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Abstract: Enhancing the safety of passengers by venturing beyond the limits of a human driver is one
of the main ideas behind autonomous vehicles. While drifting is mostly witnessed in motorsports as
an advanced driving technique, it could provide many possibilities for improving traffic safety by
avoiding accidents in extreme traffic situations. The purpose of the research presented in this article
is to provide a machine learning-based solution to autonomous drifting as a proof of concept for
vehicle control at the limits of handling. To achieve this, reinforcement learning (RL) agents were
trained for the task in a MATLAB/Simulink-based simulation environment, using the state-of-the-
art Soft Actor–Critic (SAC) algorithm. The trained agents were tested in reality at the ZalaZONE
proving ground on a series production sports car with zero-shot transfer. Based on the test results,
the simulation environment was improved through domain randomization, until the agent could
perform the task both in simulation and in reality on a real test car.

Keywords: autonomous vehicles; automated drifting; reinforcement learning; sim-to-real; vehicle
motion control; varying road surfaces; vehicle dynamics

1. Introduction

In the rapidly evolving landscape of transportation, autonomous vehicles stand out as
one of the most anticipated and researched fields in recent years. In the area of autonomous
vehicle control (AVC), advancements in technology will soon allow the application of
automated driving systems (ADS) that are capable of acquiring specific human driving
skills. These include, of course, lower SAE (Society of Automotive Engineers) levels [1] like
cruise control, lane keeping, and basic parking [2], and also higher SAE levels like L2+ and
L3 vehicle automation. However, motion control beyond the handling limit is still mostly
unresolved, and its solutions primarily exist only in virtual reality.

Vehicle stability refers to the ability to maintain equilibrium or resume its original
status after experiencing a disturbance such as a wind gust, uneven road surface, or a
sudden small change in the steering [3]. Stability analysis can be performed in many
ways [4]. In most cases, it refers to estimating a stability region where the vehicle has the
above-described ability to maintain equilibrium. It can also be approached by analyzing
tire slip angles and tire force saturation [5]. This can also be an important aspect of vehicle
stability control, especially when considering the tire’s radial, circumferential, and lateral
stiffness. Based on related studies [6], these can also affect the ability to transfer the torque
input of the vehicle into the ability to cause and prevent sliding and drifting.

Current state-of-the-art Advanced Driver-Assistance Systems (ADAS) follow the
proven principle of avoiding such driving scenarios that might cause a road vehicle to
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behave in ways that are unknown to most human drivers. There are several well-known
technical approaches to this, like ABS (Anti-lock Braking System), ASR/TCS (Anti-Slip
Regulation/Traction Control System), and ESC (Electric Stability Control). While it is
undeniable that these driving systems provide safer and more effective vehicle control [7],
it is still not proven that these would be the most effective way to reduce the number
of control loss-related accidents. A good example of this would be a collision-avoidance
scenario where an object enters the vehicle’s collision path far inside its braking zone. In
such cases, there is a chance that performing an avoidant steering maneuver could result
in losing stability and this could endanger the passengers or other participants. Another
example would be aquaplaning or prolonged driving on a low-traction surface at a high
speed. In [8], the authors address multiple scenarios where a maneuver at the handling
limit significantly reduces fatality and collision risk. In addition to this reasoning, it is also
an essential scope of AVC to enhance road vehicle transportation beyond human limits,
especially considering the rapidly evolving field of overactuated vehicle control [9,10],
which is an overly complex task for most human drivers. This makes this area of research
not just important for safety-critical systems, but also for motorsports, space exploration,
and military sciences.

Drifting can be considered one of the most basic maneuvers of unstable vehicle control.
It is a cornering motion mostly characterized by a high sideslip angle, saturated tire forces,
and counter-steering. As such, it is an excellent example of unstable vehicle motion, and its
predictable control can improve autonomous vehicles’ capabilities significanty. Defining
drifting for a formal representation can be carried out in many different ways. The research
presented in this article is focused on steady-state drifting, which sets a goal to reach
and maintain a vehicle state that can be considered as an unstable drift equilibrium (for
definition, see Section 2.2).

