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Abstract: The performance of an electric vehicle (EV) notably depends on an energy management
controller. This study developed several energy management controllers (EMCs) to optimize the
efficiency of EVs in real-time driving conditions. Also, this study employed an innovative methodol-
ogy to create EMCs, efficiency maps, and real-time driving cycles under actual driving conditions.
The various EMCs such as PID, intelligent, hybrid, and supervisory controllers are designed using
MATLAB/Simulink and examined under real-time conditions. In this instance, a mathematical model
of an EV with a switched reluctance (SR) motor is developed to optimize energy consumption using
different energy management controllers. Further, an inventive experimental approach is employed
to generate efficiency maps for the SR motor and above-mentioned controllers. Then, the generated
efficiency maps are integrated into a model-in-loop (MIL)-based EV test platform to analyze the
performance under real-time conditions. Additionally, to verify EV model, a real-time driving cycle
(DC) has been developed, encompassing various road conditions such as highway, urban, and rural.
Subsequently, the developed models are included into an MIL-based EV test platform to optimize
the performance of the electric motor and battery consumption in real-time conditions. The results
indicate that the proposed supervisory controller (59.1%) has a lower EOT SOC drop compared to the
PID (3.6%), intelligent (21.5%), and hybrid (44.9%) controllers. Also, the suggested controller achieves
minimal energy consumption (44.67 Wh/km) and enhances energy recovery (−58.28 Wh) under
different real-time conditions. Therefore, it will enhance the driving range and battery discharge
characteristics of EVs across various real-time driving conditions.

Keywords: electric vehicles; energy management controllers; adaptive supervisory self-learning
controller; efficiency maps; driving cycle

1. Introduction

Electric vehicle (EV) adoption has been identified as the most optimal strategy for
mitigating air pollution and greenhouse gas (GHG) emissions. Despite the increasing
scarcity of fossil fuels and the ever-growing demand for the same, it is crucial that the
automotive industry moves toward more environmentally friendly approaches [1]. Hybrid
electric vehicles (HEVs) and electric vehicles (EVs) have emerged as pivotal solutions for
the current environmental hardships. EVs have several advantages such as negligible
pollutants, high efficiency, and quiet driving experience with minimal environmental noise,
with being battery powered being the main reason for this [2]. However, to make EVs more
acceptable and feasible for daily life, more advancements are needed, particularly in range
extension, battery, and motor technology. Thus, the development of EVs and the assessment
of their performance remain significant areas of interest for both the automotive sector and
the research community [3]. Moreover, it is crucial that the power required for propulsion
must be analyzed under real-word operating conditions to evaluate EV performance and
optimize the characteristics of the electric motor (EM), battery, controller, and converter. The
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actual operation of the vehicle is highly unpredictable, influenced by factors such as road
conditions, energy consumption (EC), temperature, road grade, and driving behavior [4,5].
Therefore, standardized driving cycles (DCs) mandated by legislation are employed for
EC assessments of EVs. Several DCs are used globally, which include the New European
Driving Cycle (NEDC), the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), the
Federal Test Procedure (FTP), the Indian Modified Driving Cycle (IMDC), US06, etc. [6,7].
In the study conducted in [8], the Urban Dynamometer Driving Cycle (UDDC) and NEDC
were used to explore the impact of temperature on EC; this study revealed optimal EC
values of 1.547 kWh and 1.648 kWh, respectively. Additionally, another study [9] delved into
the influence of the gearbox on the EC of EVs, finding that dual and continuously variable
gearbox systems conserve more energy than single-gear transmissions. However, the
energy usage of electric vehicles is primarily influenced by factors such as the dimensions
of components, operational zones of powertrain elements (motor and battery), state of
charge (SOC), driving distance, and so on. Addressing these issues requires an optimal
modeling environment to enhance vehicle performance and EC under various real-time
driving conditions. Also, ensuring the effectiveness of vehicle modeling and validation
procedures requires considering critical design and control decisions. The EV propulsion
system’s primary components include an electric motor (EM), battery, controller, and
power converters. Various types of EMs, such as a brushless direct current (BLDC) motor,
permanent magnet synchronous motor (PMSM), switched reluctance motor (SRM), and
induction motor (IM), are employed in EV propulsion systems. The choice of EM and
its associated controller significantly impacts EV performance. Therefore, to maximize
performance and energy efficiency, considering performance needs, economic concerns,
and the desired driving experience, appropriate motor and controller selection is crucial.
As well, the practice of longitudinal vehicle platooning plays a crucial role in autonomous
intelligent transportation systems by ensuring the maintenance of an optimal longitudinal
spacing with preceding vehicles [10–13]. In this study, the SR motor has been chosen
due to its beneficial characteristics, including high starting torque, efficiency, and power
density. As a result, the creation of an effective energy management system (EMS) is a
widespread priority, especially for EVs, aiming to distribute power demand efficiently
while maintaining drivability and performance.

Presently, various energy management system (EMS) techniques aim to enhance elec-
tric vehicle (EV) performance across diverse real-time conditions; these include proportional–
integral–derivative (PID) control, direct torque control (DTC), model predictive control
(MPC), field-oriented control (FOC), fuzzy logic control (FLC), hybrid control, etc. These
controllers can be characterized by their ability to achieve specific goals, such as minimiz-
ing energy consumption, optimizing dynamic responsiveness, and enhancing drivability.
Although DTC offers superior torque control, especially for SR motors in EVs, it has
drawbacks like torque and current ripples at low speeds, making it challenging to attain
maximal vehicle performance and minimal energy consumption under real-time driving
conditions [14,15]. To achieve high performance while maintaining the battery state of
charge (SOC) around the desired value during depletion, the integration of DTC and FOC
techniques into SR motors for EV propulsion is explored. However, using both controllers
results in poor energy consumption and regenerative braking efficiency in various driving
conditions [16]. Consequently, the model predictive control (MPC) approach is employed
to minimize EV energy consumption in real-time driving scenarios, forecasting future EV
behavior and identifying optimal operating conditions. Despite its high computational
costs and the need for prior knowledge of future driving actions, MPC fails to set appro-
priate battery discharge limits in real-time driving circumstances due to the complexity
of EV systems [17,18]. In contrast, the proportional–integral–derivative (PID) approach
gains attention for implementing an optimal EMS in real-world driving scenarios due
to its reliability, short processing time, and efficient memory resource utilization. This
approach dynamically adjusts control signals to enhance EV efficiency and driving range
under various conditions. Optimization of PID variables using particle swarm optimiza-
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tion (PSO) and the genetic algorithm (GA) has shown improved transient response under
real-time driving circumstances [19]. An optimally adjusted PID controller aids in seamless
transitions between diverse driving conditions, optimizing the recovery of energy during
regenerative braking and improving the efficiency of the battery. Unlike traditional vector
control approaches like DTC and FOC, the PID controller showcases its ability to reduce
energy consumption (EC) and expand the operational range of electric vehicles (EVs) in
dynamic situations. The tuning of PID parameters and energy preservation in unpre-
dictable conditions is accomplished in [20] through the utilization of battery state-of-charge
(SOC) feedback and vehicle velocity. Despite its advantages in precise tracking of desired
speed and torque for smooth acceleration and deceleration, PID control may struggle with
nonlinearities and uncertainties in EV systems, impacting battery state-of-charge (SOC)
estimation accuracy. Due to these reasons, the tuning of PID parameters is difficult in
various transient conditions. Hence, designers have turned to intelligent controllers such
as the fuzzy logic controller (FLC) and neural network (NN) to enhance EV performance
under unpredictable conditions [21,22]. According to the literature, in order to regulate
the nonlinear operations of electric vehicles (EVs), fuzzy logic control (FLC) utilizes a
rule base and membership functions that incorporate input and output variables under
different conditions. The precise calibration of the membership functions and rule base
enhances accuracy in responses under diverse dynamic conditions. As a result, a fuzzy
logic controller (FLC) proves more effective than a PID controller across various attributes
like energy consumption (EC), state of charge (SOC), regenerative efficiency, etc., under
changing speed and load conditions [23]. Nevertheless, the nonlinear behavior of battery
usage introduces multiple uncertainties into the battery SOC feedback system. Therefore,
adjusting FLC settings to enhance electric vehicle (EV) performance becomes crucial, a
topic that researchers have yet to fully address.

