

Sibunit (CNCT BIC, Omsk, Russia) was modified with NH4OH as follows: boiling in
20 wt. % nitric acid solution for 1 h, then washed with distilled water and dried at 80 ◦C
for 2 h.

2.1.3. Synthesis of Catalysts

Gold (4% by weight) was deposited on metal oxides using a deposition precipitation
method with urea at 80 ◦C for 16 h, in the absence of light [53–56], using HAuCl4·3H2O
(Merck, Darmstadt, Germany) as the gold precursor. In order to decompose the hydrolysis
products of the gold (III) complex with urea on the support surface, the synthesized
catalysts were pretreated in a hydrogen atmosphere at 300 ◦C for 1 h (15% of H2 in Ar, flow
rate 300 mL/min).

Monometallic catalysts containing 1 wt. % Au or Pd were synthesized using the
sol immobilization method [57]. In this process, 1 mL of Na2PdCl4 (Merck, Darmstadt,
Germany) or HAuCl4·3H2O (Merck, Darmstadt, Germany) solution containing 10 mg of
Pd or Au in the count of pure metal and 0.5 mL of a solution containing 1 wt. % PVA
(Merck, Darmstadt, Germany) was introduced into a certain volume of water. After 5 min,
0.1 M NaBH4 solution (Merck, Darmstadt, Germany) was rapidly injected under vigorous
stirring, with the metal:NaBH4 ratio at 1:4 mol/mol. After 30 min, a sample of support
required for obtaining a catalyst with 1 wt. % metal content and a few drops of H2SO4
(Panreac AplliChem, Barcelona, Spain) was added to the obtained sol. Deposition of
nanoparticles was carried out for 1 h, and then the catalyst powder was thoroughly washed
with deionized water and dried at 80 ◦C for 2 h in air atmosphere.

The bimetallic PdAu catalysts were prepared similarly to the monometallic synthesis
method previously described. To a defined amount of water, 684 µL of Na2PdCl4 solution
(10 mg Pd/1 mL H2O), 316 µL of HAuCl4·3H2O solution (10 mg Au/1 mL H2O) and 0.5 mL
of a solution containing 1 wt. % PVA were added. After 5 min, under vigorous stirring,
0.1 M NaBH4 solution was rapidly injected into the solution, with the metal:NaBH4 ratio at
1:4 mol/mol. After 30 min, a weight of support required to prepare a catalyst containing
1 wt. % metal and a few drops of H2SO4 was added to the obtained sol. Deposition of
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nanoparticles was carried out for 1 h, then the catalyst powder was thoroughly washed
with deionized water and dried at 80 ◦C for 2 h in an air atmosphere.

2.2. Synthesis of 9,10-Dihydroxystearic Acid

For the dihydroxylation of oleic acid, an oxidizing mixture was prepared as follows:
250 mL of tert-butanol (Merck, Darmstadt, Germany) and 105 mL of 30% H2O2 solution
(Merck, Darmstadt, Germany) were added to a three-neck flask equipped with a reflux
condenser, overhead stirrer and thermometer. In addition, 69.9 g of anhydrous MgSO4
(Merck, Darmstadt, Germany) was gradually added in portions. The reaction mixture was
stirred for 4 h at 30 ◦C. The temperature of reaction was controlled using an ice bath. The
obtained solution was then filtered on a vacuum station.

Subsequently, 0.71 g of methyltrioxorhenium (Merck, Darmstadt, Germany) and 99 g of
oleic acid were dissolved in 210 mL of the resulting oxidizing solution. The dihydroxylation
process was performed for 48 h at 40 ◦C.

At the end of the process, to neutralize the residual H2O2, a suspension of NaHSO3
(Merck, Darmstadt, Germany) was added to the reaction mixture, and a special indicator
paper was used to check for remaining H2O2. After neutralization, tert-butanol was
removed using a rotary evaporator, and the precipitate was dissolved in 500 mL of heptane
(Merck, Darmstadt, Germany). The resulting solution was left in the refrigerator for 24 h
at −5 ◦C. Then, the precipitate was filtered off, washed with petroleum ether (40–60 ◦C
fraction) and dried under vacuum.

