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Abstract: Alkoxy radicals have been identified as versatile intermediates in synthetic chemistry in the
last few decades. Over the last decade, various catalytic processes for the in situ generation of alkoxy
radicals have been explored, leading to the development of new synthetic methodologies based on
alkoxy radicals. In this review, we provided a comprehensive review of recent developments in
the utilization of alkoxy radicals in diverse organic transformations, natural product synthesis, and
the late-stage modification of bioactive molecules through the implementation of the photoredox
methodology.
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1. Introduction

Alkoxy radicals are highly reactive structural frameworks in which radicals are lo-
calized at the oxygen atom and singularly bound to an alkyl group [1,2]. Alkoxy radicals,
without stabilization by delocalization effects, are a highly energetic class of intermediates
among heteroatom-centered radicals. Modern catalytic methods utilize oxygen-centered
radicals as versatile intermediates [3–6]. Alkoxy radical intermediates deliver the most
stabilized alkyl radical via the β-scission pathway, resulting in unsymmetrical substrates
that are highly expected [7–9]. This radical chemistry has been well utilized for natural
product synthesis in recent decades [10–14]. However, there are still many challenges in
in situ generating oxygen radical species from free alcohols due to the lower reduction
potential and strong bond dissociation energy (BDE, ~105 kcal mol−1) of the alcoholic
bond [15]. These barriers hinder their application in synthetic organic transformations.
The O-radicals can be indirectly generated from conventional sources such as lead (IV)
alkoxides [16], peroxides [17,18], sulfonates [19,20], hypohalites nitrite esters [12,21], N-
alkoxylpyridine-2-thiones [22], and N-alkoxy phthalimides [13,23,24].

The development of radical chemistry via photoredox catalysis has facilitated a wide
range of applications in organic transformation over recent years [25]. This novel approach
is gaining high interest because it produces highly energetic radical intermediates that
are difficult to obtain through conventional catalytic methodologies. It has established
remarkable progress in carbon radical generation, realizing new C-X, C-C, C-N, C-H, and
C-S bond formation [26–28]. Nitrogen and oxygen-centered radicals have also been widely
applied in organic synthesis [2,4,29,30]. The light-induced catalytic system has been an
attractive field where synthetic chemists could harness solar energy to generate the desired
radical species [31–33], especially using heteroatom-centered radicals [34–38]. (Scheme 1).
In addition to the well-discovered MLCT of coordination complexes [39,40] and organic
promoters [2,41,42], electron excitation processes supported by redox complexes [43], novel
PCET process [44], and unexpected excitations of organometallic compounds were also
applied as efficient catalytic models to trigger photoactivation [5,6,45]. Such photocatalysts
have been used for challenging applications, such as getting clean energy fuel by the
splitting of water molecules [46,47] and reducing carbon dioxide into methane [48,49].
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Scheme 1. Alkoxy radical promoted organic transformation for natural motifs.

The recent synthetic method development of alkoxy radicals has promoted various
applications. This review focuses on the recent development of alkoxy radical generation
and natural product syntheses by using alkoxy radicals as key intermediates. In the first
part, the recent development of alkoxy radical generation methods will be summarized in
chronological order; the second part will present the recent applications of alkoxy radicals
in natural product syntheses.

2. Photocatalytic Generation of Alkoxy Radicals

In the year 2014, DiRocco and colleagues described a late-stage functionalization of
heterocycles strategy through photoredox catalysis. The tert-Butoxy radical (t-BuO•) was
produced by using an IrIII catalyst, 450 nm light, and trifluoracetic acid (TFA). The key
species in the transformation, methyl radical, is achieved through β-scission of the t-BuO•.
The addition of the methyl radical to heterocycles realized the direct Csp2−Hydrogen
alkylation of heteroarenes. This unique reaction condition was used to activate bioactive
molecules, including eszopiclone, diflufenican, fasudil, camptothecin, fenarimol, vernicline,
caffeine, and voriconazole in moderate yields (40–77%, Scheme 2) [50]. The method would
potentially expand the late-stage functionalization toolbox for medicinal chemists.

The utilization of fluorinated ketones presents a convenient and effective means of
introducing fluorine atoms into intricate molecular structures. While the incorporation
of α-fluorinated ketones is relatively straightforward, achieved by converting the acidic
α-hydrogen of the ketone through various electrophilic fluorinating agents, the direct
fluorination process for synthesizing fluorinated ketones remains infrequently documented.
However, a notable breakthrough has been made by Zhu and colleagues, who devised an
efficient methodology for producing β- and γ-fluorinated ketones. The Ag-catalyzed ring-
opening approach involves a sequential sequence of bond cleavage and formation reactions,
enabling the generation of a broad range of substrates with favorable regioselectivity. In
relation to the potential mechanism, three pathways may be involved. Firstly, when
the electrophilic fluorinating species is present, the four-membered ring can potentially
undergo direct opening without requiring the Ag catalyst (Path A). Another possibility is
the Ag-assisted ring-opening process (Path B). Similar to the RhI-catalyzed ring-opening
reactions, AgI coordinates with the hydroxyl group and inserts itself into the neighboring
C−C bond, resulting in the formation of a C−Ag bond. After reacting with SelectFluor, the
resulting AgIII intermediate endures reductive elimination, leading to the formation of the
desired product. The third pathway involves a radical mechanism (Path C) (Scheme 3) [51].
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Scheme 2. Late-stage functionalization of complex heterocycles.