To tackle uncertainties in real-time battery state of charge (SOC) while driving, an
innovative hybrid learning approach is proposed [24]. This method combines fuzzy logic
control (FLC) and proportional–integral–derivative (PID) techniques to govern electric
vehicle (EV) transient error responses in various scenarios. The FLC’s role is to adapt
PID parameters based on suitable rules and membership functions. This fusion of FLC
and PID controllers is considered a ground-breaking hybrid strategy for reducing energy
consumption (EC) and enhancing battery performance in diverse transient conditions. It
offers the advantages of both accuracy and robustness, potentially improving battery health
and lifespan. Furthermore, the hybrid approach is employed to enhance the performance
of electric vehicles (EVs) across diverse road conditions (urban, rural, and highway). This
is achieved by incorporating feedback from battery state of charge (SOC), vehicle speed,
driving behavior, and the direction of current flow (regeneration) [25]. While various hybrid
control techniques have been applied in research studies to manage unknown parameters
in nonlinear systems operating under limited conditions, their data-driven nature makes
it challenging to establish suitable mathematical models for real-time driving situations.
Neural networks (NNs) represent a type of control mechanism capable of adapting and
learning through adjustments in neuron weights, sizes, relationships between layers, and
activation functions [26]. However, the precision of neural network control relies on both
the quality and quantity of training data, with longer training times and potential issues
outside the training domain. Recognizing the limitations of relying solely on a single
learning approach, the integration of multiple control strategies (FLC and NN) through
hybridization holds promise for achieving greater efficiency in real-time conditions [27]. In
this context, the adaptive supervisory self-learning controller (ASSC) emerges as a hybrid
learning control approach, combining FLC’s reasoning mechanism with NN’s self-learning
capability. NN improves the output decisions of the fuzzy inference system by defining
optimal membership functions based on training data, aiming to enhance EV performance
and minimize EC in real-time scenarios. The ASSC approach quickly reduces variations
in speed, torque, and unfavorable chattering consequences under different conditions.
Implementing a supervisory control technique improves the dynamic behavior of the
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EV concerning battery SOC, EC, battery C-rate, regenerative efficiency, etc. [28]. Hence,
the ASSC proves to be a more efficient control strategy than FLC and NN for managing
battery state-of-charge (SOC) fluctuations in real-time scenarios. Implementing a nonlinear
ASSC strategy holds the potential to improve the utilization profile of the battery SOC in
electric vehicles (EVs), thereby extending their operational range. The ASSC approach is
implemented with an SR motor used in EV applications under real-time conditions. In
this study, the complete process of design and performance evaluation is carried out using
the model-in-the-loop (MIL) simulation. MIL simulation is typically more efficient and
computationally straightforward as it involves defining system behavior using a mapped
experimental response technique, rather than relying on numerical representations to
illustrate the behavior of the SR motor, controller, and battery systems. A model-based
calibration technique is used for the development of an efficient SR motor and controller
maps. This procedure encompasses several stages, including the design of experiments
(DOE), model fitting, optimization, and lookup table generation. In the generation of maps
(lookup tables), the application of experimental design enables a systematic exploration
of the effects of the SR motor and controller behavior under diverse conditions, while
minimizing the number of necessary test cases. This DOE-based approach systematically
examines the impact of the SR motor and controller behavior under various conditions,
reducing the complexity, time, and expense associated with map development. As the EV
field evolves, advancements in control strategies will continue to be pivotal in achieving
greater energy efficiency, prolonged battery life, and enhanced driving experiences.

Nowadays, automakers all agree that an effective energy management system (EMS)
is necessary for EVs to operate optimally under real-time driving conditions. This study
emphasizes the significance of a sophisticated EMS in enhancing the energy efficiency
of EVs under practical scenarios. The numerical simulation of EV performance using
various EMS techniques in real-time driving situations has been the subject of numerous
studies. Moreover, precisely determining the driving range through an assessment of
electric vehicles’ EC is crucial in eliminating driver anxiety. However, identifying the
optimal discharge path for EVs is challenging due to factors such as driving actions, road
grade, travel distance, and initial SOC variability. This study aims to accomplish the
goal of efficient energy management and battery utilization in EVs by introducing an
advanced self-learning control strategy. The objective of this is to bridge the gap between
theoretical advancements and practical implementation by evaluating the effectiveness
of the optimal EMS in an SR motor-equipped EV under real-world driving conditions.
Despite numerous studies on EV performance with different control methods, there is
a lack of comprehensive publications examining the performance characteristics of EVs
with various energy management approaches. In this context, the objective of the present
study aims to develop a mathematical model of an EV by integrating a mapped SR motor
and controller efficiency with different EMS techniques. This research paper introduces
energy management strategies such as proportional–integral–derivative (PID) control,
fuzzy logic control (FLC), hybrid control, and adaptive supervisory self-learning controllers
(ASSCs) to minimize energy consumption and extend EV range under diverse operating
conditions. The ASSC approach is found to enhance the dynamic behavior of EVs compared
to traditional approaches like PID, FLC, and hybrid, considering parameters such as battery
SOC, energy consumption, battery C-rate, and regenerative efficiency. A novel aspect of
this work is the development of a real-time driving cycle in urban, rural, and highway
conditions to assess the effectiveness of EVs in practical operating scenarios. Additionally,
this research paper employs an innovative methodology to create DCs and efficiency
maps of the controller and SR motor under real-time conditions. These maps are then
incorporated into the EV model to evaluate various performance parameters, including
energy consumption, regeneration efficiency, motor power, battery SOC, battery current,
and C-rate, using different energy management controllers. This study concludes by
comparing the performance of various energy management controllers (PID, fuzzy, hybrid,
and ASSC) across the beforementioned parameters to validate the real-time performance
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superiority of the proposed adaptive supervisory self-learning controller. It is anticipated
that the ASSC approach will significantly improve battery utilization, ultimately enhancing
the real-time operational performance of electric vehicles. The specified objectives of this
study aim to provide readers with knowledge and a critical perspective on the design and
development of effective energy management controllers for electric vehicles while also
suggesting potential areas for future research.