The current literature on maneuvering autonomous vehicles beyond the limit of
handling presents many different approaches to the problem. First, it is important to
highlight the applications of linear feedback controllers on two-wheeled vehicle models,
which successfully utilized the model-based calculation of equilibrium points. Concerning
the selected actuators, in [11], the longitudinal and lateral movement handling opera-
tions were decoupled using two independent controllers. In [12,13], the authors used a
Linear Quadratic Multiple Input Multiple Output (LQ MIMO) controller, wherein this
controller was also successful. Also, positive results were obtained using a four-wheel
vehicle model [14]. In addition, some works utilize the added control of braking [14–16].
Trajectory following drift controllers are also present in the literature [17].

MPC (Model Predictive Control) has proven successful for both stabilization and
track-following drift tasks [18,19]. It also performed well when simulating changing road
conditions, thus indicating a good adaptive property. Robust control-based [20] and multi-
layer methods [21] are also present in the literature. Among the results that consider path
planning and following, it is worth mentioning the hybrid application of linear control
and MPC for implementing a parking maneuver to be carried out with drift [22]. The
former construction worked both in simulation and with a small RC car. To present a more
advanced objective, drift-based collision avoidance has also been considered with different
hierarchical controllers [23,24].

The application of reinforcement learning to solve autonomous drifting also shows a
promising direction. Among the potential advantages of reinforcement learning is primarily
the ability to generalize under constantly changing driving conditions (such as varying
road surfaces) and the absence of the need to use previous data for training. It also provides
an intuitive way to define objectives for the driving agent through its reward function
without specifying low-level control demands or planning an exact trajectory if the use
case in question does not require it.

In general, it can be stated that deep reinforcement learning (DRL) has been the
most popular in autonomous vehicle control [25]. The main reason is that a discrete
agent operating in a continuous environment performs the task insufficiently or in too
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piecemeal of a fashion in theory, usually due to the incorrect construction of the finite space
representation. Despite this, this paper has in scope the application of a discrete agent along
with a DRL-based contender. The results produced by these methods in the simulation
have been promising so far [26–28].

In addition to the previous works of the authors, other works, like [29], used the
Probabilistic Inference for Learning Control (PILCO) [30] model-based policy-search algo-
rithm to achieve steady-state drifting in simulation and on a small-scale remote-controlled
vehicle. Strengthening these results, ref. [31] performed similar work using PILCO and
deep Q-learning (DQL). Also, ref. [32] defined drifting as a track-following task in the
CARLA [33] simulator, where the exact goal was to achieve large sideslip angles at high
speeds. The agent was trained on several predetermined courses, and then evaluated
on a course unknown to it, with several different types of vehicles and road condition
settings. In [34], the authors proposed a similar solution and approach. The training
in these two cases was carried out with the Soft Actor–Critic (SAC) algorithm, and [35]
also experimented with this task with the TD3 algorithm [36], which also proved to work
well. Further developing the results mentioned so far, ref. [37] successfully developed
an agent that can even drift on arbitrary trajectories in simulation. Also, as with control
methods, drift parking has been attempted with RL too [38]. In addition to these works, an
autonomous racing task, including control at handling limits, was also attempted with a
model-based policy search [39].

Problem Statement

This paper presents novel results on applying reinforcement learning agents for au-
tonomous drifting on a full-scale, real test vehicle. This is the same car that was used
in [13,19]. To the authors’ best knowledge, this is the first time such an agent was success-
fully deployed to perform autonomous drifting on a real vehicle.

The exact goal of the agent is to perform a steady-state drifting maneuver and maintain
it for arbitrary durations, even with GNSS (Global Navigation Satellite System) and/or
sensor noise/delay with a real test car. The car is sped up by a controller, which is
independent of the agent, to vx = 28 km/h, and, when this is attained, the control of
the vehicle is entirely released to the RL agent. Then, its objective is to reach a defined
medium-speed target drift state and maintain it with a minimal mean error while handling
the actuators smoothly enough to not lose stability from sudden actuator handling, even
with small disturbances. This goal was formulated intuitively without using prior data
from expert drivers. This problem definition is possible because an RL agent is used
for the solution. The considered traction conditions for this application are set to range
between grip coefficients of µ = 0.6 and µ = 0.95, and the tests were performed in such
conditions. Learning to drift for any traction coefficient in this range effectively requires an
adaptive ability, which is one of the reasons to use an RL agent. Successfully performing
this maneuver would prove that RL agents can learn to control vehicles beyond handling
limits. This would indicate that it is possible to train such agents for collision avoidance
where only such an aggressive maneuver could provide a possibility to ensure the safety of
the passengers.