2.3. Catalytic Experiments

The autoclave reactor was charged with 0.317 g of 9,10-dihydroxystearic acid, a catalyst
loading (metal/substrate ratio is 1:500 mol/mol) and 20 mL of 0.25 M NaOH solution
(Merck, Darmstadt, Germany). Subsequently, the reactor was purged with argon several
times and heated to the desired temperature at 2 atm of Ar while stirring at 200 rpm. Once
the temperature reached 80 ◦C, 5 atm of O2 were pressurized into the reactor, stirring was
adjusted to 1500 rpm and the reaction was carried out for 260 min. Scheme of reaction is
shown in Figure 1.
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hydroxy-10-oxostearic acid; (c)—10-hydroxy-9-oxostearic acid; (d)—9,10-dioxostearic acid; (e)—azelaic
acid; (f)—pelargonic acid; (g)—suberic acid; (h)—caprylic acid. Reproduced from [58] with permission
from the Royal Society of Chemistry.



Reactions 2024, 5 125

After the designated time elapsed, the reaction mixture was cooled to room temper-
ature and then filtered from the catalyst using a vacuum station. The filter was washed
with 25 mL of 0.1 M NaOH solution and 50 mL of distilled water to extract any remaining
reaction products. To precipitate the obtained acids, an aqueous HCl solution was added to
the filtered mixture until reaching pH values of 2–3. To transfer the reaction products and
unreacted substrate to the organic solvent, the resulting solution was placed in a separating
funnel, and 15 mL of methyl tert-butyl ether (Acros Organics, Verona, Italy) was added.
The solution was shaken, left to stand for a few minutes and drained. This procedure was
repeated 5 times. In the solution, 10 g of anhydrous MgSO4 (Merck, Darmstadt, Germany)
was added to remove the residual water and left for 2 h at room temperature. When the
time elapsed, the mixture was filtered and transferred to a measuring flask, and the volume
of the solution was adjusted to 100 mL with methyl tert-butyl ether.

From the final mixture, 1 mL was taken, and the methyl tert-butyl ether was removed
using a rotary evaporator. Then, 250 µL of silylating agent was added, and the silylation
process was carried out for 1 h at 80 ◦C. The solution with silylated products was transferred
to a 2 mL volumetric flask. The required amount of the standard—diethylene glycol
dibutyl ether (Merck, Darmstadt, Germany)—was added and brought to the mark with
methyl tert-butyl ether. The reaction products were analyzed by a GC-MC Shimadzu
GCMS-QP2010S (Shimadzu Corp., Kyoto, Japan) chromatograph on a Rtx-5MS column
(30 m × 0.25 mm × 0.25 µm) manufactured by BGB Analytik (Boeckten, Switzerland).

To check the material balance, the recovery rate was calculated, indicating how much
of the substrate (i.e., 9,10-dihydroxystearic acid) was converted into the target products or
remained unreacted. The recovery rate is estimated as the sum of moles of all products and
unreacted substrate divided by the original number of substrate moles and multiplied by
100%:

Recovery rate =
∑ η products·0.5 + η substrate

η0 substrate
× 100%, (1)

where “∑η products” is the total number of moles of products formed, “η substrate” is the
number of moles of unreacted substrate, “η0 substrate” is the number of moles of substrate
before the reaction.

To evaluate the activity of the synthesized catalysts, the conversion and product yields
were calculated using the following equations:

Conversion =
η0 substrate − η substrate

η0 substrate
× 100%, (2)

where “η substrate” is the number of moles of unreacted substrate, and “η0 substrate” is
the number of moles of substrate before the reaction.

Yield =
η product
η0 substrate

× 100%, (3)

where “η product” is the number of moles of product formed, and “η0 substrate” is the
number of moles of substrate before the reaction.

Turnover frequency was calculated with regard to the number of moles of metal as
follows:

TOF =
conversion × η0 substrate
η metal × 100 × 4.33 h

, (4)

where “η0 substrate” is the number of moles of substrate before the reaction, and η metal
represents metal content in the catalyst weight.