2. Proposed Methodology

The methodology involves the usage of various energy management controllers with
the integration of efficiency maps and a real-time driving cycle for different operating
conditions to evaluate the performance of the EVs. In this study, the entire design and
performance evaluation process is conducted using the model-in-the-loop (MIL) simulation.
The workflow and proposed methodology are organized into four aspects, as illustrated in
Figure 1. Using the parameters of Ather 450 plus the vehicle as a reference, the EV model is
created with an SR motor using MATLAB/Simulink. Table 1 contains detailed specifications
of the developed EV model. This study builds an electric vehicle configuration using a
backward-looking modeling approach. It starts with sub-models for longitudinal blocks,
transmission blocks, battery blocks, mapped motor blocks, and controller blocks. A real-
time driving cycle and a variety of efficiency maps of energy management controllers (PID,
FLZ, hybrid, and ASSC) are installed in the EV model in order to validate the performance
of the EVs. Second, to guarantee the battery utilization path and extend the driving range
of electric vehicles, this research work develops several energy management controllers,
such as PID, FLZ, hybrid, and ASSC, under real-time operating conditions. Using a
point-by-point model-based calibration technique, the motor and controller behavioral
maps (lookup tables) are produced experimentally using various energy management
controllers in transient scenarios. In order to assess the effectiveness of different energy
management controllers under real-time operating conditions, a real-time DC covering
a range of road situations, including urban, rural, and highway applications, is built. In
order to confirm the performance of EC, regeneration efficiency, motor power, battery
SOC, battery current, C-rate, etc., the created efficiency maps and DC are also loaded into
the EV simulation model. On the other hand, depending on the initial battery SOC and
trip distance, different battery usage characteristics apply. The battery utilization path is
constant throughout real-time operation when the various energy management controllers
are utilized to minimize sudden energy distribution, increasing the vehicle’s operating
range. In order to ensure the superior real-time performance of energy management, a
variety of performance characteristics are finally compared between the various energy
management controllers. It is expected that the suggested ASSC approach will result in
better battery utilization, which will eventually improve the operational performance of
electric vehicles in real time.

Table 1. Technical specifications of the developed electric vehicle.

SNO Parameters Features Value Unit

1 Vehicle

Model Electric Scooter -
Rolling resistance 0.015 -
Mass 111 kg
Garde Angle 0 degree
Area 0.875 m2

Velocity Driving Cycle kmph

2 Transmission

Type Belt Drive -
Gear ratio 7.8:1 -
Transmission Efficiency 85 %
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Table 1. Cont.

SNO Parameters Features Value Unit

3 Motor
Type SR Motor -

Driving Cycle Time 33.45 km

4 Battery

Type Lithium-ion -
Battery Capacity 2400 Wh
Battery Voltage 51.1 V
Battery Initial SOC 100 %
Cell Voltage 3.6 V
Cell Capacity 2.7 Ah
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3. Development of Two-Wheeler Electric Vehicle Model to Validate the Performance of
the Proposed Control System

The development and analysis of a backward-facing Matlab–Simulink EV model with
an SR motor arrangement are presented in this article. The schematic representation of the
EV configuration is illustrated in Figure 2. The Simulink model consists of five essential
functional blocks, each derived from the physical components incorporated into the electric
vehicle (EV) system. These blocks include the longitudinal block, transmission block,
battery block, mapped motor, and controller block. The architecture of the developed
Simulink function block, designed for simulating the EV model, is illustrated in Figure 2.
In this section, the significance and mathematical relationships governing the vehicle
dynamics, battery, motor, and controller are analyzed to enhance the precision of energy
consumption (EC) and driving range estimations.
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3.1. Longitudinal Vehicle Dynamics Model

Analysis of the dynamics and the impact of different parameters on the performance
of the vehicle is the first step in the modeling process. The forces acting on the vehicle are
determined to compute these parameters. The model is characterized by a single degree of
freedom (DOF) focusing solely on longitudinal motion, with lateral and vertical motions
being disregarded [29]. In the fundamental powertrain modeling, the evaluation of electric
vehicle (EV) performance centers on its longitudinal dynamics. Longitudinal resistive
forces, including aerodynamic force, acceleration force, rolling force, and gradient forces,
are taken into account [30]. The driving cycle plays a pivotal role in the longitudinal vehicle
dynamics block as it provides a critical input. This involves a comprehensive assessment
of various resistive forces exerted on the vehicle during its longitudinal motion. These
encompass rolling forces (Equation (1)), arising from the interaction between the tires and
the road surface; aerodynamic forces (Equation (2)), influenced by the vehicle’s shape and
speed; gradient forces (Equation (3)), stemming from inclines or declines in the terrain; and
acceleration forces (Equation (4)), reflective of changes in velocity. After that, the estimation
of the total tractive force is illustrated in Equation (5). Finally, the output of the longitudinal
vehicle dynamic block is wheel speed and torque, as specified in Equations (6) and (7).

Fr = Cr f ∗ GVW ∗ Cos (θ) (1)

Fa = 0.5 ∗ ρ ∗ A f ∗ Cd ∗ V2 (2)

Fg = Sin(θ) ∗ GVW (3)

Facc = a ∗ GVM (4)

Ft = Fr + Fa + Fg + Fa (5)

Wt = Ft ∗ Rw (6)

Ws =
V ∗ 60

2 ∗ π ∗ Rw
(7)

where: GVW—grass vehicle weight, GVM—grass vehicle mass, Crf—coefficient of rolling
resistance, Fr—rolling force, Fa—aerodynamic force, Fg—gradient force, Facc—acceleration
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force, Ft—total tractive force, Cd—drag coefficient, Af—frontal area, a—acceleration, ρ—
density, Wt—wheel torque, Ws—wheel speed, Rw—wheel radius, and V—velocity (rpm).

3.2. Transmission Model

To cater to diverse EV tractive requirements, an effective power electronics-controlled
SR motor is employed in EVs as a substitute for multi-speed transmissions, opting for
gearless or single-speed gear transmission [31]. In the context of this study, the transmission
model is structured around a single-speed transmission with a gear ratio of 7.8:1. It utilizes
inputs from the longitudinal model, namely, wheel speed and torque, to estimate the motor
speed and torque, which are then transmitted to the SR motor model. The outputs of the
transmission model are articulated in Equations (8) and (9).

Mt =
Wt

GR ∗ Te f f
(8)

Ms = Ws ∗ GR (9)

where: GR—gear ratio, Mt—motor speed, Ms—motor speed (rpm), and Teff—transmission
efficiency.

3.3. Mapped SR Motor and Controller Model

The SR motor and controller’s operating range determines an EV’s acceleration, maxi-
mum speed, passing ability, and gradeability, among other performance metrics. However,
integrating a mathematically modeled SR motor and controller into an EV simulation
introduces an additional computational challenge and encapsulates the intricate dynamic
features of the transient SR motor [32]. As a result, utilizing the steady-state empirical
model of the SR motor and controller behavior, optimal response behavior maps are created.
In the part that follows, the testing and map-building process will be thoroughly explained.
In consideration of these factors, the developed SR motor and controller efficiency maps,
incorporating different energy management systems (EMSs) such as PID, FLC, hybrid, and
ASSC, are employed in the EV simulation model. Furthermore, based on inputs from the
transmission model (Mt and Ms), the mapped SR motor model estimates motor mechanical
power (MMP) (Equation (10)) and motor electrical power (MEP) (Equation (11)) under
various real-time operating conditions. MEP is determined by integrating the efficiency
maps of different energy management controllers for the SR motor. Additionally, the motor
model calculates motor regenerative power (MRP) (Equation (12)) by incorporating the
regenerative efficiency maps of different controllers under diverse operating conditions.
Subsequently, to assess the performance of the mapped controller in real-time conditions,
the outputs of the motor block (MEP and MRP) are transmitted to the controller block.