In 2016, Chen’s group reported another work on an effective protocol for the ring-
opening chlorination process of cyclobutanols via alkoxy radical formation using a man-
ganese catalyst. These mild reaction conditions were applied to various functionalities of
acyclic ketones and cyclic chlorides and achieved excellent product yield. The efficient
method could lead to an important intermediate, which is utilized for direct access to biolog-
ically active compounds such as Haloperidol, Fluanisone, and Fupailliduo (Scheme 4) [52].
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Scheme 4. Ring-opening transformation for preparation of bioactive molecules.

Chen and coworkers described a process for the photocatalytic-promoted generation of
oxygen-centered radicals using N-alkoxy-phthalimide as a radical precursor. The authors
performed luminescence quenching experiments and showed that the Hantzsch ester
demonstrates efficient quenching of the photoexcited fac-[Ir(ppy)3]*, indicating that the
predominant reaction pathway for generating the IrII intermediate is through reductive
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quenching. This protocol was applied to achieve selective allylation and alkenylation on
activated and inactivated Csp3-H bonds. Furthermore, this alkoxyl radical system was
utilized in the functionalization of complex molecules or biomolecules (Scheme 5) [53].
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In the year 2021, Xiao Shen and coworkers introduced 1,2-silyl transfer to functional-
ized allylic sulfones. The key factor of this approach is that when the silyl group attaches to
the α-position of alcohol, it can avoid β-carbon elimination. This synthetic approach was
used for the synthesis of L(-) Menthol, Epiandrosterone, and Diosgenin analogs in great
yields (72–85%, Scheme 6) [54].
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Scheme 6. Allylic sulfone activation via 1,2-silyl transfer. a = [Ir(dF(CF3)ppy)2(5,50 -d(CF3)bpy)]PF6
(2 mol %) was used as the catalyst instead of Eosin Y. b = No desilylation step.

Moreover, Meggers’s research group presented a combination of photoredox systems
with chiral Lewis acid catalysis for C-H activation through alkoxy radical chemistry. This
protocol shows significant tolerance on a wide array of functionalities of C-H bonds and si-
multaneously introduces two stereocenters. This approach utilizes a photoredox-mediated
transformation of an alkoxy phthalimide compound into an alkoxy radical that subse-
quently converts to a carbon radical through 1,5-HAT. The resulting carbon radical then
undergoes an intermolecular addition to an alkene species. It uses recently discovered
redox-active radical intermediate, namely N-alkoxyphthalimides and N-acylpyrazoles, as
new acidic functionality (Scheme 7) [55]. The method provided not only good-to-great
yields (54–86%) but also good-to-excellent enantioselectivity (86% ee–97% ee).
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Scheme 7. Photoredox catalytic C-H activation via radical approach.

In the same year, Chen et al.’s other report showed a ruthenium photocatalytic system
leads to the formation of structurally complex steroidals using visible light energy. Both
alkenyl and alkynyl functionality were introduced in strained cycloalkanol with the as-
sistance of benziodoxole reagents. In this report, visible light-induced alcohol oxidation
generated alkoxy radical species via cyclic iodine intermediate (Scheme 8) [56].

In 2017, Chen and coworkers described the selective carbonyl-C(sp3) bond scission
in various functional groups such as amides, esters, and alcohols in a regio- and chemose-
lective manner under modest conditions using a ruthenium photocatalyst. The reaction
benefits from the catalytic properties of the cyclic iodine-III reagent, affording model com-
pounds effectively. These findings support the hypothesis that the complex of β-carbonyl
alcohol and CIR works as a crucial intermediate in the process. Within the photocatalytic
system, this intermediate undergoes oxidation, leading to the β-carbonyl alkoxyl radical.
In the photocatalytic process, it is hypothesized that the Ru(bpy)3

2+* species was obtained
upon light irradiation and was subsequently oxidized to Ru(bpy)3

3+. Following this step,
Ru(bpy)3

3+ oxidizes the in situ formed β-carbonyl alcohol/CIR intermediate, liberating the
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CIR cation (CIR+) and initiating another CIR catalytic cycle. The resulting alkoxyl radical
undertakes a bond cleavage reaction at the β-carbonyl-C(sp3) position. Such a process can
lead to the formation of carbamoyl, alkoxylcarbonyl, or acyl radicals, which subsequently
undergo radical addition to the alkynyl benziodoxole. This method is applied for the
synthesis of complex synthons such as ynamides, ynoates, and ynones (Scheme 9) [57].
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Meanwhile, the Knowles group has successfully developed a unique ring-opening
protocol that proceeds via β-scission, applying an iridium photocatalyst induced by a
visible light source. This protocol achieved isomerization of cyclic alcohol that led to
the synthesis of a hecogenin analog. Mechanistic studies reveal that the proton-coupled
electron transfer approach triggered O-H bond homolysis and delivered a oxygen-centered
radical. It is proposed that the radical cation species attracted the electron in coordination
with a proton moves to a weak base (Scheme 10) [58].
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In the same year, Zuo and coworkers published their work based on CeCl3-induced
alcohol oxidation to generate alkoxyl radicals from unstrained cycloalkanols and achieve
amination of the C-C bond of cycloalkanol. This strategy is utilized to rapidly structure
complex biomolecules such as Talampanel. Mechanistic investigation disclosed that the
cerium alkoxide could be easily photoexcited by visible light and later converted to the
corresponding Ce (IV) intermediate. Then, this species could lead to the challenging
β-fragmentation and produce an alkyl radical (Scheme 11) [59].