In the following section, the paper presents the vehicle model structure and drift
equilibrium calculation background, which were implemented in the MATLAB/Simulink
simulation environment for training the agents. In Section 3, the RL algorithm used for
training (SAC) is described, along with the agent’s specific structure and parameters.
Section 4 discusses the applied sim-to-real methodology, the presentation of the test vehi-
cle’s characteristics, and the hardware used for the real tests. Section 5 uncovers the results
achieved. A discussion of the analysis, acknowledgment, and references closes the paper.
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2. Vehicle Dynamics

To have a proper understanding and a correct implementation for the problem of
steady-state drifting, addressing the vehicle’s dynamics is essential. In general, drifting
requires a vehicle with sufficient rear torque and traction. Typically, most of these are
rear-wheel drive (RWD) vehicles, so the chosen model is also RWD, but, at the same
time, drift-like behavior is not impossible with front-wheel or four-wheel drive vehicles
either. The vehicle model features presented throughout this section are validated based on
previous works [13,19].

Because training a learning agent in a simulation environment requires significant
computation resources, it is beneficial to have a simple but still realistic vehicle environ-
ment. In the case of drifting, ignoring pitch and roll dynamics does not seem to prevent
engineering agents that can perform drifting (for example, [13] proves this), and, at the
same time, involving them would significantly increase the dimensionality of the prob-
lem. Therefore, the vehicle models presented in this paper only consider three degrees of
freedom: translation in the x and y directions and rotation around the z axis (yaw).

The Newton–Euler equations of motion of the vehicle in the body frame’s coordinate
system can be described as follows [40]:

Fx = m
(
v̇x − rvy

)
(1)

Fy = m
(
v̇y + rvx

)
(2)

Mz = Iz ṙ (3)

where vx and vy are the velocities in the x and y directions, respectively, r is the speed of
vehicle rotation of the vehicle around the z-axis, m is the vehicle’s total mass, and Iz is the
inertia constant. Based on these, the derivatives can be expressed as

v̇x =
1
m
(Fx − FA) + rvy (4)

v̇y =
1
m

Fy − rvx (5)

ṙ =
1
Iz

Mz (6)

The force components in (1)–(3) can also be derived as the total effect of the forces
acting on the wheels:

Fx = Fx f cos δ + Fxr − Fy f sin δ (7)

Fy = Fy f cos δ + Fyr − Fx f sin δ (8)

Mz = aFy f cos δ + aFx f sin δ − bFyr (9)

where a and b are the front and rear wheelbase (l = a + b), respectively, and δ is the front
(steered) wheel angle.

Since the chosen vehicle has rear-wheel drive, the longitudinal force acting on the
steered front wheel is zero: Fx f = 0. The rear longitudinal force Fxr and the front wheel
angle δ are the input parameters of the vehicle. The specific constant values (based on the
properties of the test vehicle) for the vehicle model’s equations are described in Table A1.
Figure 1 illustrates the vehicle model.
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Figure 1. The implemented two-wheel dynamic vehicle model in its coordinate frame.

2.1. Tire Modeling

The tire model is one of the most important parts of the simulation model’s structure.
Without a proper tire model, performing accurate simulations for drifting is not possible.
The most critical expectation from the tire model is that the saturation of the lateral forces
acting on the tires can be well described, which is an essential feature of drifting. For
example, in [11–13,26–28], the implementation of a lateral slip brush tire model, proposed
by [41], worked well for designing controllers for drifting. However, modeling longitudinal
slip on the rear tire in addition to lateral slip supports an RL agent greatly, especially in the
initiation phase of a drift maneuver. On this note, a combined slip brush tire model was
implemented, based on the work of Pajecka [42]. Also, there may be other state-of-the-art
tire models which would be worth considering, like the TMeasy model [43], the elliptical
tire model [44], and the Mooney–Rivlin material model [45,46].