MMP =
2 ∗ π ∗ Ms ∗ Mt

60
(10)

MEP = MMP ÷ Me f f (11)

MRP = MMP ∗ Me f f (12)

Here, Meff represents motor efficiency, S denotes motor speed, and T represents motor
torque. The operations of the SR motor and battery are regulated by the controller. It
determines any modifications in the vehicle’s operation related to energy demand based
on signals received from the motor model block. The controller block integrates different
motor controller and regenerative controller efficiency maps to estimate battery motoring
power (BMP) and battery regeneration power (BRP) using inputs (MEP and MRP) from the
motor block. Equations (13) and (14) express the functions. Ultimately, the battery block
receives the outputs of the mapped controller block (BMP and BRP) in order to evaluate
the energy consumption (EC) and regenerative efficiency of various control algorithms



Vehicles 2024, 6 517

under the current operating conditions. Comprehensive details on the suggested control
algorithms are provided in Section 4.

BMP = MEP ÷ MCe f f = f (S, T > 0) (13)

BRP = MRP ∗ MCe f f = f (S, T < 0) (14)

where: MCeff—motor controller efficiency, BMP—battery motoring power, and
BRP—battery regenerative power.

3.4. Battery Model

The battery, being a complex and nonlinear system, presents challenges in modeling
due to its dependence on SOC, temperature, aging, and internal resistance. Understanding
the variations in and limitations of parameters related to battery performance is crucial
under real-time driving conditions [33]. However, to simplify the battery model, this
work does not delve into the study of the influence of battery aging and temperature. The
lithium-ion battery is a common energy source in electric vehicles (EVs) due to its distinctive
characteristics, including high voltage potential, high energy density, and being lightweight,
with minimal self-discharge. Utilizing inputs (BMP and BRP) from the controller block, the
battery model forecasts E/km, battery current, driving range, SOC, C-rate, and regeneration
efficiency with different energy management controllers (PID, FLC, hybrid, and ASSC)
in real-time driving cycles. The magnitude and direction of battery current in EVs vary
based on the accelerator throttle and brake position. Additionally, battery SOC serves as a
direct indicator of the total available energy in the battery during trips, a crucial factor in
evaluating the remaining driving range of EVs. Furthermore, the overall driving range of
EVs is directly associated with the energy consumed and recovered during acceleration
and braking. This dependence is primarily influenced by atmospheric conditions, road
segment characteristics, vehicle physical parameters, speed, and acceleration. Lastly, the
functional equations describing E/km and SOC are provided in Equations (15) and (16).

E
km

=
∫

BMP > 0 ÷
(

distance ∗ 3.6 ∗ 106
)

(15)

SOC = ISOC −
(∫

Bc ÷ 3600 ∗ Bcap
)

(16)

where: BMP—battery motoring power, ISOC—initial SOC, Bc—battery current, and Bcap—
battery capacity.

4. Design and Development of Efficient Control Systems to Evaluate the Performance of
Two-Wheeler Electric Vehicles

An effective energy management controller increases EV range and efficiency while
decreasing EC under a variety of operating circumstances. This study looks into several
energy management controllers, such as PID, fuzzy, hybrid, and supervisory, to improve
EV performance in real-time driving scenarios. Under a range of dynamic conditions,
these controllers can accurately forecast the battery utilization route while minimizing EC
and enhancing regeneration efficiency. In order to develop efficiency maps for the motor
and controller, these controllers are built and tested (steady-state experimentation) in a
variety of dynamic situations. Various energy management controllers are used to develop
efficiency maps for the motor and controller in real time. The experimental technique and
development of the control system for the SR motor are explained in the following parts.

4.1. PID Controller

The most popular controller for managing EV SR motor speed and industrial processes
is the PID controller. In order to achieve the intended output with little to no volatility
in the values despite the various disturbances, it uses a closed-loop system to continu-
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ously examine the output and modify the input values. The PID controller eliminates
the inaccurate reaction resulting from the difference in reference and feedback speeds. To
estimate the final controller output, the erroneous response is multiplied by the controller’s
proportional (Kp), integral (Ki), and derivative (Kd) sections, and then summed [34]. The
duty cycle of the PWM pulses required for the SR motor to operate in a continuous loop is
controlled by this output. Equation (17) represents the PID controller’s continuous output
control signal (u(t)). Nonetheless, the EV SR motor’s efficiency is impacted by the chosen
PID parameters. Under real-time operating conditions, it results in a drop in regenerative
efficiency and an improvement in the EC. Therefore, calculating PID settings is crucial
to an EV SR motor’s smooth operation. In the proposed work, using the Ziegler Nichols
approach, the PID parameters are selected. When the SR motor dynamics are unknown
or not readily available, the P, I, PI, and PID controllers are fine-tuned using the Ziegler
Nichols approach [35]. Based on the different transient responses of the EV SR motor, the
PID controller gains are estimated using the Ziegler Nichols rules. In a closed-loop system,
the SR motor is coupled to the proportional controller. The Ki and Kd gains are first zeroed
in this manner, and the Kp value is subsequently increased from zero to the maximum
value until the system displays steady oscillations. Tcr (Tcr—critical period of oscillations)
represents the period of oscillations, whereas Kcr (Kcr—critical value of Kp) represents the
greatest value of Kp. The Ziegler Nichols tuning methodology is illustrated in Figure 3,
and the PID tuning parameters are established by optimizing the Kcr and Tcr values.

U(t) = Kp ∗ e(t) + Ki ∗
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e(t)dt + Kd ∗
d
dt

e(t) (17)
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Additionally, during steady-state experimentation, the mathematical model of the EV
SR motor with a PID controller is built using MATLAB/Simulink. To assess the different
output characteristics and create efficiency maps, the EV SR motor is run according to the
best experimental design. EV SR motor and PID controller efficiency maps in various dy-
namic situations are developed as a result of the findings. Finally, the created PID controller
efficiency maps have been integrated into an EV simulation model to examine various
performance factors such as motor power, EC, battery SOC, and regeneration efficiency. The
results of the simulation show that the complex nature of the EV system prevents the PID
controller from achieving the desired levels of EC, SOC drop, and regenerative efficiency.
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4.2. Intelligent Controller

For complicated linear and nonlinear EV systems, the intelligent controller is widely
accepted as an acceptable controller. It produces effective and satisfactory results by
managing a wide range of input and output factors. Ref. [36] discusses the intelligent
controller’s design and development process in depth. Additionally, this work generates
intelligent controller efficiency maps under real-time driving conditions by combining
the proposed intelligent controller with an experiment involving a steady-state electric
vehicle SR motor. The EV SR motor and controller efficiency maps are created for a range
of real-time operating situations using the intelligent control approach. In order to estimate
the EC and regenerative efficiency with a real-time driving cycle, the obtained efficiency
maps are then fed into an EV simulation model. The intricacy of real-time electric vehicle
operation is a challenge for the intelligent controller’s rule tuning. Therefore, the intelligent
controller displays a less than ideal result with the EV simulation model. However, the
results show that in comparison to the PID controller, the intelligent controller has a lower
EC, a higher regeneration efficiency, and a lower battery SOC loss. Ultimately, in real-time
driving conditions, the intelligent controller outperforms the PID controller in terms of
EV performance.

