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Abstract: As the need for effective antiviral treatment intensifies, such as with the coronavirus
disease 19 (COVID-19) infection, it is crucial to understand that while the mechanisms of action of
these drugs or compounds seem apparent, they might also interact with unexplored targets, such
as cell membrane ion channels in diverse cell types. In this review paper, we demonstrate that
many different drugs or compounds, in addition to their known interference with viral infections,
may also directly influence various types of ionic currents on the surface membrane of the host cell.
These agents include artemisinin, cannabidiol, memantine, mitoxantrone, molnupiravir, remdesivir,
SM-102, and sorafenib. If achievable at low concentrations, these regulatory effects on ion channels
are highly likely to synergize with the identified initial mechanisms of viral replication interference.
Additionally, the immediate regulatory impact of these agents on the ion-channel function may
potentially result in unintended adverse effects, including changes in cardiac electrical activity and
the prolongation of the QTc interval. Therefore, it is essential for patients receiving these related
agents to exercise additional caution to prevent unnecessary complications.

Keywords: antiviral agent; ion-channel modifier; ionic current; Na+ current; K+ current

1. Introduction

An antiviral agent refers to a substance or medication used to treat viral infections
or inhibit viral growth, replication, and dissemination within the body. These drugs or
compounds are designed to target and disrupt the life cycle of viruses, thereby preventing
them from infecting host cells or replicating. The agents with antiviral activities can be used
to manage and treat a wide range of viral infections, including those caused by viruses
such as hepatitis B and C, influenza, coronavirus disease 19 (COVID-19), and more [1,2].
However, in the context of various drugs or compounds employed to interfere in, prevent,
or treat infections caused by different viruses, it has become evident that they possess
significant regulatory effects on transmembrane ion channels located on the cell membrane.
Using advanced patch-clamp technology in conjunction with precise voltage-clamping
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profiles achieved through digital-to-analog conversions facilitates the accurate detection
of distinctive ionic currents at the surface of various small cells [3,4]. Therefore, these
alterations in ionic currents not only influence the normal functions of host cells but also
assume a role in either exacerbating the progression of viral infections [5,6] or causing other
adverse effects [7–10].

In this review paper, we provide descriptions of specific drugs or compounds that
disturb viral replication while also exerting multiple regulatory effects on ion channels
in cell membranes in various cell types. These agents are presented in alphabetical order.
Table 1 showcases the two-dimensional chemical structure of each agent, while Table 2
outlines their abbreviations and documented effects on transmembrane ionic currents.

Table 1. Two-dimensional chemical structures of the drugs or compounds mentioned in this paper.
The cell type studied and the concentration range used are illustrated. These data were obtained
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (accessed on 4 October 2023).

Compound or Drug Chemical Structure Cell Type Studied Concentration Range Used

Artemisinin
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Table 1. Cont.

Compound or Drug Chemical Structure Cell Type Studied Concentration Range Used
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Table 2. Drugs or compounds presented in this paper. These agents can potentially disrupt viral
infections but may also impact various ionic currents.

Compound or Drug Abbreviation Actions on Ionic
Currents *, ** References

Artemisinin ART
↓ IK(DR)
↓ INa
↑ TRPC channel

Qiao et al. (2007) [11]
So et al. (2017) [12]
Zhang et al. (2022) [13]

Cannabidiol CBD ↓ IK(M)
↓ Ih

Liu et al. (2023) [14]

Memantine MEM ↓ IMEP
↓ IK(IR)

Wu et al. (2011) [15]
Tsai et al. (2013) [16]

Mitoxantrone MX ↓ IK(IR) Wang et al. (2012) [17]

Molnupiravir MOL ↓ INa Shiau et al. (2023) [18]

Remdesivir RDV

↓ IK(DR)
↓ IK(M)
↑ IMEP
↓ IK(erg)

Chang et al. (2020) [19]
Amarh et al. (2023) [20]

SM-102 SM-102 ↓ IK(erg)
↓ IK(IR)

Cho et al. (2021) [21]

Sorafenib SOR
↓ IK(erg)
↓ IK(S)
↓ IK(IR)

Wu et al. (2012) [22]
Chang et al. (2020) [23]

* “↓” represents an inhibitory action on ionic current, while “↑” denotes a stimulatory action. ** Each of the ionic
currents is presented in shorthand, with their corresponding full names listed in the Abbreviations Section.