2.4. Characterization of Catalysts and Supports

The mass fractions of gold and palladium were determined by atomic emission spec-
troscopy with inductively coupled plasma (AES ICP) using a Thermo Scientific iCAP
6300 Duo spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and X-ray en-
ergy dispersive spectroscopy (XEDS) in a JEOL JEM-2100F (JEOL Ltd., Tokyo, Japan)
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electronic microscope. The specific surface area, pore size and pore volume of the cata-
lysts and corresponding supports were investigated using the low-temperature nitrogen
adsorption–desorption method on a Micromeritics 23x-Tristar 3000 Apparatus (Micromerit-
ics Instrument Corporation, Norcross, GA, USA). The phase composition of the supports
and catalysts was analyzed by X-ray phase analysis on Philips XPert PRO (Philips, Amster-
dam, The Netherlands) and Bruker D8 (Bruker Corp., Billerica, MA, USA). The electronic
state of gold and palladium on the surface of catalysts was studied by X-ray photoelectron
spectroscopy on ESCALAB 200A (Thermo Fisher Scientific, Waltham, MA, USA) and SPECS
GmbH custom-made system using a PHOIBOS 150 WAL (SPECS Surface Nano Analysis
GmbH, Berlin, Germany). The size and distribution of gold and palladium nanoparticles
were analyzed by transmission electron microscopy on a JEOL JEM-2100F instrument
(JEOL Ltd., Tokyo, Japan). More details of the methods used for the study of supports and
catalysts are described in the Supplementary Material.

3. Results

The physicochemical properties of the samples used in this work are detailed in our
previous publications [39,48–52] and summarized in Table 2, with graphical representations
presented in Figures S1–S4 in Supplementary Information. With the exception of the data
for Au/Cp-NH4OH material, they are presented for the first time.

Table 2. Physicochemical characteristics of supports and corresponding catalysts [39,48–52].

Sample Indicated
Phase a

wi/

1 
 

  ⅀ 
 

w
(%) a

SBET
(m2/g) b

Pore
Size

(nm) b

Pore
Volume
(cm3/g) b

Metal
Content
(wt. %) c dNPs

(nm) d

Relative Content (%) e

Pd Au
Pd Au

Pd0 Pd2+ Pd4+ Au0 Au+ Au3+

AlOOH_S5 AlO(OH)
(orthorhombic) 100 385 5.7 0.67 - - - - - - - - -

AlOOH_C AlO(OH)
(orthorhombic) 100 321 5.8 0.41 - - - - - - - - -

Au/
AlOOH_S5

AlO(OH)
(orthorhombic)

Au

96

4
293 6.0 0.55 - 3.94 4.2 - - - 100 0 0

Au/
AlOOH_C

AlO(OH)
(orthorhombic)

Au

96

4
254 5.6 0.52 - 3.95 2.9 - - - 81 19 0

La2O3/TiO2 TiO2 (tetragonal) - 45.3 356.3 0.38 - - - - - - - - -

CeO2/TiO2
TiO2 (tetragonal)

CeO2 (cubic)
-
- 43.4 292.4 0.35 - - - - - - - - -

Au/La2O3/
TiO2

TiO2 (tetragonal) - 45.2 211.5 0.24 - 3.3 2.6 - - - 83 17 0

Au/CeO2/
TiO2

TiO2 (tetragonal) - 46.6 211.1 0.26 - 4.1 2.8 - - - 68 20 12

Cp-NH4OH C (hexagonal) - 318 6.4 0.58 - - - - - - - - -

Pd/Cp-
NH4OH

C (hexagonal)
Pd (cubic)

-
- 320 6.8 0.62 1.2 - 4.3 59 31 10 - - -

Au/Cp-
NH4OH C (hexagonal) - 322 5.0 0.55 - 0.9 2.9 - - - 100 0 0

PdAu/Cp-
NH4OH C (hexagonal) - 331 6.5 0.62 0.56 0.20

* 4.0 91 7 2 92 8 0

wi/

1 
 

  ⅀ 
 

w—mass fraction of the phase according to XRD; SBET—specific surface area calculated by BET method;
dNPs—average diameter of nanoparticles; a XRD; b N2 adsorption–desorption; c AES ICP; d HRTEM; e XPS;
*—determined by XEDS.
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3.1. X-ray Diffraction

The structural characteristics of the supports and the corresponding catalysts were
determined by XRD (Figure S3, Table 2).