4.3. Hybrid Controller

The creation of and improvement in intelligent controllers in real time usually involve
a difficult procedure since numerous components, including MFs, control rules, input
and output gains, and so forth, need to be changed. Furthermore, choosing the right PID
controller parameters is crucial, and there are several approaches suggested for estimating
the benefits of PID controllers. Even so, the PID controller’s performance can be enhanced
by modifying the controller gains. Consequently, in order to adjust the PID gains in
response to the EV SR motor’s static and dynamic speeds, a self-tuning hybrid controller
is designed. It is the result of combining an intelligent controller with a PID one. An
intelligent controller is used to change the PID controller’s gains in real time. Ref. [36]
discusses the hybrid controller’s in-depth design and development procedures. Therefore,
Equation (18) can be used to characterize the hybrid controller’s output control signal:

UPID = Kp2 ∗ e(t) + Ki2 ∗
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e(t)dt + Kd2 ∗
d
dt

e(t) (18)

where Kp2, Ki2, and Kd2 represent the PID controller’s modified gains. Under real-time
conditions, the self-learning controller is constructed based on the optimal tuning of PID
gains through fuzzy rules. Next, an EV SR motor steady-state experiment is merged with
the developed hybrid controller in an attempt to assess and generate efficiency maps in real
time. In steady-state testing, under various dynamic conditions, a hybrid technique is used
to develop the controller maps and motor maps for the EV SR motor. The created efficiency
maps are then loaded into an EV simulation to analyze the vehicle’s performance across
an actual driving cycle. The data indicate that in terms of battery SOC, EC, and energy
recovery, the self-learning controller performs better than the PID and intelligent controllers.
It might be challenging to adjust the rules and gains of a self-learning controller in real-time
operating conditions. Thus, an adaptive supervisory self-learning controller is presented
in this work to enhance vehicle performance under different dynamic conditions with
minimal EC and maximum energy recovery. A thorough explanation of the supervisory
self-learning controller is given in the next section.

4.4. Adaptive Supervisory Self-Learning Controller

For EV analysis in a range of real-time circumstances, this research combines NNs
and FLC into an adaptive supervisory self-learning controller. The combination of FLC
and NNs yields a novel approach that combines the advantages of both methodologies,
leading to a notable advancement in nonlinear modeling, learning, and mapping. Because
of the latest advancements in SR motor technology, optimizing controller parameters for
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electric vehicles has become a difficult undertaking. Therefore, controller engineers need
to implement some complex self-learning control algorithms in order to maximize the
efficiency of SR motors in EVs. Because of its adaptability, the ASSC can be used in a wide
variety of control applications.

Figure 4 shows the internal architecture of the ASSC method. The ASSC approach’s
comprehensive design and development processes are covered in [36]. Also, the advantages
and disadvantages of the above-mentioned controllers are presented in Table 2. Figure 5
shows a schematic illustration of the suggested energy management controllers in real
time. The created ASSC is then incorporated into a steady-state experiment using an EV SR
motor. The investigations are carried out in compliance with the design plan of the DoE.
The efficiency maps for the EV SR motor and controller are then produced using the ASSC
approach for various dynamic circumstances. Subsequently, the created efficiency maps are
incorporated into an electric vehicle simulation model to examine the vehicle’s performance
attributes throughout a real-time driving cycle. The ASSC-assisted EV simulation model
yielded findings that show optimal performance in a variety of real-time driving scenarios
for a number of performance metrics, including motor power, battery state of charge,
energy recovery, battery current, and battery power. In real-time driving situations, the
adaptive supervisory self-learning controller outperforms PID, FLC, and hybrid controllers
in terms of performance. The experimental setup and the procedure of developing the
efficiency map for the EV SR motor and controller are described in detail in the next section.
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Table 2. Advantages and disadvantages of different proposed control approaches.

SNO Controller Type Advantages Disadvantages Ref

1 PID Controller
• Simple
• Provides decent stability
• Easy to tune the parameters

• Derivative noise amplifications
• Complex for nonlinear systems [6–10]

2 Intelligent Controller

• High precision
• Rapid operation
• Easy to implement for

nonlinear systems

• Lack of real-time response
• Instability when tuning the fuzzy rules

and MF parameters
• Low speed and long run time of the

systems

[12–15]

3 Hybrid Controller
• Easy to implement
• Fast response
• Low computation time

• No extra filtering effects
• Lack of robustness
• Limited operational range

[16–18]

4 Supervisory Controller
• High filtering effect
• High performance in real-time
• Fast response and accurate

• Complex to design
• Requires prior knowledge of initial

conditions
• Large number of datasets are required

[20–24]
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of SR motor efficiency map.

5. Development of Controller and Motor Operating Map under Various Real-Time
Operating Conditions

This section outlines the experimental setup of optimal SR motor and controller
efficiency maps, which will be used to build the Simulink EV simulation model within the
MATLAB software 2018b.

5.1. Experimental Setup for Map Development

In this work, a 4.5 kW SR motor is used to create efficiency maps for real-time driving
situations for a variety of energy management controllers (PID, FLC, hybrid, and ASSC).
As shown in Figure 6, the SR motor is firmly mounted in the testbed, and the 12 kW
eddy current dynamometer is securely attached to the SR motor’s shaft. As the SR motor
operates at 60 V DC, the stepdown transformer in Figure 6 takes 230 V AC electricity
and converts it to 60 V AC. Table 3 displays the SR motor’s technical specifications. The
rectifier receives the lower voltage and uses it to convert 60 V AC to 60 V DC, which
powers the SR motor. In this instance, the DC voltage of the SR motor is stabilized under
varying load and speed conditions using a 400 V capacitor. The SR motor’s drive or
inverter is directly connected to the 60 V DC output in order to test the efficacy of the
different energy management controllers. The above-mentioned controllers (PID, FLC,
hybrid, and ASSC) are connected to the STM32 microcontroller or DAC via an encrypted
USB connection. They were designed in real-time using MATLAB/Simulink. The rectifier
receives the lower voltage and uses it to convert 60 V AC to 60 V DC, which powers the
SR motor. In this instance, the DC voltage of the SR motor is stabilized under varying
load and speed conditions using a 400 V capacitor. The SR motor’s drive or inverter is
directly connected to the 60 V DC output in order to test the efficacy of the different energy
management controllers. The above-mentioned controllers (PID, FLC, hybrid, and ASSC)
are connected to the STM32 microcontroller or DAC via an encrypted USB connection.
They were designed in real-time using MATLAB/Simulink. After that, a serial port (RS 232)
connects the STM32 microcontroller to the drive/inverter so it may transmit and receive
data for a variety of operational scenarios. Furthermore, an SR motor can have its load
manually adjusted at various speeds thanks to the dynamometer control interface. At that
point, the developed energy management controllers, such as PID, FLC, hybrid, and ASSC,
provide control signals to the SR motor drive/inverter in various real-world scenarios. The
operating parameters of the SR motor and drive vary depending on the control signals
received from different EMCs. Ultimately, the feedback data obtained from the real-time
system are used to estimate the output responses (current and voltage) of the controller and
motor. After that, based on the experimentally predicted output responses of the motor and
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controller in various dynamic scenarios, the efficiency maps of the controller/drive and
motor are developed utilizing a variety of energy management controllers, including fuzzy,
hybrid, supervisory, and PID techniques. The next section explores the specific process of
developing a map.
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Figure 6. Experimental setup for SR motor and controller efficiency map development with different
strategies.

Table 3. Technical specifications of SR motor used in EVs.