2. Summary

The agents with antiviral activities known to exert regulatory effects on transmem-
brane ionic currents are illustrated in Figure 1.
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2.1. Artemisinin (ART)

For centuries, ART (qinghaosu) has been widely acknowledged as a potent antimalarial
agent. This remarkable compound is derived from the sweet wormwood plant, which is sci-
entifically known as Artemisia annua L. It features a unique chemical structure characterized
by a sesquiterpene trioxane lactone containing an unusual peroxide bridge [24]. Beyond its
well-established antimalarial properties, ART exhibits a diverse range of pharmacological
effects. These effects encompass cytotoxicity against tumor cells, along with antiviral and
antiparasitic actions [24,25]. Moreover, recent research has unveiled its promising potential
in combating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [26,27].

Notably, previous reports have shown that artemisinin can synergistically act to
suppress the delayed-rectifier K+ current (IK(DR)) and voltage-gated Na+ current (INa)
identified in pituitary tumor (GH3) cells [12]. The inhibitory effect of ART on INa was also
observed in nodose ganglion neurons [11]. Cell exposure to ART did not simply reduce the
amplitude of IK(DR). It caused a significant increase in the IK(DR) inactivation rate elicited
in response to a 10 s maintained depolarizing pulse. The IC50 is the concentration of the
compound at which the biological response is reduced by 50%. The IC50 value, signifying
the concentration of ART required to inhibit IK(DR), was 11.2 µM, closely resembling the KD
value of 14.7 µM obtained from the first-order binding scheme [12]. This value is typically
interpolated from the concentration–response curve. It is commonly calculated using
regression analysis. Exposure to ART caused a leftward shift in the midpoint of the steady-
state inactivation curve of IK(DR), with no change in the curve’s steepness. The presence
of ART also enhanced the rate of excessive accumulative inactivation of IK(DR) evoked in
response to repetitive stimuli. These results suggest that the ART-induced block of IK(DR)
mainly occurred after channel opening. Prior to channel activation, the ART-binding site is
likely to be either in a low-affinity state or inaccessible to the compound [12].

On another note, the presence of ART has the potential to engage in interactions with
voltage-gated Na+ (NaV) channels. These interactions, in turn, lead to a decrease in both
the peak amplitude of voltage-gated Na+ current (INa) and the rate of inactivation of this
current [12]. Consequently, the observed inhibition of INa and IK(DR) when ART is present
could synergistically influence the functional activities of pituitary cells, provided that
similar results are replicated in an in vivo context. The ability of ART to activate canonical
transient receptor potential (TRP) channels, such as TRPC3 channels, has also been recently
demonstrated [28].

Previous studies have demonstrated that ART effectively suppresses cell proliferation
and hormonal secretion in various cell types, including GH3 cells [29,30]. It is pertinent to
investigate the extent to which the antiviral, neurological, or ototoxic effects induced by
ART [24,25,29,30] are closely linked to its influence on ionic currents.