Achieving control over the specific location and type of C-C bond formation when
utilizing unactivated C(sp3)-H bonds is a difficult task. However, the use of alkoxyl radicals
presents an effective strategy for activating C-H bonds through 1,5-hydrogen atom transfer
(1,5-HAT) reactions, mainly due to the higher energy of the O-H bond. When employing
different alcohols, such as primary alcohols, in 1,5-HAT reactions, the choice of alcohol
can influence both the reactivity and stability of the resulting alkoxy radicals. Primary
alcohols generally give rise to more stable alkoxy radicals compared to secondary or tertiary
alcohols. This enhanced stability can be attributed to the presence of a single alkyl group
attached to the oxygen in primary alcohols, forming a less hindered radical center. The
Zuo research group applied a photoinduced LMCT activation mode to activate the free
O-H bond in alcohols and produced an alkoxy intermediate using a low-priced cerium
photocatalyst via a 1,5 HAT process. This effective catalytic protocol offers selective C-H
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bond activation using a carbon-linked oxygen radical intermediate. This method delivers
novel and simple reaction conditions to achieve a wide array of complex molecules from
simple and plentiful alcohols (Scheme 12) [60].
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Scheme 11. Cerium photocatalyzed reaction of cycloalkanols.

The same group has described a simple and practical photocatalytic methodology
to synthesize bridged lactones through the alkoxy radical approach. Additionally, this
protocol was applied for bulk scale synthesis using flow reactors for polycyclic framework.
After careful investigation, they hypothesized that upon irradiation, ligand metal charge
transfer would lead to homolysis and produce the key carbon-linked oxygen intermediate.
After that, this transient radical species initiates a β-fragmentation in cycloalkanol and
delivers a carbon radical species. Then, the resultant intermediate is coupled with alkene
and creates an additional carbon−carbon bond (Scheme 13) [61].

During the same period, Zhu’s group presented an advanced photocatalytic ring-
opening strategy for various unstrained cyclic alcohols via cyclic C–C cleavage generating
alkoxy radicals. This process delivers valuable feedstocks for the production of haloperidol
analogs. This group postulated two pathways for alkoxy radical generation. Path a
shows that alkoxy radical can be generated via the PCET process employing the Iridium
complex and succinimide anion. Alternatively, path b presents that the interaction between
cycloalkanol and PIDA leads to homolysis of the O-I bond and produces challenging
transient O-radical species (Scheme 14) [62].
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The Knowles group presented the homolytic activation of free alcohol in cycloalkanols
via the PCET strategy. This innovative approach could be applied in the hydrogenation of
structural derivatives of cholesterol, botulin, pentose, and hexose in great yields (63–93%).
This protocol certainly leads as an instance for investigating a new chemical space by
activating the small bio-molecules (Scheme 15) [63].
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Rueping and coworkers developed a PCET-enabled nickel photocatalytic methodology
for site-specific functionalization of ketones from readily available 3◦ alcohols by using
a strongly oxidizing acridinium salt, which gained high reaction efficiency. This process
displays that the lower bond-dissociation free energy of alcohol caused rapid O-radical
generation and led to the formation of C-radicals. Then, alkyl radical species were captured
by nickel(0), formed a nickel intermediate, and led to the structuring of the provocative
C(sp3)−C(sp2) bond. Thus, a wide range of linear, cyclic, land-bridged alcohols can be
successfully explored in this cross-coupling procedure and achieved late-stage modification
on Celecoxib and Diacetone-D-galactose derivatives (Scheme 16) [64].

Shi’s group has successfully delivered the halogenation of various cycloalkanols using
visible light energy via the ring-opening process. This method used a combination of
tetrabutylammonium halide and phthaloyl peroxide under moderate conditions with blue
LEDs, achieved a high tolerability for the sensitive functional group, and delivered a wide
array of halogenated ketones. This strategy was adopted for the modification of natural
product structural units and gained excellent yields. The authors proposed a mechanism
according to both experimental results and density functional theory (DFT) calculations.
The crucial role of intermediate B, which is generated by the blend of PPO and TBAB, was
identified in the step of photolytic O−Br bond cleavage. This cleavage process resulted in
the generation of two species: the intermediate C and the Br radical. Using cyclobutanol
as the substrate, a simultaneous homolysis of the O−H bond and the strained C−C bond
occurred. This concerted process directly yielded radical intermediate G and the byproduct
F. On the other hand, cyclic alcohols with five- to eight-membered rings were proposed
to go through a stepwise mechanism, initially undergoing hydrogen atom transfer with
intermediate C to generate alkoxy radical E. Finally, carbon radical intermediate G reacted
with the Br radical, resulting in the formation of the brominated ketones (Scheme 17) [65].
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Scheme 16. Nickel-catalyzed arylation for late-stage modification.