The 2θ = 14.1◦, 28.2◦, 38.4◦, 49.3◦, 65.0◦ and 72.2◦ reflections observed in the X-ray
diffraction patterns of aluminum supports (AlOOH_S5 and AlOOH_C) belong to aluminum
oxyhydroxide (boehmite) with an orthorhombic crystal lattice [59]. It should be noted that
according to the manufacturer’s data, AlOOH_S5 material is a mixture of 5% SiO2 and 95%
boehmite, but no reflexes related to SiO2 were detected, possibly due to the amorphous
structure of the silicon oxide included in the material. Gold deposition did not lead to
any structural changes in these supports. A gold phase was identified for both catalysts at
2θ = 44.3◦ and 77.7◦ [60]. The gold content determined using the Rietveld method agreed
well with the AES ICP data (Table 2).

The X-ray diffraction patterns of La2O3/TiO2 and CeO2/TiO2 supports show reflections
corresponding to the phases of rutile (2θ = 27.6◦ and 41.5◦) and anatase (2θ = 25.5◦, 38.0◦, 48.2◦,
62.9◦ and 75.2◦) [61]. Additionally, diffraction peaks at 2θ ~ 28.6◦ and 33.1◦ belonging to the
CeO2 phase were observed [62]. The analysis of the phase composition of the related catalysts
revealed no changes in the structure of the supports after gold deposition. In addition, no
reflexes belonging to the gold phase were detected, possibly attributable to the small size of
gold NPs (below the sensitivity level of the method) and their uniform distribution on the
support surface or to their X-ray amorphous structure.

The XRD spectra of carbon samples showed diffraction maxima at 2θ = 25.5◦ and 43.2◦,
which is consistent with literature data corresponding to the carbon material “Sibunite” [63].
The deposition of gold and/or palladium did not change the structure of the support.
Notably, no reflexes belonging to the deposited metals were found on the diffractograms
measured for Au/Cp-NH4OH and PdAu/Cp-NH4OH catalysts. The exception is Pd/Cp-
NH4OH, where maxima were observed at 2θ = 40.0◦ and 68.5◦, corresponding to the
palladium phase [64].

3.2. AES ICP and XEDS

According to AES ICP data, gold was deposited on the surface of boehmite, and
titanium oxide was modified with cerium oxide in an amount close to nominal (Table 2).
However, in the case of TiO2-modified La2O3 and Sibunit, the completeness of gold deposi-
tion is below nominal, specifically 67% for Au/La2O3/TiO2, 90% for Au/Cp-NH4OH and
83% for PdAu/Cp-NH4OH. It is worth noting that the completeness of metal deposition is
influenced by many factors, such as the nature of the metal precursor, method of prepara-
tion and nature of the support (hydride, hydroxyl, carbonyl, carboxyl and other groups,
i.e., functional surface coverage, point of zero surface charge). In addition, the functional
coating of the support may change due to reagents used in catalyst synthesis, affecting the
amount of metal deposition. A specific cause cannot be established based on the available
experimental data.

For Pd/Cp-NH4OH and PdAu/Cp-NH4OH, the completeness of palladium depo-
sition was 100 and 80%, respectively. In the case of the bimetallic catalyst, competitive
adsorption of metal precursors during synthesis might occur.

3.3. N2 Adsorption–Desorption

According to the data presented in Table 2, the initial boehmite and Sibunit, along with
their corresponding catalysts, are mesoporous materials with extended specific surface
area. However, for AlOOH_S5 and AlOOH_C materials, gold deposition on their surface
results in a significant decrease in the specific surface area of the synthesized catalysts. This
reduction may be a consequence of an increase in the average size of support crystals due
to agglomeration during catalyst synthesis and a decrease in the available pores.

CeO2- and La2O3-modified TiO2 and their corresponding catalysts exhibit a macrop-
orous structure with considerably lower specific surface area values compared to boehmite
and Sibunit materials.
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3.4. Transmission Electron Microscopy

The size distribution of the metal particles and TEM images are shown in Figure S4,
and the values of the average sizes of metal NPs are summarized in Table 2.