SNO Parameter Value Units

1 Rated DC voltage 90 V

2 Rated speed 10,000 RPM

3 Rated power 4500 W

4 Rated current 90 A

5 Motor phases 3 -

6 Stator phase resistance 2.875 Ohm

7 Stator phase inductance 0.0085 H

8 Rotor moment of inertia 0.08 Kgm2

9 Friction coefficient 0.045 Nms

10 Back EMF coefficient 1.3 V/rad/s

5.2. Optimal Energy Efficient Response Maps under Various Dynamic Operating Conditions

In this work, motor and controller efficiency maps with different EMCs are developed
for the EV simulation model using the model-based calibration (MBC) technique. The
step-by-step method of the MBC technique comprises the creation of maps, modeling,
optimization, and DoE. This study uses a sophisticated method called the MBC method-
ology in MATLAB to examine how different variables affect future results. This study
generates motor and controller efficiency maps for PID, intelligent, hybrid, and supervisory
controllers under real-time operating conditions using a one-stage model technique. The
operating and control settings of the motor and controller have a significant impact on
their behavior. The motor’s operational parameters are torque and speed, and its control
parameters are energy management controllers, which are control algorithms like PID, FLC,
and so on. It is necessary to tune the control parameters (control algorithms) under a variety
of dynamic conditions in order to obtain the best SR motor and controller response maps.
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To develop the model, the DoE technique is used to capture experimental motor response
characteristics. Table 4 displays the operational parameter range and experimental control.
Using the I-optimal technique, the design plan is developed in cooperation with the DoE
(50 test situations). The Sobol-series DoE is used to collect the motor and controller data
for different EMCs based on the test conditions, and the tests are conducted in compliance
with the design plan. The collected data are transformed through processing, such that it
approximates a normal distribution, improving the effectiveness of the model’s predicting
capability. In this study, the empirical model behavior of the motor and controller are
generated under dynamic conditions using a Gaussian elimination technique. With the
empirical models of the motor and controller, the optimal efficiency maps for different
EMCs of the SR motor and controller are developed under real-time operating conditions.
The created SR motor and controller efficiency maps, which are used in vehicle modeling,
are shown in Figure 7a–d using various energy management strategies, including PID,
FLC, hybrid, and ASSC, under real-time conditions. Lastly, an EV simulation model is
loaded with the produced controller and motor efficiency maps to analyze the vehicle’s
performance characteristics.
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(b) SR motor and controller efficiency maps for intelligent controller under real-time conditions.
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(d) SR motor and controller efficiency maps for adaptive supervisory self-learning controller under
real-time conditions.

Table 4. Range of the operating parameters under different dynamic conditions.

Parameter Motor Speed Motor Load

Units rpm N-m

Factor type Numeric Numeric

Range 250–9500 3–52

6. Simulation and Validation of the Developed SR Motor and Controller Maps with the
Real-World Driving Cycle

The driving cycle source is necessary to simulate the EC and battery discharge behavior.
In this study, a real-time DC is created for all road situations, including urban, rural, and
highway. Figure 8 shows the experimental process for a generating real-time DC in diverse
driving situations, including urban, rural, and highway. This study examines the real-
time DC design and development process, as well as route selection, trip timing, and
experimental technique. The first and most crucial step in creating a driving cycle is
deciding on a route [37]. The driving route in Vellore, India, is determined based on
knowledge of local road and traffic conditions, as seen in Figure 9. Table 5 discusses the
developed driving cycle characterizations for different driving routes. The selected driving
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route comprises all three types of road conditions: rural, highway, and urban. The whole
length of the driving trip is around 33.45 km with different real-time road conditions.
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Figure 9. Selected driving route for development of real-time driving cycle for urban, rural, and
highway conditions.

Furthermore, the electric two-wheeler is used to develop a real-time driving cycle for a
variety of road situations. Table 1 shows the selected vehicle specifications. The chosen EV
is connected to a microcontroller and mobile phone GPS. The microcontroller contains the
vehicle’s speed as well as battery and motor performance statistics under different real-time
driving conditions. In addition, the data collected from the mobile GPS include vehicle
speed and location with X, Y, and Z directions along the different driving routes such as
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urban, rural and highway. During driving, the microcontroller stores the real-time data for
different real-time driving conditions. Following that, a real-time DC is created using the
collected data, with different driving routes including urban, rural, and highway. Figure 10
shows the profile of the created real-time driving cycle for different road conditions. A
driving cycle is a set of data points that show the relationship between a vehicle’s speed
and time. It is used to evaluate the performance of cars in several aspects including fuel
efficiency, electric vehicle range, and harmful emissions. Furthermore, the established
real-time driving cycle is used with the EV simulation model to estimate performance
metrics such as power, C-rate, EC, battery discharge behavior, regeneration efficiency, and
so on. Finally, this study integrates a real-time DC, a BLDC motor, and various energy
management controller (such as PID, fuzzy, hybrid, and supervisory) efficiency maps with
an EV simulation model to analyze the motor and battery’s performance in real-world
driving situations.

Table 5. Developed driving cycle characteristics.

Parameter Units Description

Total Distance km 33.45

Urban Driving Distance km 4.86

Rural Driving Distance km 14.56

Highway Driving Distance km 14.03

No. of Stops - 3 (urban, rural, and highway)

Maximum Speed Limit km/h 80
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7. Results and Discussion

The objective of this study is to validate the effectiveness of an EV by integrating a real-
time DC and various EMC efficiency maps into a simulation model. This section comprises
an analysis and comparison of various EMCs with respect to the EV’s power output, battery
current, C-rate, EC, and regeneration efficiency, all of which are evaluated under real-time
operating conditions. It is also necessary to analyze the parameters associated with battery



Vehicles 2024, 6 528

and motor performance to comprehend the fluctuations in and limitations of EVs under
real-time operating conditions.

7.1. Motor Power

The intended speed and torque of EVs under different driving conditions have an
impact on the motor power. Real-time analysis of motor power fluctuations is performed
in this study using various energy management controllers. The various EMCs such as
intelligent, ASSC, PID, and hybrid controllers were used under different road conditions,
and the resulting motor fluctuations are illustrated in Figure 11. According to the findings,
the average motor power of the PID, intelligent, hybrid, and supervisory controllers is 5.8,
4.3, 3.1, and 2.3 kW in various driving situations. The results show that the lack of real-time
parameter modification in conventional controllers (PID, intelligent, and hybrid) causes the
maximal motor power fluctuations compared to the proposed controller under a variety of
road conditions. Thus, the proposed supervisory controller will reduce EC and increase
the driving range of EVs under various driving conditions. Furthermore, the maximum
motor power of the PID, intelligent, hybrid, and supervisory controllers is 12.2, 11.1, 9.2,
and 7.8 kW, respectively. The suggested supervisory controller shows less fluctuations in
maximal motor power than the standard controllers, such as PID, intelligent, and hybrid
controllers. By introducing large variations in motor power, a traditional controller reduces
driving range and increases battery discharge rate and energy consumption under different
driving conditions. To overcome this problem, the proposed controller uses its self-learning
capabilities to effectively mitigate the real-time power variation of the motor. In the
end, in real-time driving situations, the suggested supervisory controller yields excellent
performance results in terms of discharge rate, EC, and regeneration efficiency.
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7.2. Battery Power