The highly reactive nature of the alkoxyl radicals makes it very useful in organic
synthesis. Serving as a reactive intermediate, it allows for the wide range of function-
alization of unactivated C-H bonds. When there are δ-C-H bonds in the molecule, the
1,5-HAT reaction is preferred, resulting in the abstraction of the δ-C-H bond. In other cases,
when intramolecular δ-C-H bonds are absent, intermolecular HAT reactions become more
prominent. It is important to note, however, that intramolecular C-H abstraction by alkoxyl
radicals at positions other than the δ-position is less frequently observed because of the
presence of unfavorable transition states and high activation energies. So far, there are
limited studies on the 1,2-HAT reactivity of alkoxyl radicals, and the practical application of
1,2-HAT for the formation of new C-C bonds is still not well understood or explored. In the
year 2020, Chen’s group demonstrated a selective allylation of α-trifluoromethyl, benzylic
N-alkoxyl phthalimides, α-carbonyl, and α-cyano using the 1,2-HAT process. The density
functional theory calculations, electron paramagnetic resonance results, and mechanistic
experiment confirmed that the HAT process is led by the alkoxyl radicals and proved
that the activation energy can be minimized by using proton donor solvents in order to
accelerate an allylation reaction. This study allowed the rapid synthesis of structurally
complex steroid molecules (Scheme 18) [66].
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Shortly after, Hong et al. presented the visible light-enhanced phosphorylation of
natural analogs such as coumarins and quinolinones through an alkoxy intermediate-
promoted intermolecular hydrogen atom transfer process. They used diphenyl phosphine
as a phosphor donor functionality in this reaction. In this methodology, the N-alkoxy-
pyridinium precursor was used as an ethoxy radical donor and worked as the oxidant.
This method could be applied for the mono-phosphonation of various functionalized
quinolinones in good yields (55–87%, Scheme 19) [67]. This regioselective phosphonation
strategy would allow a rapid preparation of 3-phosphonylated derivates, which are an
essential structural motif in many bioactive compounds.
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One year later, Zhu et al. showed alcohol-directed remote C-H activation. The
formation of carbon-linked oxygen radical species from the free alcohol O-H bond under
a photoredox system leads to successive hydrogen transfer and a heteroaryl moiety. This
methodology delivers high tolerability for sensitive functionality to achieve late-stage
activation from challenging alcohols (Scheme 20) [68].

Organics 2023, 4, FOR PEER REVIEW 18 
 

 

 
Scheme 19. Phosphonation of quinolinones and coumarins. 

One year later, Zhu et al. showed alcohol-directed remote C-H activation. The for-

mation of carbon-linked oxygen radical species from the free alcohol O-H bond under a 

photoredox system leads to successive hydrogen transfer and a heteroaryl moiety. This 

methodology delivers high tolerability for sensitive functionality to achieve late-stage ac-

tivation from challenging alcohols (Scheme 20) [68]. 

 
Scheme 20. Ir photocatalyst-induced heteroarylation and cyanation. Scheme 20. Ir photocatalyst-induced heteroarylation and cyanation.

Moreover, the same group developed a facile, economic, and metal-free methodology
for non-hypohalite-mediated alkoxy radical generation under 100 W blue LED irradiation
conditions, using iodine (III) reagents such as phenyl iodine bis(trifluoroacetate) (PIFA) as
the alkoxy radical precursor. This process successfully delivered the Minisci-type products
via intermolecular heteroarylation of alcohols. This reaction has displayed that all kinds
(1◦, 2◦, and 3◦) of alcohols can generate the alkoxy radical species and can deliver highly
regioselective heteroarylation of C(sp3)–H bonds. This protocol structured analogs of
voriconazole and eszopiclone (Scheme 21) [69].

In 2018, Hong et al. reported a simple and facile photocatalytic radical distal transloca-
tion strategy for Minisic-type heteroarylation and phosphorylation. This method enabled
mild reaction conditions, and the quinolinone organic ligand works as a photoredox cata-
lyst. The most important key factor is that the N-alkoxy-pyridinium precursor acts as an
alkoxy radical donor and works as a hetero-arylating reagent. This protocol successfully
accomplished late-stage modification of cholesterol, pentoxifylline, pyriproxyfen, and vis-
modegib in yields of 70%, 70%, 66%, and 86%, respectively (Scheme 22A) [70]. Shortly after,
a similar strategy was further explored for the functionalization of pyridines, providing a
phosphinoylation and carbonylation of pyridines containing bio-active molecules, such as
bisacodyl, vismodegib, and pyriproxyfen, in moderate yields (Scheme 22B) [71].
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Moreover, the Zuo group designed a simple and convenient visible light-induced
strategy for the activation of alkanols via radical chemistry. This method effectively deliv-
ered hydroboration–oxidation transformations using blue LEDs and low-priced cerium
photocatalysts. This operationally facile protocol shows that simple alcohol can lead to the
rapid construction of challenging nucleoside structures via an alkoxy radical mechanism
(Scheme 23) [72].