2.2. Cannabidiol (CBD)

CBD, scientifically referred to as 2-[(1R,6R)-3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-
5-pentylbenzene-1,3-diol, is a non-psychoactive cannabinoid derived from the Cannabis plant
renowned for its potential therapeutic applications [31]. In addition to its known attributes,
recent research has highlighted CBD’s role in hindering the entry of SARS-CoV-2, including
its emerging variants, and its ability to exhibit antiviral effects against a wide range of viruses,
both enveloped and non-enveloped [32,33]. Moreover, recent studies have shed light on CBD’s
capacity to modulate activity within the hypothalamic–pituitary–adrenal axis [34]. It has also
been shown to influence various types of transmembrane ionic currents in electrically excitable
cells, including INa and M-type K+ current (IK(M)) [35]. The biophysical and pharmacological
characteristics of IK(M), a current encoded by KCNQ genes, have been established in previous
studies [21,36,37]. Among KCNQ genes, KCNQ2 and KCNQ3 subunits heteromultimerize
to form the channels responsible for IK(M) in neurons [37]. In recent research conducted
on pituitary GH3 cells, it was demonstrated that exposure to CBD leads to the suppression
in the amplitudes of IK(M) and the hyperpolarization-activated cation current (Ih), with the
corresponding IC50 values of 3.6 and 3.3 µM, respectively [14]. The biophysical property of Ih
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is distinctive, marked by its slow activation kinetics during sustained hyperpolarization [38,39].
Furthermore, given CBD’s impact on ion channels situated on the cell membrane, it appears
unlikely that these effects can be solely ascribed to CBD’s interaction with cannabinoid
receptors. Therefore, there is a significant demand for more comprehensive research to
investigate the mechanisms through which CBD affects these ion channels. This regulation,
whether it results in direct or indirect interference with virus attachment or cell entry into
cells, demands further investigation. Similarly, to gain a clearer understanding of how CBD
modulates ionic currents and its potential impact on specific downstream signaling pathways,
further in-depth studies are warranted.

2.3. Memantine (MEM, Namenda®)

MEM (1-amino-3,5-dimethyladamantane), which is a derivative of amantadine, has
found application in the management of neurological disorders characterized by excito-
toxic cell death. This encompasses conditions such as Parkinson’s disease and vascular
dementia [40]. MEM has been reported to be repurposed against the Chikungunya virus or
to ameliorate the symptoms of long coronavirus disease 19 (COVID-19) syndrome [41–43].
The therapeutic effect of MEM was previously thought to be due to its ability to bind
preferentially to N-methyl-D-aspartate (NMDA) receptor-operated cation channels.

Despite NMDA receptors being the primary target for MEM, several studies reported
additional underlying mechanisms of action. For example, previous work has demon-
strated that MEM exerted a depressant action on membrane electroporation-induced
inward current (IMEP)) in a concentration-dependent manner in pituitary tumor (GH3)
cells [15]. Membrane electroporation (MEP) is a well-established process known for signif-
icantly enhancing the electrical conductivity and permeability of the plasma membrane
when subjected to an externally applied electrical field [44]. The electrical and pharma-
cological properties of IMEP in both heart cells and pituitary cells have been previously
demonstrated [15,22,45].

Additionally, previous research has demonstrated that the MEM presence reduces the
amplitude of the inwardly rectifying K+ current (IK(IR)) in both RAW 264.7 macrophages
and BV2 microglial cells [16]. MEM exposure has been observed to decrease both the rate
and extent of IK(IR) inactivation. Notably, the intracellular inclusion of spermine has been
found to counteract the inhibitory effects of MEM on IK(IR). Spermine, a polyamine and
polycationic compound, has been shown to block the inward rectifying K+ (Kir) channel [46].
Moreover, in single-channel recordings performed on RAW 264.7 cells, it was observed
that MEM effectively decreased the open-state probability of the Kir channel while not
affecting the single-channel conductance [16]. MEM-mediated reduction in Kir-channel
activity was concomitant with both an increase in mean closed time and a decrease in the
slow component of mean open time.

The Kir channels display strong inward rectification, meaning that they preferen-
tially conduct K+ ions into the cell rather than out of the cell. Their gating mecha-
nism is influenced by several factors, such as intracellular Mg2+ ions, polyamines, and
phosphatidylinositol-4,5-bisphosphate [46]. The activity of these channels plays a crucial
role in maintaining the resting membrane potentials of cells. They also contribute to the
regulation of cell excitability, particularly in neurons and cardiac myocytes [46].