For gold catalysts deposited on AlOOH_S5 and AlOOH_C, the average nanoparticle
sizes were 4.2 nm and 2.9 nm, respectively. The significantly larger size of gold nanoparticles
on the boehmite Siral 5 is probably due to the presence of SiO2 in its composition. The
existence of SiO2 potentially alters the point of zero charge on the surface compared to
AlOOH_C, leading to a modification in the interaction nature of the gold precursor with
the surface of the support [39,65].

For Au/La2O3/TiO2 and Au/CeO2/TiO2, the average size of Au nanoparticles (2.6 nm
and 2.8 nm) and their distribution range (1–7 nm) are similar.

An analysis of TEM images of carbon samples reveals that the average size of nanopar-
ticles on the surface of Au/Cp-NH4OH, Pd/Cp-NH4OH and PdAu/Cp-NH4OH are
2.9 nm, 4.3 nm and 4.0 nm, respectively. As demonstrated in [66], the reduction rate of
the metal precursor plays a crucial role in the nucleation and growth processes, serving
as one of the main factors influencing the final size and shape of the NPs. The rate of
metal atom generation is influenced by the nature of the precursor and reducing agent. In
this case, HAuCl4·3H2O and Na2PdCl4 were used as gold and palladium precursors, with
NaBH4 acting as the reducing agent. The oxidizing potential of NaBH4 strongly depends
on the solution pH, rising with increasing pH. The elevated oxidizing potential of NaBH4 is
associated with an increase in its reduction capacity. Consequently, the differing reduction
rates of gold and palladium precursors likely contribute to the observed variations in the
average size of gold and palladium NPs, as well as their mixture.

3.5. X-ray Photoelectron Spectroscopy

The results detailing the electronic state of gold and palladium on the surface of the
investigated catalysts are presented in Table 2 and Figures S1 and S2.

On the surfaces of Au/AlOOH_S5 and Au/Cp-NH4OH materials, gold is only present
in the metallic state. However, for all other samples, along with the metallic state, an
additional gold state, Au+, was detected. The contribution of Au+ increases in the following
sequence: PdAu/Cp-NH4OH (8%), Au/La2O3/TiO2 (17%), Au/AlOOH_C (19%) and
Au/CeO2/TiO2 (20%). Moreover, in addition to Au0 and Au+, Au3+ (12%) was also found
on the surface of Au/CeO2/TiO2 material.

The deconvolution of Pd 3d XRD spectra revealed that palladium on the surface
of Pd/Cp-NH4OH and PdAu/Cp-NH4OH catalysts is present in three states: Pd0, Pd2+

and Pd4+. A significant portion is in the metallic state, namely 59% for monometallic
and 91% for bimetallic catalysts. In the case of Pd/Cp-NH4OH, the involvement of Pd2+

and Pd4+ states accounts for 31% and 10%, respectively, while for PdAu/Cp-NH4OH, the
corresponding amounts are 7% and 2%.

3.6. Catalysis

The activity of the investigated catalysts in the process of oxidative C-C cleavage was
evaluated under the following conditions: 0.317 g (1 mmol) of the substrate, Me/substrate
ratio = 1:500, 20 mL of 0.25 M NaOH solution, T = 80 ◦C, p = 5 bar O2, t = 260 min, stirring
1500 rpm. The catalytic data are presented in Table 3.

For gold deposited on aluminum oxyhydroxides (Table 3, entries 1 and 2), the catalyst
with boehmite Catapal B as the support for gold NPs exhibited the highest activity. This
catalyst achieved 100% conversion of 9,10-DSA with a recovery rate of 69%. In contrast, the
Au/AlOOH_S5 material showed nearly three times lower conversion (35%) but a higher re-
covery rate (83%). Similarly, the yield of products was also higher for Au/AlOOH_C, with
51% for azelaic acid and 66% for pelargonic acid, along with small amounts of caprylic and
suberic acids (11% and 9%, respectively). These observed variations in catalytic behavior
can be attributed to the structural sensitivity of the oxidative C-C cleavage reaction, consid-
ering the significantly smaller size of Au NPs on the Au/AlOOH_C surface compared to
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Au/AlOOH_S5 (2.9 nm and 4.2 nm, respectively) (Table 2, Figure S4). The influence of the
average size of gold NPs on the catalytic properties of Au NP catalysts in oxidative C-C
cleavage was also observed in previous studies [25].