The general form of the Pacejka model stands as the following:

y(x) = D · sin
(

C · tan−1
(

Bx − E
(

Bx − tan−1 (Bx)
)))

Y(x) = y(x) + Sv

x = X + Sh

(10)

where y(x) (the output) is the longitudinal/lateral force component, x (the input) is the slip
angle or slip ratio, D is the peak factor, C is the shape factor, B is the stiffness factor, E is
the curvature factor, and Sv and Sh are the vertical and horizontal shifts, respectively. The
shifts consider the camber thrust, conicity, and rolling resistance. Given the Sx slip ratio,
Sxp peak slip ratio, α slip angle, and αp peak slip angle parameters, the normalized slip
parameters are determined:

S∗
x =

Sx

Sxp

α∗ =
α

αp

(11)

Afterward, the resultant slip of the tire and the modified slip ratio and slip angle are
determined:

S∗ =
√
(S∗

x)
2 + (α∗)2

Sxm = S∗ · Sxp

αm = S∗ · αp

(12)

From these, the longitudinal and lateral force components are given:

Fx = Fx0 ·
S∗

x
S∗ (13)
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Fy = Fy0 ·
α∗

S∗ (14)

where Fx0 /Fy0 are the longitudinal/lateral force components, calculated using the modified
slip ratio/angle and Equation (10).

In the model, the implemented wheel model is based on [47] and summarized as

Jωw = (Tw − Tb)− Fxrw − Frrrw (15)

where J is the wheel inertia, Tw is the wheel torque, Tb is the break torque, Frr is the
roll resistance, rw is the wheel radius, and ωw is the wheel speed. Given these, the rear
longitudinal slip κ can be calculated as

κ =
ωrw − vx

vx
(16)

while the lateral slip angles α f , αr and the sideslip angle β are formulated as

α f = tan−1
(

vy + ar
vx

)
− δ

αr = tan−1
(

vy − br
vx

) (17)

β = tan−1
(

vy

vx

)
(18)

All the above equations conclude the implemented vehicle model, whose defined parame-
ters are collected in Table A1.

2.2. Drift Equilibrium Calculation

As mentioned, this paper focuses on autonomous drifting and has an objective defined
as reaching a desired drift equilibrium state. Based on the work in [48], drift can be
described as vehicle equilibrium states that consider rear lateral slip saturation, which is
how reaching handling limits is described, based on [41]. As such, writing

v̇x = v̇y = ṙ = 0

αr = αpr

α f < αp f

(19)

and combining with Equations (4)–(18) formulates an algebraic equation system with
five variables

(
vx, vy, r, Fxr , δ

)
.

The system can be solved by assigning a fixed constant value to any of these five param-
eters. In this presented research, given that δ = −10◦ and vx = 10 m/s, the following drift
equilibrium was used for the objective :

Sdri f t =
(

vxdri f t , vydri f t , rdri f t

)
= (10 m/s,−3.3728 m/s, 0.8335 rad/s) (20)

This leads to a left-directional circular drift motion with a sideslip angle of β = −18.6382◦.

3. The Reinforcement Learning Model

The fundamental concept of reinforcement learning revolves around the continuous
cycle of interactions between an agent and the environment. In this learning paradigm,
the agent’s primary objective is to maximize the cumulative reward it receives from the
environment. This is achieved by the agent making decisions (performing actions) based
on the current state of the environment, which then responds with feedback in the form
of rewards. The agent discovers the optimal actions (its optimal policy) by exploring the
action space.
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For the previously introduced vehicle model, the following state and action spaces
are defined:

S =
(
vx, vy, r, v̇x, v̇y, ṙ

)
∈ R6 (21)

A =
(

accped, δsteer

)
∈ {[0 %, 100 %]× [−420◦, 420◦]} (22)

The state space S ∈ S contains the model’s describing velocities and their derivatives. The
action space A ∈ A represents the model’s input variables through the form of the gas
pedal accped and the steering wheel angle δsteer, limited to a physically achievable range.
The conversion of these variables into an (Fxr , δ) input pair is discussed in Section 4.3.

The state transition function P : [S ,A] → S maps accordingly to the underlying
vehicle dynamics. It can be proven that the environment satisfies the Markov property:

St+1 = P(St, At)

P[St+1 = S|St, At, St−1, At−1, . . . ] = P[St+1 = S|St, At]
(23)

The reward function is the RMSE of the current state from the target drift state, with an
added term that punishes the agent relative to the difference between its current and
previous actuator request (action):

R(St, At) =

√√√√√1
3

3

∑
i=1

 S(i)
t

S(i)
dri f t

− 1

2

+

√√√√√√1
2


 A(1)

t − A(1)
t−1

50
− 1

2

+

 A(2)
t − A(2)

t−1
420

2
 (24)

The first term in (24) ensures that the agent reaches and maintains the target drift state with
a minimal mean error, where S(i)

t is the value of the ith position in the current state vector

and S(i)
dri f t is the same for the target state vector. The second term encourages the agent to

smooth its driving policy during the drift’s initiation and stabilization phases, where A(i)
t

is the value of the ith position in the issued action vector and A(i)
t−1 is the same but for the

previous action vector.
The agents were trained in MATLAB while connected to the Simulink environment

that contained the vehicle model introduced in Section 2. The training algorithm used
was the state-of-the-art Soft Actor–Critic (SAC) algorithm [49], specifically designed for
continuous state and action spaces.