Consequently, it is expected that the reduction in IK(IR) magnitude caused by MEM may
serve as a crucial mechanism by which MEM or similar compounds can disrupt the functional
activities of macrophages or microglial cells, possibly contributing to their antiviral effects.
However, these effects should be confirmed through further research in vivo.

2.4. Mitoxantrone (MX, Novantrone®)

MX (1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]anthracene-9,10-dione)
is a synthetic anthracenedione that has firmly established itself as an antineoplastic agent. It
achieves this status by intercalating with DNA, thereby impeding the function of the topoiso-
merase II enzyme, preventing the ligation of DNA strands, and ultimately delaying cell-cycle
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progression. The therapeutic potential of MX has extended to a wide spectrum of malignancies,
including advanced cases of prostate and breast cancers with osseous metastasis [47]. Further-
more, MX exhibits efficacy in countering viral infections, operating through similar mechanisms
that disrupt viral DNA or RNA replication [48].

Earlier reports have shown that the presence of MX interacts with the activity of Kir
channels to suppress the magnitude of IK(IR) in osteoclast precursor RAW 264.7 cells differ-
entiated with lipopolysaccharide [17]. MX inhibits the amplitude of IK(IR) in a concentration-
dependent manner, with an IC50 value of 6.4 µM. Doxorubicin or tertiapin also effectively
suppresses the IK(IR) amplitude. Doxorubicin is another anthracycline compound, while
tertiapin, a bee venom peptide, has been described as an inhibitor of acetylcholine-activated
K+ current and IK(IR) in heart cells [49]. The MX-mediated decrease in Kir-channel activity
is also accompanied by the shortening of the mean open time of the channel [17]. Blocking
Kir channels in osteoclasts could hold significant clinical potential for the treatment of
disorders characterized by disrupted mineralized tissues [50]. The suppression of these
channels can also contribute to viral infections, such as the Monkeypox virus infection [48].

2.5. Molnupiravir (MOL, EIDD-2801, MK-4482, Lagevrio®)

MOL, an orally administered small-molecule isopropylester prodrug, is a notewor-
thy representative of the ribonucleoside analog β-d-N4-hydroxycytidine. This synthetic
compound is esteemed for its antiviral properties, effectively hampering the replication
of specific RNA viruses by inducing critical errors during viral RNA replication pro-
cesses [51,52]. Its chemical nomenclature designates it as ((2R,3S,4R,5R)-3,4-dihydroxy-5-(4-
(hydroxyamino)-2-oxopyrimidin-1(2H)-yl) tetrahydrofuran-2-yl) methyl isobutyrate. In
light of its capacity to thwart the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2,
consequently prompting RNA mutagenesis, MOL has been repurposed as a potential
treatment for COVID-19 [53].

In a recent study, researchers presented findings demonstrating that MOL exerts a
time-, concentration-, and frequency-dependent inhibition of INa in pituitary tumor (GH3)
cells [18]. Upon exposure to MOL, both the peak and late amplitudes of INa in response to
rapid membrane depolarization experienced varying degrees of suppression. The study
estimated the IC50 values of MOL for inhibiting transient and late INa in GH3 cells to be
26.1 and 6.3 µM, respectively. Furthermore, MOL’s continuous presence led to cumulative
inhibition of peak INa elicited throughout a series of depolarizing stimuli. Additionally, the
introduction of MOL substantially attenuated the nonlinear resurgent INa evoked by the
descending ramp voltage, highlighting its impact on specific electrophysiological responses.
The magnitude of resurgent INa plays a crucial role in triggering action potential firing
in different types of electrically excitable cells. In the presence of MOL, single-channel
recordings showed a reduction in the probability of NaV-channel openings accompanied
by a decrease in the mean open time of the channel; however, no change in single-channel
conductance was made [18]. The voltage-activated INa detected in Neuro-2a neuroblastoma
cells was also found to be responsive to inhibition by MOL [54]. It has been reported
that mRNA transcripts of NaV1.1, NaV1.2, and NaV1.6 α subunits are expressed in GH3
cells [51]. It remains to be studied whether MOL can exert an influence on the activity in
other isoforms of the NaV channel.