Organics 2023, 4, FOR PEER REVIEW 20 
 

 

 
Scheme 22. Alkoxy radical mediated Minisic-type reaction and phosphorylation. 

Moreover, the Zuo group designed a simple and convenient visible light-induced 

strategy for the activation of alkanols via radical chemistry. This method effectively deliv-

ered hydroboration–oxidation transformations using blue LEDs and low-priced cerium 

photocatalysts. This operationally facile protocol shows that simple alcohol can lead to the 

rapid construction of challenging nucleoside structures via an alkoxy radical mechanism 

(Scheme 23) [72]. 

 
Scheme 23. Hydroboration−oxidation and dehydroxymethylation. 

Me

MeTBSO

 1. BH3, H2O2

 2. Ce Cat.
     LEDs, rtCO2Et

CO2Et

CH3

Me

MeTBSO

Me

CO2Et

CO2Et

TBSO

Me
Me

H

Me Me

H

Me

H

Me

OTBS

TBSO

Me
Me

H

Me Me

H

Me

H

Me

OTBS

Me
CO2Et

CO2Et

70 % yield
dr 1.6:1

60% yield
dr 1.3:1

Scheme 23. Hydroboration−oxidation and dehydroxymethylation.

In addition, Zhu and coworkers reported a successful merging of visible light-induced
functional group migration. The reactions were performed under moderate conditions by
using an Ir photocatalyst and blue LEDs. Interestingly, BF3OEt2 was used as an additive
for promoting the transformation. The reaction provided an unsymmetrical 1,8-dicarbonyl
structural motif and utilized the synthesis of SAHA derivatives (Scheme 24) [73].
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The Liu group reported a visible light-induced selective activation in challenging
primary alcohols in 2019. This highly selective cleavage was performed under moderate
conditions, and [bis(trifluoroacetoxy)iodo]-benzene (PIFA) was used as an oxidant and an
activation reagent. Remarkably, a wide variety of natural structural products like sugars
and steroid derivatives from ribofuranoside, glycerol, and xylitol were synthesized using
this approach. In order to provide a more comprehensive mechanistic understanding, a
series of experiments were devised by the author. Initially, the combination of compound
(a) and PIFA in CDCl3 promptly yielded a transient intermediate (b), which was deduced
based on the analysis of crude 1H-NMR and 13C-NMR. However, when PIDA was reacted
with alcohol (a), intermediate (b) was not formed. These findings provide an explanation
for the lack of reactivity exhibited by PIDA in cleaving the C(sp3)-C(sp3) bond in alcohols.
Subsequently, the reaction of intermediate (b) with lepidine proceeded smoothly, affording
the desired product in 73% yield. A radical clock experiment was executed to prove the
radical process. The PIFA-promoted reaction between lepidine and 2-cyclopropylethan-1-ol
(d) resulted in the ring-opening product (e) in a yield of 65%. These results strongly support
the involvement of a free radical pathway, specifically the β-scission of the alkoxyl radical.
Based on the experimental results, the authors hypothesized a mechanism and showed that,
firstly, PIFA performed nucleophilic substitution with alcohol, resulting in intermediate A.
Light-promoted homolytic cleavage of intermediate A delivered a carbon-linked oxygen-
centered radical. Subsequently, the alkoxy species experienced β-fragmentation to offer
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carbon radical species and formaldehyde. Then, the carbon radical reacted with heteroarene
and led to the formation of cation B. After that, the radical cation led to single electron
oxidation and resulted in the final product (Scheme 25) [74].
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Shortly after, González’s group designed an approach using an organic photocatalyst
PhIO and I2 combined system and applied it for the synthesis of guanidine derivatives such
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as (+) Saxitoxin, Crambescin, Tetrodotoxin, and Monanchorin. A key factor in this protocol
is that the labile functional group rapidly generates the alkoxy radical intermediate via
homolytic scission, which triggers β-fragmentation on the C1-C2 bond and leads to the
formation of a new carbon-centered radical intermediate at position C-2 (Scheme 26) [75].
Although the yields is not ideal (5–49%), the method indeed opened a new avenue to the
formation of medium-sized guanidine-containing heterocycles.
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Scheme 26. Synthesis of cyclic guanidines.

The Zhu group reported a metal-free coupling reaction between heteroarenes and
simple alkenes via amidyl/alkoxy radical chemistry. This approach delivered mild and
neutral reaction conditions and excellent yield for the Minisci reaction products. The inter-
action between amide/alcohol and PIFA plays a lead role in producing the amidyl/alkoxy
radical intermediates. The author presents a proposed mechanism wherein the interaction
between a PIFA (PhI(OCOCF3)2) and an amide or alcohol substrate initiates the formation
of intermediate I or II. Upon exposure to visible light, these intermediates undergo homol-
ysis, forming the corresponding amidyl or alkoxy radicals (III or IV). Simultaneously, an
iodanyl radical is generated at the same time. The N-radical (or O-radical) then abstracts a
hydrogen atom from 2 intermolecularly, leading to C-radical V (path a). Instead, the iodanyl
radical can engage in another potential hydrogen atom transfer (HAT) process (path b). It
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is important to note that the presence of TFA (trifluoroacetic acid) in the reaction mixture
activates the N-heteroarene, eliminating the need for additional acid. The addition of alkyl
radical intermediate V to the activated heteroarene produces intermediate VI, which would
be oxidized to the final product 3. This novel strategy is applied to the green synthetic
process in natural product derivatives (Scheme 27) [76].
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Scheme 27. C−H functionalization of simple alkanes in metal-free condition.