The agent is separated into two parts (see Figure 2). The actor represents the agent’s
policy, a mapping from the state space to the action space. This is a stochastic function,
meaning, technically, that the action is generated from a normal distribution A ∼ N (µS, σS),
where the distribution’s parameters are given by the policy function (µS, σS) = π(S).
This stochasticity helps the agent to explore the action space. The measure of this is the
distribution’s differential entropy. The algorithm tunes the weight (temperature) of the
entropy factor adaptive to the received rewards: less reward means more exploration is
needed, while higher observed rewards in the long run cause reduced entropy.

The critic is the value function, whose purpose is to approximate the expected cu-
mulative reward for a given state–action pair. It calculates the TD (Temporal Difference)
error that contributes to the actor’s training. For more information regarding the algorithm,
please refer to [49].

Both the actor and the critic use neural networks to approximate their respective
functions. For the neural network structures used for the agent and the exact training
parameters, see Appendix B.
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Figure 2. The SAC reinforcement learning framework [50]. The black arrows represent the general
actor-critic framework. The red arrows introduce the entropy term.

4. Sim-To-Real Structure & Methodology
4.1. Test Vehicle Setup

As a vehicle platform for the agent’s sim-to-real application and testing, a series
production sports car (Figure 3) was used after suitable modification to enable self-driving.
It was powered by a 3.0-liter twin-turbocharged straight-six engine that produced 302 kW
(411 LE) between 5230 and 7000 RPM and 550 Nm torque between 2350 and 5230 RPM.
The car had rear-wheel drive with an electronically controlled differential lock, which is
essential for drifting [51]. The vehicle had a 7-speed dual-clutch transmission, and the
0–100 km/h acceleration time was 4.2 s. Performance sport tires were installed in sizes
245/35 ZR19 at the front and 265/35 ZR19 at the rear axle.

Figure 3. The author’s test vehicle while performing the drift maneuvers presented in this paper.

The longitudinal position of the vehicle body Center of Gravity (CoG) was specified
by measuring the individual axle weights with all the measurement equipment and two
operators, which are needed currently to ensure the safety and handling of the measurement
system. This results in 925 kg on the front and 895 kg on the rear axle, which gives a 1.32 m
CoG longitudinal distance behind the front axle with the 2.69 m long wheelbase.

For the agent implementation, data acquisition, and controlling the actuators, dSpace
microAutoBoxII real-time hardware was used, connected to a Raspberry PI 4 Model B
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(Figure 4). The latter was needed because the real-time hardware does not support neural
network inference in the form of a Simulink model block; thus, an outside control unit was
required. The neural network inputs (state) and outputs (action) were transferred through
a CAN (Controller Area Network) bus with a 50 ms sample time between the two pieces of
hardware. This is identical to the sample time of the agent during training (see Table A2). A
control model, developed in a MATLAB/Simulink environment, received the action signal
from the Raspberry unit, and then sent it forward to the vehicle’s actuator units [52]. After
C code generation, it ran with a 1 ms sample time on the rapid prototyping system.

Figure 4. The test vehicle’s setup with the connected hardware frame.

To enable steer-by-wire, a steering robot was installed in place of the original steering
wheel. It was used in angle-control mode and communicated via CAN bus with the
microAutoBoxII.

For the longitudinal motion control of the car, the accelerator pedal was removed,
and its signal was emulated by the microAutoBoxII. The engine torque—i.e., the traction
force—can be controlled in this way.

For the self-localization of the vehicle, a GNSS system was used, with GSM RTK
correction and dual antennas. All the relevant states (including sideslip angle, yaw rate, lon-
gitudinal velocity, etc.) of the vehicle can be calculated from the measured high-frequency
position and heading signals.

Due to safety reasons, signals from the vehicle CAN were received by a non-intrusive
contactless sensor and were converted to FMS-Standard messages by a special CAN Gate-
way (FMS Gateway). These CAN signals were used during model identification and
real-time control as well.