The molecular docking analysis revealed potential interactions between MOL and the
RdRp of SARS-CoV-2 and NaV channels [18]. Furthermore, recent studies have linked long-
term MOL usage to the emergence of additional mutations in the SARS-CoV-2 genomes [52].
Whether these unintended side effects are related to its inhibition of INa warrants further
investigation. Given that ranolazine is employed in the treatment of chronic angina pec-
toris [55], it is worthwhile to explore the potential repurposing of MOL for the management
of chronic pain [54,56].
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2.6. Remdesivir (RDV, GS-5734)

RDV (ethyl (2S)-2-[[[(2S,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-7-yl)-5-cyano-
3,4-dihydroxyoxolan-2-yl]methoxy-phenoxy-phosphoryl]amino]propanoate), a potent an-
tiviral agent with broad-spectrum activity, is acknowledged as a mono-phosphoramidate
prodrug of an adenosine analog. It undergoes metabolic conversion into its active form,
GS-441524, which is a C-adenosine nucleoside analog [57]. This compound, functioning as a
nucleotide-analog inhibitor of RdRp, demonstrates substantial effectiveness against various
coronaviruses (CoVs), including MERS-CoV, SARS-CoV-2, and the virus responsible for
COVID-19 [58–62]. It stands out as a promising antiviral drug with potential applications
against a wide spectrum of RNA viruses, primarily by targeting the viral RdRp. The active
form, GS-441524, to which RDV metabolizes, exerts a less inhibitory effect on cellular RNA
compared with its impact on viral polymerase [23]. Recent studies have unveiled the high
efficacy of RDV in combination with chloroquine or hydroxychloroquine for controlling
SARS-CoV-2 infection in in vitro settings [23]. Moreover, there is noteworthy ongoing
research regarding the efficacy of RDV in treating SARS-CoV-2 infection in humans [63].

It is worth noting that prior investigators have revealed that the presence of RDV
leads to a reduction in the amplitude of IK(DR) in a manner that is both time-dependent and
concentration-dependent. This effect has been observed in both pituitary GH3 cells and
Jurkat T-lymphocytes [19]. Additionally, the rate of IK(DR) inactivation appears to increase
with higher RDV concentrations. According to data from a simplified reaction model, the
dissociation constant (KD) required for RDV-induced inhibition of IK(DR) in GH3 cells was
reported to be approximately 3.04 µM. This value is in close proximity to the effective IC50
value (2.8 µM) for the RDV-mediated suppression of sustained IK(DR), although it is lower
than that of the IC50 (10.1 µM) for blocking the initial peak IK(DR). The exposure to RDV
also suppressed the magnitude of IK(M), with an IC50 value of 2.5 µM in GH3 cells, as well
as depressed the voltage-dependent hysteresis of IK(M) [23].

Furthermore, under sustained exposure to RDV, it is noteworthy that neither the
addition of α,β-methylene-ATP (AMPCPP), a non-degradable ATP analog, nor the intro-
duction of 8-cycloppentyl-1.3-dipropylxanthine (DPCPX), an antagonist of the adenosine
A1 receptor, had any discernible impact on the inhibition of IK(DR) induced by RDV [64,65].
These results suggest that the altered magnitude of IK(DR) caused by RDV in GH3 cells is
unlikely to be associated with its preferential binding to purinergic or adenosine recep-
tors. This observation is significant, particularly considering that the RDV molecule was
initially considered a prodrug of an adenosine nucleoside analog [57,66]. Exposure to RDV
was recently discovered to reduce the amplitude of IK(erg) [20] and also to prolong QTc
intervals [64]. Nonetheless, the direct suppression of IK(DR), IK(M), and IK(erg) in these cells,
therefore, suggests that this compound, per se, presumably is not an inactive prodrug.
Moreover, the RDV presence can activate the magnitude of IMEP [19].