Zuo and coworkers have developed a practical and comprehensive strategy for selec-
tively breaking and modifying C-C bonds within ketones. They have successfully harnessed
the ligand-to-metal charge transfer (LMCT) excitation mode to specifically cleave C-C bonds
in ketones while simultaneously introducing diverse functional groups to the substrates.
This process is carried out under straightforward conditions, utilizing cost-effective cerium
catalysts and simple blue LED light. Remarkably, this method demonstrates broad applica-
bility to a wide range of substrates. Both cyclic ketones and acyclic ones work well under
this condition. In addition, the reaction condition could be applied to not only simple
ketones but also complex functionalized androsterone, thereby enabling their transfor-
mation into versatile chemical building blocks. It is noteworthy that this photocatalytic
process achieves exceptional regioselectivity in all cases. Such an innovative photocatalytic
approach offers a great alternative to the Norrish type I reaction with more selectivity,
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paving the way to exciting opportunities in more C-C bond cleavage synthetic strategies
(Scheme 28) [77].
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Scheme 28. Cerium catalyzed LMCT mode for activation of ketone.

At the same time, the Li group demonstrated the alkene functionalization via an in
situ-produced oxygen radical species-promoted intermolecular hydrogen atom transfer
process by using the organo-photocatalyst 4CzIPN. This method can be applied to realize
the carbonylation of natural structural units such as bexarotene, menthol, and estrone
(Scheme 29) [78].

Organics 2023, 4, FOR PEER REVIEW 25 
 

 

 
Scheme 28. Cerium catalyzed LMCT mode for activation of ketone. 

At the same time, the Li group demonstrated the alkene functionalization via an in 

situ-produced oxygen radical species-promoted intermolecular hydrogen atom transfer 

process by using the organo-photocatalyst 4CzIPN. This method can be applied to realize 

the carbonylation of natural structural units such as bexarotene, menthol, and estrone 

(Scheme 29) [78]. 

 

Scheme 29. metal-free divergent alkene functionalization. Scheme 29. Metal-free divergent alkene functionalization.



Organics 2023, 4 482

In the same year, Liu’s group demonstrated a copper-mediated enantioselective cyana-
tion for the synthesis of enantioenriched β-carbonyl nitriles in outstanding yield. Addition-
ally, the chiral β-cyano propanoic ester formed from the ring opening of cyclo-propanone
acetals. The strategy can be applied in the synthesis of GABA receptor agonist (R)-baclofen,
which acts as an inhibitory neurotransmitter (Scheme 30) [79].
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Recently, the Rueping group used the photoredox PCET and cobalt synergistic catalytic
combination for generating alkoxy radicals from a range of alcohols. This process delivered
selective ring-opening of various cyclic alcohols and produced dehydrogenated ketones that
are challenging to deliver with current methodologies. Both secondary and tertiary alcohols
are well accommodated in this reaction. The strategy can be applied to structures of natural
product derivatives such as (-)-Bomeol, Norcamphor, and Pregenenolone (Scheme 31) [80].
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Scheme 31. Bioinspired desaturation of alcohols via PCET and cobalt dual catalysis.

In addition, the Hong group showed a protocol for site-selective pyridine modification
via an alkoxy-centered radical strategy. This approach enabled the concurrent inclusion
of pyridyl moiety in architecturally distinct β-carbonyl functionality with outstanding C4
selectivity. This advanced process has been further explored for the selective functionaliza-
tion of naturally structured designs such as lithocholic acid, ibuprofen, vismodegib, and
pyriproxyfen (Scheme 32) [81].
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3. Application of Alkoxy Radicals in Natural Product Synthesis

In addition to the development of new synthetic methods, alkoxy radicals have been
explored in several elegant syntheses of natural products. In the year 2016, Gilmour’s
group showed a novel and practical approach for Z/E configuration alteration and cyclic
lactonization of natural product coumarins by employing the organo-catalyst (-)-riboflavin
under 402 LED light irradiation, forming in situ alkoxy radical species (Scheme 33) [82].
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In 2019, the Wang group successfully performed a total synthesis of the hitorins using
alkoxyl radical chemistry. The interaction between alkoxy intermediate and monoterpene
(+)-sabinene provided the corresponding tetrahydrofuran ring of hitorins. The possible
mechanism involves generating an alkoxy radical from hydroperoxide using Fe(II) as a
reducing agent, which then reacts with (+)-sabinene to produce a carbon-centered radical.
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The syntheses of hitorin A and B were realized by either radical oxidation by Cu(II) or β-H
elimination of intermediate (Scheme 34) [83].
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In the same year, the Smith group designed a novel photoredox approach in order
to produce dithianyl and dioxolanyl radical species via the HAT process. The resultant
radical intermediates are involved in conjugate additions in order to reach the formal
alkylation and allylation. This radical reaction pathway offers an effective way to structure
a variety of 1,4,7-polyols or spiro-ketals, which have been applied in the synthesis of
danshenspiroketallactones (Scheme 35) [84].