4.2. Model Parameter Identification

The vehicle model parameters described in Table A1 were identified with measure-
ments to reproduce the car’s behavior as accurately as possible. The above-described tire
models need the front and rear tires’ cornering stiffness and friction factors. The values
were specified with a ramp steer maneuver (ISO 13674-2) [53]. After selecting the neutral
gear, the steering wheel was subjected to a slow and constant velocity ramp input.

A homogeneous, flat, dry asphalt surface, the 300 m diameter Dynamic Platform of
the ZalaZONE Automotive Proving Ground [54], was used for parameter identification
and agent testing. The tire forces were calculated from the lateral dynamics equations
of the one-track model with the assumption ṙ = v̇y = 0. The fitting of the tire model on



Vehicles 2024, 6 790

the measurement data gives a friction coefficient of 1 for both tires and 300,000 N/rad
cornering stiffness for the front and 500,000 N/rad for the rear tires. As it reveals, the
positive understeer gradient results in the understeer behavior of the car.

One of the control inputs from the agent is the accelerator pedal position accped, which
can be emulated in the control model into an analog signal for the vehicle. However, the
vehicle model used for training requires the longitudinal force Fxr as the actuator parameter.
Therefore, the relationship between the two quantities must be analyzed to implement it in
the simulation environment. The traction force was estimated during a test maneuver from
the longitudinal vehicle acceleration (while estimating the air drag and rolling resistance)
and the actual engine torque signal received via CAN from the engine ECU. The results
were collected in the second gear, which was used during drifting. The reason for the
gear selection and limitation was to provide the agent with the best possible transmission
characteristics for performing the targeted medium-speed (vx = 10 m/s) drift maneuver
without making the action selection more complex. The build-up of the engine torque
follows the demand of the accelerator pedal with a considerable lag, which adds a challenge
to the control task. Moreover, the engine torque signal gives relatively accurate feedback
from the traction force. The steering robot can realize a given steering wheel position,
but, from the control point of view, the roadwheel position has a meaning. Therefore, the
steering ratio was measured for the whole steering range. Additionally, the equivalent
roadwheel angle of the bicycle model was also calculated.

4.3. The Applied Sim-to-Real Methodology

One of the biggest challenges in today’s sim-to-real RL advancement is the application
of reinforcement learning for tasks where the target (application) environment cannot be
modeled in simulation with high precision, like between a vehicle model and a real test
vehicle. However, there are some methods in the current state of the art [55] for robotics
applications where the above issue is present.

In this paper, the applied sim-to-real method is domain randomization, which means
that some critical parameters of the vehicle are randomized in the simulation during
training to increase the robustness of the agent for these specific criteria. These are usually
parameters that could change depending on unmeasurable outside circumstances (meaning
they could be seen as stochastic), or their measurements are noisy or include an unknown
offset. During repeated testing and taking measurements of the performance of trained
agents on the test vehicle, the following domain randomization solution was constructed.

The agent was trained on a range of traction coefficients between µ = 0.6 and µ = 0.95
to ensure good performance under different weather, varying location conditions, and
tire wear conditions. Even though the drift target (see Equation (20)) was calculated for
µ = 0.95, the agent was able to learn to stabilize the vehicle in a relatively close equilibrium
to the target state for differing traction coefficients within the above range.

High-frequency white noise was added to the received state variables to model the
measurement noise from the GNSS signal (mirroring the measurement uncertainties and
value fluctuation/delay coming from the sensor). Also, to model CAN communication,
sensor, and actuator delays, the input and output signals were further augmented with a
random time delay between 0.5 ms and 20 ms.

The engine and powertrain dynamics were modeled with a 1-D lookup table with
six breakpoints between 0% and 100% to convert the accelerator pedal value to engine
torque between 0 Nm and 550 Nm. The values of the breakpoints were randomized
between training episodes in a range based on measurement data from the test vehicle (for
substituting the complex but not completely modeled characteristics of the engine). Also,
linear transfer functions were added to the input signals to imitate the real transfusion
between the agent’s demand and the current state of the actuators.
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5. Results