It needs to be mentioned that prior studies have documented the presence of hy-
pokalemia and, in some severe cases, lethal arrhythmia in patients with COVID-19 in-
fection [60,65,67]. The EC50 value of RDV against SARS-CoV-2 within Vero E6 cells was
significantly determined to be 1.76 µM, indicating that the concentration required for its
antiviral action is likely attainable in an in vivo setting [61]. It is therefore anticipated
that, apart from its effects on the viral polymerase and the proofreading exoribonucle-
ase [57,62,66,68], the extent to which RDV-induced perturbations on ionic currents may
participate in its antiviral actions has yet to be further delineated.

2.7. SM-102

SM-102, with its complex chemical name hepatodecan-9-yl 8-((2-hydroxyethyl)(6-oxo-
6-(undecyloxy)hexyl)amino)octanoate, 4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-
hexyldecanoate, stands as a synthetic and ionizable amino lipid. It has found extensive
application alongside other lipids in the formulation of lipid nanoparticles [69–71]. These
formulations incorporating SM-102 have been notably instrumental in the creation of
lipid nanoparticles for delivering mRNA-based vaccines. This highly efficient transfection
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method relies on compacted lipopolyamine-coated plasmids and has seen progressive
improvements over time [13,72]. However, it is important to note that recent reports
have linked COVID-19 vaccinations to instances of myocarditis [73–77]. After receiving
COVID-19 mRNA vaccination, there have been reported cases of acute myocarditis [74,75].

In a recent study, it was observed that, at concentrations of 100 or 300 µM, SM-102
caused a decrease in the amplitude of IK(erg) and an elevation in the deactivation rate of the
current in both GH3 cells and Leydig MA-10 cells [78]. The inclusion of SM-102 resulted in
a decrease in both the magnitude of IK(erg) and a shift in the current-to-voltage relationship
of sustained IK(erg) towards less negative potentials. Additionally, the exposure of cells to
SM-102 effectively reduced the magnitude of the voltage-dependent hysteretic strength of
IK(erg) when activated by an isosceles-triangular ramp voltage.

In GH3 cells subjected to dialysis with SM-102, TurboFectinTM, or spermine, there was a
gradual reduction in the magnitude of IK(erg) [78]. TurboFectinTM is a proprietary blender of a
wide-ranging protein/polyamine mixture, along with histones and lipids, designated as a
known transfection reagent [79]. The sensitivity of IK(IR) in microglial BV2 cells to suppression
was also observed when exposed to SM-102 or spermine, as reported previously [16,78]. The
extent to which SM-102-induced changes in membrane ionic currents contribute to the adverse
effects of mRNA-based vaccines, such as ModernaTM, requires further investigation. An earlier
report found that an individual experienced long QTc interval and syncope after receiving a
single dose of COVID-19 vaccination [80]. It is, therefore, essential to determine whether the
concentrations of SM-102 or TurboFectinTM used for directly altering ionic currents could be
achieved in both in vitro and in vivo settings.

2.8. Sorafenib (SOR, Nexavar®)

SOR, scientifically designated as 4-(4-(((4-chloro-3-(trifluoromethyl)phenyl)amino)
carbonyl)phenoxy)-N-methylpyridine-2-carboxamide, belongs to a distinctive class of
multi-targeted, active small-molecule tyrosine kinase inhibitors that are presently em-
ployed in the treatment of hematological and oncological malignancies. Strategies for dose
escalation have been contemplated for their clinical use, given that many malignancies are
believed to be instigated by aberrant tyrosine kinase activity [81]. Tyrosine kinase inhibitors,
such as sunitinib and SOtR, have recently been noticed to exert antiviral action [82–84]. A
previous report has demonstrated the ability of SOR to suppress the amplitude of both
the slowly activating delayed-rectifier K+ current (IK(S)) and IK(erg) identified in H9c2 car-
diomyocytes [19,22]. The KV7.1-type IK(S), known as the KV7.1 (or KCNQ1)-cloned K+