Organics 2023, 4, FOR PEER REVIEW 28 
 

 

mechanism involves generating an alkoxy radical from hydroperoxide using Fe(II) as a 

reducing agent, which then reacts with (+)-sabinene to produce a carbon-centered radical. 

The syntheses of hitorin A and B were realized by either radical oxidation by Cu(II) or β-

H elimination of intermediate (Scheme 34) [83]. 

 
Scheme 34. Biomimetic synthesis of hitorins A and B. 

In the same year, the Smith group designed a novel photoredox approach in order to 

produce dithianyl and dioxolanyl radical species via the HAT process. The resultant rad-

ical intermediates are involved in conjugate additions in order to reach the formal alkyla-

tion and allylation. This radical reaction pathway offers an effective way to structure a 

variety of 1,4,7-polyols or spiro-ketals, which have been applied in the synthesis of dans-

henspiroketallactones (Scheme 35) [84]. 

 
Scheme 35. Total synthesis of danshenspiroketallactones. 

A recent example of employing a visible photoredox-promoted strategy for the syn-

thesis of (−)- and (+)-polyoxamic acid from sugar molecules was delivered by the Ohno 

group. This methodology involves blue light-induced β-fragmentation and a 1,5-HAT 

strategy to afford the alditol synthesis using modest reaction parameters (Scheme 36) [85]. 

1. Pd(OAc)2, CH2Br2, KHCO3

140 0C then KOH work up

 2 equiv. Na2HPO4

COOH

Me

2. MNO2, DCM, rt

3. MeI,K2CO3, DMF

80 0C
Me

O

H
MeO O

Me

O

O
O

N OO

   Ir(ppy)3

   Hantzsch ester

dioxane, blue LEDs, rt

COOMe
SO2Ph

Me

O

O
HO

COOMe

1,5-HAT

O

O

Me

O O

Me

+
Me

Me

K2CO3, rt

80 % yield

O

O

Me

O O

Me

Me

Me

O O

Danshensphiroketallactone epi-Danshensphiroketallactone

Scheme 35. Total synthesis of danshenspiroketallactones.

A recent example of employing a visible photoredox-promoted strategy for the synthe-
sis of (−)- and (+)-polyoxamic acid from sugar molecules was delivered by the Ohno group.
This methodology involves blue light-induced β-fragmentation and a 1,5-HAT strategy to
afford the alditol synthesis using modest reaction parameters (Scheme 36) [85].
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4. Conclusions and Outlook

The effective organic transformation for complex structures demands both a practical
approach and the utilization of powerful bond-forming reactions. The effective approaches
diminish the unnecessary steps in synthesis and rapidly form new bonds of the target
structure. The chemical transformations via radical chemistry deliver an ideal platform
for lowering the step for natural product synthesis. This concise review concludes the
latest discoveries in the alkoxy radical facilitated organic transformations. Recently, the
growing interest in photoredox catalysis broadened the domain of alkoxy radical-promoted
organic conversion at an extraordinary pace. These novel and efficient strategies avoid the
pre-functionalization of the substrate and stoichiometric reagent and are further explored
for late-stage modification in structurally elaborate molecules by alkoxy radical species,
including selective activation of the C-H bond, C-N and C-C bond cleavage, and C-O
bond shaping. Although alkoxy radical utilization in these activations has broadened the
interest in novel chemical transformation, several challenges remain. We anticipate that
the discovery of novel alkoxy-radical precursors and practically applicable approaches
will further innovate in chemical transformations and lead to an advanced level of natural
product synthesis.
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Abbreviations

BDE Bond dissociation energy
BI Benziodoxole
CIR Cyclic iodine(III) reagents
DBAD Di-tert-butyl azodicarboxylate
DPA (9,10-diphenylanthracene)
EPR Electron paramagnetic resonance
HAT Hydrogen atom transfer
HPLC High-performance liquid chromatography
HE Hantzsch ester
LMCT Ligand-to-metal charge transfer
LED Light-emitting diode
MLCT Metal-to-ligand charge transfer
PCET Proton-coupled electron transfer
PMP p-methoxyphenyl
PIDA Iodobenzene diacetate
PIFA [bis(trifluoroacetoxy)iodo]benzene
PPO Phthaloyl peroxide
PT Proton Transfer
TBAB Tetrabutylammonium bromide
4CzIPN 2,4,5,6-tetra(carbazol-9-yl)benzene-1,3-dicarbonitrile

References
1. Tsui, E.; Wang, H.; Knowles, R.R. Catalytic Generation of Alkoxy Radicals from Unfunctionalized Alcohols. Chem. Sci. 2020, 11,

11124–11141. [CrossRef] [PubMed]
2. Chang, L.; An, Q.; Duan, L.; Feng, K.; Zuo, Z. Alkoxy Radicals See the Light: New Paradigms of Photochemical Synthesis. Chem.