The following results show the trained agent’s performance in simulation and with
the real test vehicle. In Figure 5 on the left side, a scope of a simulation (blue) and a
measurement (yellow) instance is shown from the point of the agent’s inference until a 10 s
termination mark. For the simulation results shown, the randomized values (e.g., noise,
engine characteristics) were set to their mean values, except for the traction coefficient,
which was µ = 0.95, appropriate to the definition of the target state. The real test results
shown (named as measurement) were taken on a dry asphalt track. The simulation is started
with the vehicle accelerating to vx = 28 km/h. In reality, the vehicle was accelerated to
vx = 28 km/h using a PID (Proportional Integral Derivative) controller before turning on
the RL agent. The left side shows the vehicle’s state variables

(
vx, vy, r

)
along with the

sideslip angle β. The right side consists of the calculated reward signal, the actuator signals,
and a secondary performance measure called Isdri f t. The definition of this measure is

Isdri f t(r, β) =

{
1 if r > 0 and − 35◦ ≤ β ≤ −10◦

0 otherwise
(25)

This measure indicates if the agent successfully performs a left directional drift with a
sideslip angle between 10◦ and 35◦.

On the graphs of the pedal and the steering wheel, the blue and yellow curves show
the agent’s demand during the simulation and the test, respectively, and the red and purple
curves show the current state of the actuators in the same manner. The actual state of the
pedal is determined from the current engine torque percentage, measured by the vehicle’s
sensors during measurement and calculated during simulation. Figure 5 clearly shows that
the largest differences are in the pedal diagram, mirroring that the very complex behavior
of the engine is not completely mapped in the simulation, while, at the steering wheel, the
signals are close to each other, mirroring accurate mapping.

Figure 5. Comparison of the agent’s performance between the simulation and the real vehicle
(measurement).

Figure 6 shows the motion trajectory of the simulation results from Figure 5 (blue)
and Figure 7 shows the motion trajectory of the exact measurement from Figure 5. The
red part of the curve represents the (X, Y) coordinates of the vehicle (recorded from the
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GNSS signals) when Isdri f t = 0, and the green part indicates Isdri f t = 1. The blue arrows
point the direction of the vehicle’s heading angle along the motion trajectory. The black
dots mark every 0.25 s of time since the start of the measurement, identically to the vertical
grid lines in Figure 5.

Figure 6. The motion trajectory and the direction of the vehicle’s heading when the agent is perform-
ing in simulation. This is the desired outcome of the defined drift objective in (24).

Figure 7. The measured motion trajectory and the direction of the vehicle’s heading produced by the
agent performing on the real test vehicle (Figure 1).

6. Discussion

As a reminder for the discussion of the results, the goal of the RL agent was to perform
an approximate β = −20◦ sideslip angle drift at around a speed of vx = 10 m/s. This goal
was formulated with a drift equilibrium target that was defined in Equation (20).

The simulation results show that the agent was successfully trained in the virtual envi-
ronment. It performed the desired drift smoothly and efficiently, initiating and stabilizing
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the maneuver within 3 s. In addition, the applied domain randomization technique helped
the agent to learn enough information to perform drifting during the real test as well.

Figure 7 represents well the evolution of this drift on the real vehicle. On the right
bottom side, the car starts with a normal left turn without drifting because the blue arrows
are directed to the right from the red trajectory line. At first, at (x = 12.5 m; y = 19 m), the
arrow changes its direction to the left side of the trajectory curve, demonstrating that the
car started the drift. The same moment is evident in Figure 5 where the yellow Isdri f t
line changes its value from 0 to 1 at 2.2 s, similarly to the color change of the trajectory in
Figure 7. This proves that the proposed reinforcement learning-based agent could initiate
the drift state on a real vehicle. After this critical, drift-starting point, the arrows in Figure 7
are continuously on the left side of the remaining trajectory (in Figure 5, the yellow (real)
Isdri f t indicator is continuously 1 until the end of the complete test episode), proving that
the reinforcement learning-based agent could maintain continuous (stabilized) drifting on
a real vehicle.

In Figure 5, some discrepancies between the simulation and the real data can be
seen. These are due to the limitations of the current sim-to-real domain randomization
and vehicle model, which do not represent the real conditions completely. The lateral
velocity and the yaw moment reach the target values more slowly in the real environ-
ment, indicating that the engine dynamics could be implemented more accurately to move
the simulated and the real environment closer to each other. Also, this affects the con-
sistency of the sideslip angle and the time required to reach the drift domain. Between
Figures 6 and 7, it can also be seen that this results in a smaller circle of drifting.