Table 3. Results of catalytic experiments.

Entry Catalyst Conv., (%) Y AA, (%) Y PA, (%) Y CA, (%) Y SA, (%) Recovery Rate

1 Au/AlOOH_S5 35 11 19 4 3 83
2 Au/AlOOH_C 100 51 66 11 9 69
3 Au/La2O3/TiO2 99 51 56 7 7 62
4 Au/CeO2/TiO2 100 29 37 6 7 40
5 Pd/Cp-NH4OH 46 0 0 0 0 54
6 Au/Cp-NH4OH 88 48 61 21 14 84

7 PdAu/Cp-
NH4OH 77 0 0 0 0 23

Reaction conditions: 0.317 g (1 mmol) of substrate, ratio Me/substrate = 1:500, 20 mL of 0.25 M NaOH solution,
T = 80 ◦C, p = 5 bar O2, t = 260 min, stirring 1500 rpm. Conv.—conversion; Y AA—yield of azelaic acid; Y
PA—yield of pelargonic acid; Y CA—yield of caprylic acid; Y SA—yield of suberic acid.

Additionally, it is essential to consider the different chemical compositions of the
supports and, consequently, their different functional coatings, which play a crucial role
in this kind of reaction. This might explain the observed values of the recovery rate. With
a substrate conversion of 100% and a recovery rate of 69%, it is evident that a portion of
9,10-DSA converts not only to the target products. Thus, side reactions catalyzed by the
acid-base sites of the support also likely take place on the catalyst surface. An example
of a side reaction catalyzed by functional groups of the support, particularly its strong
acid-base sites, is the oxidation of betulin on Au/alumina supports. The products of this
reaction were oligomers/polymers that remained on the catalyst surface and, thus, were
not detected by chromatography [39].

Similar to the case of Au/AlOOH _C material with an average gold particle size of
2.9 nm, Au/La2O3/TiO2 and Au/CeO2/TiO2 catalysts with an average gold particle size
of 2.6 and 2.8 nm, respectively, showed high activity in the oxidative C-C cleavage process,
achieving 99% and 100% conversion of 9,10-DSA, respectively (Table 3, entries 3 and 4).
However, the yields of AA and PA (with a similar ratio between them for each of the
catalysts), as well as the recovery rate, were different among these catalysts. Specifically,
for the Ce-modified sample, these values are, on average, 20 points lower than for the La-
modified sample. One possible explanation for the observed differences in Au/La2O3/TiO2
and Au/CeO2/TiO2 could be attributed to the electronic state of gold on the surface of
these supports. For La2O3-modified TiO2, more than 80% of gold exists in the metallic
state, whereas for CeO2-modified TiO2, it is 68% (Table 2). Additionally, on the surface of
CeO2-modified TiO2, in addition to Au+, which exhibits similar content for both supports,
there is also Au3+. Another potential factor contributing to the variations is the different
functional coatings of La2O3- and CeO2-modified TiO2 supports, which determines the
acid-base properties of the materials. This, in turn, may be responsible for selectivity; in
this case, the recovery rate, as noted above, serves as an indicator.

Among carbon catalysts (Table 3, entries 5–7), the generation of target products from
the oxidative cleavage reaction of 9,10-DSA was exclusively observed for Au/Cp-NH4OH.
It is noteworthy that despite incomplete substrate conversion (88% conversion), this sample
exhibits the highest recovery rate (84%) among all the catalysts studied. As it is known,
graphite (Sibunit—mesoporous graphite-like carbon material) is a chemically inert sub-
stance. Its functionalization with strong acids or bases, leading to the formation of defects,
serves mainly to stabilize the NPs immobilized on its surface. At the same time, during
functionalization on the surface of carbon, carboxyl, carbonyl and other groups are formed,
but these groups are usually much weaker than the acid-base sites found on the surface
of oxide materials. Thus, it can be assumed that the high recovery rate values observed
for Au/Cp-NH4OH are likely due to the unique features of the ammonia-modified Sibunit
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functional coating, and gold NPs with an average size ≥ 3 nm are responsible for the
activity, as in the cases of Au/AlOOH_C, Au/La2O3/TiO2 and Au/CeO2/TiO2 materials.