The maximal velocity of an EV during performance is affected by the electricity pro-
duced by its battery at a specific instant. Battery power varies according to the temperature
and discharge rate under various dynamic conditions. The various EMCs such as intel-
ligent, ASSC, PID, and hybrid were used under different road conditions such as urban,
rural, and highway, and the resulting battery power fluctuations are illustrated in Figure 12.
The resultant graphs show that the proposed controller, in comparison to other traditional
controllers (PID, intelligent, and hybrid), shows fewer variations under battery power
in urban, rural, and highway driving conditions. In different road circumstances, the
average battery power of the different EMCs is 9.3, 6.4, 4.6, and 2.7 kW, respectively. The
conventional controllers have high battery power variations, hence the battery discharge
characteristics will be affected under real-time driving conditions. This will lead to de-
creases in the operational range of EVs due to the increased energy consumption. Then, in
a variety of driving circumstances, the supervisory controller exhibits the minimal battery
power variation and thus will aid in reducing EC and increasing driving range. Also, the
maximum battery power of the PID, intelligent, hybrid, and supervisory controllers is
19.6, 16.3, 10.7, and 9.1 kW, respectively. The conventional controllers (PID, intelligent,
and hybrid) generate the greatest battery power fluctuations in response to varying road
conditions, resulting in an increase in EC and battery depletion rate. However, the supervi-
sory controller shows minimal battery power variations compared to the other traditional
controllers under different real-time driving conditions. As a result, the proposed controller
will help lower battery power deviation, improving EVs’ EC and driving range in a range
of real-world driving scenarios.
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7.3. Battery Current

In electric vehicles, the accelerator and brake pedal positions affect the magnitude and
direction of battery current. Figure 13 depicts the variations in battery current caused by
a variety of energy management controllers and road conditions. The graph shows that
the average battery current of PID, intelligent, hybrid, and supervisory controllers is 196,
162, 113, and 74 A, respectively. Due to the high nonlinear behavior of the vehicle, the
traditional controllers (PID, intelligent, and hybrid) show higher battery current than the
recommended controller under real-time driving conditions. Also, due to the absence of
real-time parameter tunings across various travelling conditions, conventional controllers
are incapable of achieving the highest possible vehicle performance. As a result, the
proposed supervisory controller effectively reduces battery current fluctuations under real-
time operating conditions by utilizing its adaptive self-learning capabilities. Moreover, the
maximum battery current of various EMCs is 383.1, 319.6, 232.5, and 176.8 A, respectively.
The absence of real-time parameter correction in conventional controllers will result in
a decline in the electric vehicle’s performance, rapid depletion of the battery SOC, and
an increase in EC under different conditions. That being said, the proposed supervisory
controller shows very little fluctuation in battery current under rural, urban, and highway
road conditions. Therefore, it is used to lower EC and extend operating range, as well as
to improve battery discharge rate in different driving situations. In comparison to other
traditional controllers, the proposed controller improves battery power, current, and SOC,
EC, driving range, and regenerative efficiency in real-time driving scenarios.
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7.4. Battery C-Rate

The battery discharge rate has an impact on the C-rate in a variety of real-world
driving conditions. The energy management controllers such as intelligent, ASSC, PID, and
hybrid were used under different conditions such as urban, rural, and highway, and the
resulting variations in C-rate are illustrated in Figure 14. From the figure, the maximum
and average C-rates of various EMCs are 5.36, 4.8, 3.25, and 2.48, and 2.7, 1.6, 0.8, and
0.4, respectively. In comparison to the proposed supervisory controller, the traditional
controllers exhibit greater C-rate variations under different real-time road conditions. So,
with the traditional controllers, the battery discharge characteristics will degrade under
real-time driving conditions. In urban, rural, and highway conditions, a higher C-rate also
shortens battery life and decreases battery discharge efficiency. Furthermore, an increase in
C-rate will result in elevated battery temperatures and greater energy dissipation during
mobility at varying velocities. Therefore, it is not feasible to attain the optimal performance
of EVs under various real-time driving conditions using conventional controllers. However,
the implementation of the proposed supervisory controller will contribute to enhanced
performance through the reduction in C-rate variations across various real-time driving
conditions. The proposed controller has the ability to adjust the different control parameters
instantly because of its adaptive self-learning capabilities. Consequently, it can effortlessly
manage nonlinear behavior systems of EVs in a variety of dynamic scenarios. Therefore, in
this situation, under real-time operating conditions, the supervisory controller will improve
battery life and discharge rate. Additionally, it will reduce the energy consumption of EVs
and increase their operating range in highway, rural, and urban situations. Ultimately, it is
clear that in various driving circumstances, the supervisory controller performs better than
other EMCs in terms of C-rate, power, EC, performance, range, recovery energy, etc.
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7.5. State of Charge

One important metric for assessing an EV’s remaining driving range is battery SOC,
which serves as a direct measure of the entire amount of energy in the battery during a trip.
Figure 15a illustrates the variations in battery state of charge (SOC) corresponding to distinct
EMCs across a range of real-time driving conditions. The PID controller end-of-trip (EOT)
SOC is 87.2, 47.1, and 3.6% under different road (urban, rural, and highway) conditions. The
EOT values for intelligent and hybrid controllers are 89.3, 56.7, and 21.5, and 92.2, 69.3, and
44.9%, respectively. The proposed controller’s EOT SOC in urban, rural, and highway driving
scenarios is 94.1, 77.1, and 59.1%, respectively. The findings show that the EOT SOC for
different energy management controllers under urban driving conditions is 87.2, 89.3, 92.2,
and 94.1%. When compared to the other traditional controllers, the supervisory controller
exhibits the lowest SOC drop (95.3%) in urban driving conditions. Owing to the very nonlinear
real-time behavior of EVs, conventional controllers are unable to maintain the correct SOC
level in a variety of road conditions. Thus, due to the self-learning capabilities, the suggested
controller is suitable for reducing the variations in battery SOC corresponding to distinct
EMCs and for extending driving range under real-time driving conditions. Additionally, the
EOT SOC values are 47.1, 56.7, 69.3, and 77.1% for rural driving situations with different
energy management controllers. The supervisory controller records a lower SOC drop than
the other conventional controllers in rural driving circumstances because of its real-time
parameter-tuning capabilities. The battery discharge rate will increase due to the higher
SOC drop of the PID, intelligent, and hybrid controllers, which will also increase the EC and
reduce the vehicle’s operating range. Furthermore, Figure 15b displays the highway EOT
SOC of the different energy management controllers. The final SOC levels of the supervisory,
intelligent, hybrid, and PID controllers are shown in the figure as 3.6, 21.5, 44.9, and 59.1%,
respectively. The supervisory self-learning controller outperforms the traditional controllers
(PID, intelligent, and hybrid) in terms of trip SOC reductions at the EOT under different
real-time conditions. Thus, the proposed supervisory controller is used to improve the driving
experience and range under different real-time driving conditions.