channel, has been noted to be suppressed during H9c2-cell exposure to SOR. Additionally,
it is worth noting that the suppression of IK(S) caused by SOR takes time to manifest during
long-lasting membrane depolarization and is not an instantaneous response upon channel
opening. These findings thus imply the existence of a time-dependent binding site for SOR,
possibly situated in or near the IK(S)-channel pore, specifically when the channel becomes
active. The SOR presence likewise resulted in a reduction in the amplitude of IK(IR), as
observed in neonatal rat ventricular myocytes. This inhibition of ionic currents during SOR
exposure may constitute an unintended yet crucial mechanism, contributing to alterations
in QTc intervals or possibly influencing antiviral effects [9,19,82–84]. These findings could
offer insights into the occurrence of patients exhibiting QTc prolongation and, in some
cases, experiencing subsequent fatal arrhythmias following treatment with SOR [10,85].

3. Conclusions

It is acknowledged that viruses lack a complete cellular membrane structure and are not
considered living organisms. They require a host cell to replicate, which necessitates their initial
contact with the membrane of an infected cell. Therefore, when these antiviral medications
discussed here are able to affect transmembrane ion channels in that cell, it can potentially
disrupt the virus’s attachment, insertion, and entry into host cells (Figure 1). However, it should
be noted that most of the experimental observations are derived from tumor cell lines, such as
GH3 cells, neuroblastoma N2a cells, microglial BV2 cells, and RAW 264.7 macrophages. Further
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research is, therefore, needed to determine the applicability of these findings to different types
of native excitable cells in vivo. Alternatively, whether there is specificity in their action on ion
channels linked to antiviral activity and whether it exhibits selectivity for anti-SARS-CoV-2
activity still warrant further investigation. While certain antiviral agents influence ionic currents
with low selectivity, the highlighted off-target effects are crucial considerations for disease
treatment. Alternatively, further investigation is required to determine the impact of ion channel
modulation by agens with antiviral activities on practical outcomes or consequences at various
stages of disease development or maintenance over time.

We also need to clarify that certain antiviral agents mentioned in this paper are indeed
clinically approved for use. These drugs, such as remdesivir (RDV), have been reported to
intervene in transmembrane ion currents. However, substances such as cannabidiol (CBD) or
arteminisin (ART), while exhibiting antiviral activity, are inappropriately classified as antiviral
agents. Additionally, ART is an antimalarial drug.

It is also important to emphasize that the majority of the ion currents highlighted in
Figure 1 are observed on the cardiac cell membrane. If the concentrations used in this context
were to influence cardiac cells, it could disrupt their electrical activity, possibly resulting in the
prolongation of ventricular action potential and QTc interval (Figure 2) [65,85,86]. It could thus
pose a significant risk of causing severe arrhythmias, such as torsade de pointes arrhythmia, or
even sudden cardiac death [7–10,64,67,85,86]. These antiviral suppressants display a diverse
array of chemical structures (Table 1) and exhibit various regulatory effects on manifold types
of ionic currents (Table 2). Therefore, when it is indeed necessary to use antiviral therapies, it
is essential to exercise caution and closely monitor to mitigate unforeseen events [7,8,10,67,87].
Although a thorough examination of electrophysiological studies was conducted with these
antiviral agents, further investigation is required to determine the extent of specific focus on
organs that bear significance in terms of ion channel functionality. Moreover, whether these
agents with antiviral activities also affect the transcriptional or translational expression levels of
these ion channels is worth further investigation in the future.
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