Rev. 2022, 122, 2429–2486. [CrossRef] [PubMed]
3. Barton, D.H.R.; Beaton, J.M. A Synthesis of Aldosterone Acetate. J. Am. Chem. Soc. 2002, 82, 2641. [CrossRef]
4. Barton, D.R.; Beaton, J.M.; Geller, L.E.; Pechet, M.M. A New Photochemical Reaction1. J. Am. Chem. Soc. 2002, 83, 4076–4083.

[CrossRef]
5. Jia, K.; Chen, Y. Visible-Light-Induced Alkoxyl Radical Generation for Inert Chemical Bond Cleavage/Functionalization. Chem.

Commun. 2018, 54, 6105–6112. [CrossRef] [PubMed]
6. Wu, X.; Zhu, C. Recent Advances in Alkoxy Radical-Promoted C–C and C–H Bond Functionalization Starting from Free Alcohols.

Chem. Commun. 2019, 55, 9747–9756. [CrossRef]
7. Bietti, M.; Lanzalunga, O.; Salamone, M. Structural Effects on the β-Scission Reaction of Alkoxyl Radicals. Direct Measurement of

the Absolute Rate Constants for Ring Opening of Benzocycloalken-1-Oxyl Radicals. J. Org. Chem. 2005, 70, 1417–1422. [CrossRef]
8. Morcillo, S.P. Radical-Promoted C−C Bond Cleavage: A Deconstructive Approach for Selective Functionalization. Angew. Chem.

Int. Ed. 2019, 58, 14044–14054. [CrossRef]
9. Yu, X.Y.; Chen, J.R.; Xiao, W.J. Visible Light-Driven Radical-Mediated C-C Bond Cleavage/Functionalization in Organic Synthesis.

Chem. Rev. 2021, 121, 506–561. [CrossRef]
10. Hartung, J. Stereoselective Construction of the Tetrahydrofuran Nucleus by Alkoxyl Radical Cyclizations. Eur. J. Org. Chem. 2001,

2001, 619–632. [CrossRef]
11. de Armas, P.; Francisco, C.G.; Suárez, E. Fragmentation of Carbohydrate Anomeric Alkoxy Radicals. Tandem β-Fragmentation-

Cyclization of Alcohols. J. Am. Chem. Soc. 1993, 115, 8865–8866. [CrossRef]
12. Martin, A.; Salazar, J.A.; Suárez, E. Synthesis of Chiral Spiroacetals from Carbohydrates. J. Org. Chem. 1996, 61, 3999–4006.

[CrossRef] [PubMed]
13. Zhu, H.; Wickenden, J.G.; Campbell, N.E.; Leung, J.C.T.; Johnson, K.M.; Sammis, G.M. Construction of Carbo- and Heterocycles

Using Radical Relay Cyclizations Initiated by Alkoxy Radicals. Org. Lett. 2009, 11, 2019–2022. [CrossRef] [PubMed]
14. Yamashita, S.; Naruko, A.; Nakazawa, Y.; Zhao, L.; Hayashi, Y.; Hirama, M. Total Synthesis of Limonin. Angew. Chem. Int. Ed.

2015, 54, 8538–8541. [CrossRef] [PubMed]

https://doi.org/10.1039/D0SC04542J
https://www.ncbi.nlm.nih.gov/pubmed/33384861
https://doi.org/10.1021/acs.chemrev.1c00256
https://www.ncbi.nlm.nih.gov/pubmed/34613698
https://doi.org/10.1021/ja01495a062
https://doi.org/10.1021/ja01480a030
https://doi.org/10.1039/C8CC02642D
https://www.ncbi.nlm.nih.gov/pubmed/29770824
https://doi.org/10.1039/C9CC04785A
https://doi.org/10.1021/jo048026m
https://doi.org/10.1002/anie.201905218
https://doi.org/10.1021/acs.chemrev.0c00030
https://doi.org/10.1002/1099-0690(200102)2001:4%3C619::AID-EJOC619%3E3.0.CO;2-A
https://doi.org/10.1021/ja00072a060
https://doi.org/10.1021/jo960060g
https://www.ncbi.nlm.nih.gov/pubmed/11667274
https://doi.org/10.1021/ol900481e
https://www.ncbi.nlm.nih.gov/pubmed/19326922
https://doi.org/10.1002/anie.201503794
https://www.ncbi.nlm.nih.gov/pubmed/26036432


Organics 2023, 4 487

15. Xue, X.S.; Ji, P.; Zhou, B.; Cheng, J.P. The Essential Role of Bond Energetics in C–H Activation/Functionalization. Chem. Rev. 2017,
117, 8622–8648. [CrossRef] [PubMed]

16. Pirts, J.N.; Tolberg, R.S.; Martin, T.W.; Thompson, D.D.; Woolfolk, R.W. Intramolecular Free-Radical Reactions. Angew. Chem. Int.
Ed. English 1964, 3, 525–538.

17. Abarca, R.M. Global manual on surveillance of adverse events following immunizaion. WHO Nuevos Sist. Comun. E Inf. 2021, 4,
2013–2015.

18. Kundu, R.; Ball, Z.T. Copper-Catalyzed Remote Sp3 C-H Chlorination of Alkyl Hydroperoxides. Org. Lett. 2010, 12, 2460–2463.
[CrossRef]
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