7.6. Energy Consumption and Regenerative Efficiency

The amount of energy used and recovered during acceleration and braking, which is
mostly dependent on the driving conditions and features of road segments, vehicle physical
parameters, speed, and acceleration, is directly connected with the entire driving range of
electric vehicles. The regeneration efficiency and total energy consumption per kilometer for
different EMCs are shown in real time in Figure 16. In various driving situations, the overall
energy consumption of PID, intelligent, hybrid, and supervisory controllers is 97.21, 85.63,
60.14, and 44.67 Wh/km, respectively. Because of its self-tuning capabilities, the supervisory
controller can tune and optimize the control settings in real-time situations, resulting in a low
EC (44.67 Wh/km) compared to the other conventional controllers. The EC of an EV decreases
as a result of the nonlinear behavior of EVs under different conditions, which makes it difficult
for traditional controllers to modify and optimize control settings in real time. As a result,
under various dynamic road conditions, the driving range of an electric vehicle will increase
with the minimal EC (44.67 Wh/km) of the suggested controller. Furthermore, Figure 16
illustrates that the corresponding regenerative efficiencies of the PID, intelligent, hybrid, and
supervisory controllers are −21.81, −27.73, −41.64, and −58.28 Wh, respectively. According to
the data, compared to the other conventional controllers, the supervisory controller (−58–28 Wh)
recovers the highest amount of regenerative energy. In addition, the hybrid controller recovers a
substantially higher amount of energy than both the intelligent and PID controllers. However,
under different real-time driving conditions, the proposed controller recovers more regenerative
energy than the standard controllers. The maximal energy recovery rate will definitely increase
the EV’s operating range under different conditions. Lastly, an efficient energy management
controller enhances the vehicle’s power, efficiency, SOC, energy consumption, regenerative
efficiency, etc., according to an analysis of a variety of performance characteristics pertaining to
various EMCs (PID, intelligent, hybrid, and ASSC) under varied real-time driving conditions.
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Figure 15. (a) Individual SOC variations of various energy management controllers under urban,
rural, and highway driving conditions. (b) Final SOC variations with different energy management
controllers.
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Figure 16. Different energy management controllers’ energy consumption and regenerative efficiency.

8. Conclusions

This study has been conducted to optimize the energy consumption of EVs by devel-
oping a robust energy management controller and testing it under various real-time driving
conditions. This study employs various methodologies to develop the efficiency maps, the
EV model, and a real-time DC which are then combined with the developed EMCs, such as
PID, intelligent, hybrid, and supervisory, to enhance the EV performance under real-time
driving conditions. A MATLAB/Simulink-based mathematical model is formulated for
an EV with an SR motor. Through a novel experimental approach, the efficiency maps
of the motor and various EMCs are developed. These maps are then integrated into a
model-in-loop (MIL) EV test platform to assess the performance of different EMCs in EVs
under real-time driving conditions. Further, for the validation process, a real-time DC
is implemented for different types of road conditions, which include urban, rural, and
highway roads. This DC is linked to the MIL-based EV test platform real-time analysis
of energy consumption and battery discharge patterns. The present study concludes by
simulating the EV model using various EMC efficiency maps and the real-time DC to
analyze parameters like motor power, battery power, C-rate, energy consumption (EC),
state of charge (SOC), regenerative efficiency, and more. The validation and interpretation
outcomes of this research paper are summarized below.

• To carry out the EV simulation, the necessary efficiency maps of the SR motor and the
controllers are developed under real-time conditions. For the validation of the model,
a real-time driving cycle is designed to encompass diverse road conditions, including
urban, rural, and highway scenarios.

• The supervisory controller performs better than conventional controllers as it exhibits
less variations, based on the SR motor and battery performance characteristics in
controllers in urban, rural, and highway driving conditions, as presented in Table 6.

• The proposed supervisory self-learning controller achieves significantly less energy
consumption (44.67 Wh/km) compared to PID (97.21 Wh/km), intelligent
(85.63 Wh/km), and hybrid (60.14 Wh/km) controllers under varying real-time oper-
ating conditions. This suggests an improvement in battery utilization behavior and
operating range for the EV under dynamic conditions.
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Table 6. Output parameters of EV with different energy management controllers under real-time conditions with SR motor.

SNO Parameters

Maximum Average

PID Controller Intelligent Controller Hybrid Controller Supervisory Controller

Urban Rural Highway Urban Rural Highway Urban Rural Highway Urban Rural Highway PID FLC Hybrid ASSC

1 Motor Power (kW) 7.9 12.2 8.6 7.3 11.1 7.6 6.4 9.2 6.2 5.6 7.8 5.2 5.8 4.3 3.1 2.3

2 Battery Power (kW) 12.8 19.6 13.7 10.1 16.3 11.2 8.1 10.7 7.8 6.3 9.1 5.8 9.3 6.4 4.6 2.7

3 Battery Current (A) 249.6 383.1 267.4 213.2 319.6 218.7 160.4 232.5 154.5 125.1 176.8 115.1 196 162 113 74

4 C-rate 3.49 5.36 3.74 2.9 4.8 3.1 2.25 3.25 2.16 1.75 2.48 1.61 2.7 1.6 0.8 0.4

5 SOC (%) 87.2 47.1 3.6 89.3 56.7 21.5 92.2 69.3 44.9 94.1 77.1 59.1 - - - -

6 E/Km (Wh) 97.21 85.63 60.14 44.67 - - - -

7 Regenerative
Efficiency (%) −21.81 −27.73 −41.64 −58.28 - - - -
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• The end-of-trip state-of-charge (SOC) drop for the proposed supervisory controller
(59.1%) is notably lower than that of the PID (3.6%), intelligent (21.5%), and hybrid (44.9%)
controllers across different road conditions. Consequently, the supervisory controller
enhances battery efficiency and overall EV performance in real-time conditions.

• The regenerative efficiency of the PID, intelligent, hybrid, and supervisory controllers
is recorded as −21.81, −27.73, −41.64, and −58.28 Wh under varying road condi-
tions. Notably, the proposed supervisory controller exhibits greater energy recovery
compared to the other conventional controllers. This improvement contributes to
enhanced battery consumption behavior and extended driving range under real-time
conditions.

The current study improves the performance of electric vehicles (EVs) under real-time
driving conditions through the implementation of the proposed adaptive supervisory
self-learning controller. It not only reduces energy consumption (EC) but also enhances
the driving range across various road conditions. Although the potential limitation of the
suggested controller is its heavy reliance on training information, impacting its overall
performance, it can be overcome by leveraging advanced controllers like the multi-adaptive
neuro fuzzy inference system (MANFIS). Furthermore, specialized optimization techniques
could be employed to train the data. Investigating these alternatives could contribute to
achieving a more stable and effective performance for the proposed controller.
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ASSC Adaptive Supervisory Self-Learning Controller
BLDC Motor Brushless Direct Current Motor
BMP Battery Motoring Power
BRP Battery Regenerative Power
DC Driving Cycle
DOE Design of Experiments
DOF Degree of Freedom
EC Energy Consumption
EMC Energy Management Controller
EMs Electric Motors
EMS Energy Management System
EOT End of Trip
EV Electric Vehicle
FLC Fuzzy Logic Controller
GHG Green House Gas
GPS Global Positioning System
GVM Grass Vehicle Mass
GVW Grass Vehicle Weight
HEV Hybrid Electric Vehicle
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HIL Hardware In Loop
IM Induction Motor
MANFIS Multi-Adaptive Neuro Fuzzy Inference System
MBC Model-Based Calibration
MEP Motor Electric Power
MIL Model In Loop
MMP Motor Mechanical Power
MRP Motor Regenerative Power
Ms Motor Speed
Mt Motor Torque
NN Neural Network
OBD On-Board Diagnosis
PID Proportional–Integral–Derivative
SOC State of Charge
SR Motor Switched Reluctance Motor
Ws Wheel Speed
Wt Wheel Torque
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