It should be noted that Pd/Cp-NH4OH and PdAu/Cp-NH4OH materials are active in
the oxidative C-C cleavage process, with the conversion of 9,10-DSA reaching 46% and 77%,
respectively. However, no formation of target products was observed for them (Table 3,
entries 5 and 7). A possible explanation could be attributed to the unique properties
of palladium, which is capable of absorbing hydrogen generated during intermediate
steps or from substrate/intermediates. During the operation of Pd-containing catalysts,
released hydrogen might return to the reaction atmosphere, potentially initiating non-
target processes. In addition, Pd is a “classical” catalyst for C-C bond formation processes,
contributing to the production of off-target products [67–69].

For a more demonstrative confirmation of the hypothesis regarding the structural
sensitivity of the oxidative cleavage reaction of 9,10-dihydroxystearic acid, Table 4 includes
TOF values compared with the average size of metal NPs. The presented data clearly
show that the TOF values for catalysts with particles with an average size of around 3 nm
are several times higher than the corresponding values for catalysts characterized by an
average particle size of 4 nm or more.

Table 4. TOF dependence on average nanoparticle size.

Entry Catalyst Particle Size, nm TOF, h−1

1 Au/AlOOH_S5 4.2 40
2 Au/AlOOH_C 2.9 115
3 Au/La2O3/TiO2 2.6 114
4 Au/CeO2/TiO2 2.8 115
5 Pd/Cp-NH4OH 4.3 53
6 Au/Cp-NH4OH 2.9 101
7 PdAu/Cp-NH4OH 4.0 89

4. Conclusions

This study focused on comparatively evaluating the catalytic properties of materials
with significantly different physicochemical characteristics in the oxidative C-C cleavage of
the C18 substrate.

Regardless of the nature of the support, the most active catalysts were those with an
average size of gold NPs below 3 nm (Table 3, Entry 2-4, 6), demonstrating the structural
sensitivity of the oxidative cleavage reaction of 9,10-DSA. Simultaneously, the functional
coating of the support, depending on its nature, considerably influenced the selectivity
of the oxidative C-C cleavage process (yield of target products), including the recovery
rate, reflecting the occurrence of nontarget processes. Metal oxyhydroxides (AlOOH_S5
and AlOOH_C) and oxides (La2O3/TiO2 and CeO2/TiO2) were found to be inefficient
supports for Au-containing catalysts in the oxidative cleavage of 9,10-DSA due to low
recovery rate values, consequently promoting nonselective processes. On the other hand,
graphite-like carbon material Sibunit, owing to its unique functional cover, allowed us to
obtain an Au NPs catalyst exhibiting the highest recovery rate (84%) among all investigated
catalysts, achieving a conversion level of 88% for 9,10-DSA. The proximity of substrate
conversion and recovery rate values indicates a minimal possibility of non-target processes
on Au/Cp-NH4OH.

Notably, palladium, including in bimetallic system, proved to be an inefficient active
component for catalysts in the oxidative cleavage of 9,10-DSA. Similar to Au/AlOOH_S5,
Au/AlOOH_S5, Au/La2O3/TiO2 and Au/CeO2/TiO2 materials, the use of Pd-based
catalysts (Pd/Cp-NH4OH and PdAu/Cp-NH4OH) led to non-target processes, with this
inefficiency being most pronounced in this case.

In summary, the main factors determining the efficiency of the catalyst in the oxidative
cleavage of 9,10-DSA include the nature of the active component, the support and the
average size of metal NPs.
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NH4OH. Figure S2. Deconvoluted XPS spectra of Pd3d for: Pd/Cp-NH4OH and PdAu/Cp-NH4OH.
Figure S3. XRD patterns for supports and corresponding catalysts. Figure S4. TEM images and
corresponding histograms for: Au/AlOOH_C; Au/AlOOH_S5; Au/La2O3/TiO2; Au/CeO2/TiO2;
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