Considering expert human driver performance, based on [14], the agent handles
the actuators and produces a similar motion trajectory compared to the human driver.
Furthermore, the agent achieves a more consistent sideslip angle than the expert driver,
which is essential to apply such techniques to collision avoidance.

7. Conclusions

The paper’s goal was to show that it is possible to train RL agents to perform steady-
state drifting, a challenging maneuver, on a real vehicle. The reason is to provide the
groundwork for applying these agents for more complex tasks involving extreme ma-
neuvers performed at the limits of handling, like collision avoidance. The presented
methodology and results prove that RL agents can be trained in simulation only to perform
drifting on real vehicles. This indicates that these agents can be trained to perform driving
tasks involving collision avoidance and stability control with further improvements.

Future Research

Considering future work, there may be an improvement in performance with a re-
modeling of the complex engine dynamics, so that the characteristics of the pedal actuator
match the real world even more. Extending the domain randomization further on the
selected elements (and involving new ones, like the tire characteristics) would make the
agent even more robust.

Another idea would be to take further measurements with the current agents, and then
use the recorded data to further train the agent with mixed, “supervised-reinforcement”
learning. This might be the more beneficial approach for the current use case, although it is
unknown how much measurement data it would require to maximize the performance.
Next, reinforcement learning could be based directly on these hybrid real–simulated mea-
surements or only on real measured data beyond the currently proposed sim-to-real case.

Experimenting in low-traction (µ < 0.6) environments is also an important factor of
future research, especially considering the possible robustness of these RL agents in such
cases. Designing an agent that can control stability and perform extreme maneuvers in
broad-scale changing grip conditions will be essential to improve road safety. To assist
these capabilities, road traction coefficient estimation can also be considered [56].
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Venturing even further, the main vision is to extend the agent’s capabilities to more
complex drift tasks, like trajectory following and collision avoidance. Overactuated vehicle
control (like active suspension and decoupled drive control) is also in the scope of future
research [16].
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Appendix A. Vehicle Model Parameters

Table A1. Constant parameter values of the vehicle model used in the simulation.

Parameter Name Value

m Vehicle Weight 1810 [kg]
Iz Inertia Constant 2500 [kg· m2]
a Front Wheelbase 1.35 [m]
b Rear Wheelbase 1.37 [m]

rw Wheel Radius 0.32705 [m]
J Wheel Inertia 10 [kg· m2]

E, Ex Lateral/Longitudinal Curvature Factor −1.6/−0.4 [-]
C, Cx Lateral/Longitudinal Shape Factor 1.2/1.15 [-]
B, Bx Lateral/Longitudinal Stiffness Factor 0.27/25 [-]

D Lateral & Longitudinal Peak Factor 9000·µ [-]
µ Traction Coefficient (default) 1 0.95 [-]

Sv, Sh Vertical/Horizontal Shift 0 [-]
Sxp f , αp f Front Peak Slip Ratio/Angle 10.8 [-/◦]
Sxpr , αpr Lateral Rear Peak Slip Ratio/Angle 7.1 [-/◦]

Sxpxr , αpxr Longitudinal Rear Peak Slip Ratio/Angle 0.09 [-/◦]
1 During training, the traction coefficient was an episodically randomized parameter to increase the robustness of
the agents (see Section 4.3).
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Appendix B. RL Agent Specifications

Appendix B.1. Neural Network Architectures

As was mentioned in Section 3, both the actor and the critic use a neural network to
approximate their respective functions (the policy or the value function). The architectures
of these NNs are shown in Figure A1. In the actor, the pedal and the steering wheel demands
are calculated in one common and two separate fully connected layers to implement dual
decision-making for the two actuators. It was tested that this architecture works better than
using only common layers. The critic separates the state and action inputs of the value
function and then uses a concatenation layer to return a single number.

Figure A1. The trained agent’s actor–critic neural network architecture.

Appendix B.2. Training Parameters

Table A2. Hyperparameter values of the RL agents used in inference.

Parameter Name Value

γ Discount Factor 0.95 1

αl
Neural Network Learning

Rate 0.001

Tsample Agent Sample Time 0.05 [s]

nTD
Temporal-Difference

Parameter of Foresight 18 1

H′ Target Entropy −2
αε Entropy Weight Learning Rate 0.003

Esize Experience Buffer Size 10,000
Msize Mini-Batch Size 64

1 Parameter tuned with Bayesian optimization [57].
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