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Abstract: Rhenium-186 (Re-186) has attracted attention as a medical isotope. The feasibility of
producing Re-185, the raw material for Re-186, using a fast reactor was evaluated using a continuous
energy Monte Carlo code. The irradiation of natural tantalum (Ta) in the fast reactor can produce
Re-185 with an isotopic purity of 99%. A two-step irradiation process with different moderators was
found to improve the production rate of Re-185. Specifically, this can be achieved by using zirconium
hydride (ZrH1.7) as a moderator in the first transmutation process from natural Ta to tungsten (W),
and then zirconium deuteride (ZrD1.7) as a moderator in the second transmutation process from W
to Re-185. Due to the two-step irradiation, the production rate of Re-185 from Ta can be increased up
to a maximum of 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can
be obtained from 1571 g of Ta in 1 year of irradiation. The proposed isotope production method is a
new method that is different from the conventional electromagnetic enrichment process.

Keywords: rhenium-185; rhenium-186; tantalum; tungsten; transmutation; fast reactor; JOYO; Monte
Carlo code; MVP version3/MVP Burn; medical isotope

1. Introduction

Rhenium (Re) has excellent resistance to high temperatures; therefore, it is used in a
variety of applications, as evidenced by the fact that it is used to make turbine blades for jet
aircraft engines. On the other hand, Re is one of the least abundant elements in the Earth’s
crust, and it is not evenly distributed around the globe [1]. This means that it has a very
high supply risk [2].

Re has attracted attention as a radioisotope for medical applications. Re-186 emits
β-rays of maximum 1.08 (MeV) and γ-rays of 137 (keV) at 8.6% of decay with a short half-
life of 89.3 h. This property allows for simultaneous treatment with β-rays and diagnosis
with γ-rays [3,4]. Re-186 can be produced using nuclear reactors or particle accelerators [5].
The (n, γ) reaction of Re-185 in the nuclear reactor is 112 (barn) compared to ~0.6 (barn)
for the (d, 2n) reaction of W-186 at ~15 (MeV) in the particle accelerator [6], which means
that the production process in the nuclear reactor can produce large amounts of Re-186.
On the other hand, the nuclear reactor process produces Re-186 with carriers, resulting in
low specific activity [7]. This character is the main disadvantage compared to the particle
accelerator process, which can produce carrier-free Re-186. However, this disadvantage
may be overcome with techniques to isolate Re-186. Lapi et al. patented a method to
isolate Re-186 by vaporizing a compound containing Re-185 and Re-186, ionizing it to form
negatively charged molecules, and then using a positively charged collector to separate
and recover the molecules by mass difference [8].

The nuclear reactor process requires the preparation of high-purity Re-185 (>94%), but
Re-185 has a natural abundance of only 37.4%, as shown in Table 1, and it must be enriched.
Electromagnetic isotope separation has long been used for isotope enrichment [9,10], and
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isotope supply systems have been commercially established. However, due to the limited
number of isotope suppliers [11], existing methods for the production of rhenium isotopes
may not be able to meet the growing demand for radiotherapeutics in the future [12].

Table 1. Isotopic composition of natural Re.

Nuclide Isotope Ratio Half-Life

Re-185 37.4% Stable
Re-187 62.6% 4.12× 1010y

In previous studies, the method of producing Re from tungsten (W) was discussed [13–15].
Re can be produced via the transmutation of W with a neutron capture reaction and subse-
quent β decays using a fast reactor. W is more abundant than Re in the Earth’s crust, and
its price is a few tenths of that of Re.

As shown in Figure 1, when natural W is used as the material for transmutation,
Re-185 is produced mainly from W-184 with a natural abundance of 30.64%, and Re-187 is
produced mainly from W-186 with a natural abundance of 28.43%.

184W(n, γ)185W → 185Re + β−(75d)
186W(n, γ)187W → 187Re + β−(24h)

Yokoyama et al. studied a method for producing Re with a higher ratio of Re-185
than the natural one by controlling the transmutation of W isotopes by moderating the
energy of neutrons produced in a fast reactor with a moderator [16]. However, Re-185
with an isotopic purity of 65% is not pure enough as a raw material for the production of
Re-186. We propose the use of tantalum (Ta) as a new raw material. Figure 2 shows the
transmutation path of natural Ta to Re. Ta is similar to W in that it is a more abundant
element in the earth than Re. The isotopic purity of Ta-181 in natural Ta is 99.9%. Each
isotope of W is produced by the decay of higher-order Ta isotopes via successive neutron
capture reactions of Ta-181. Since the half-life of the higher-order Ta isotope is short enough,
the produced W will mainly contain W-182 or lower-order isotopes; thus, the amount of
W-186 will be extremely small. As a result, the amount of Re-187 transmuted from W-186
in the produced Re is expected to be very small.
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Figure 1. Transmutation path from natural W to Re. Through the neutron capture reaction with
subsequent β decays, Re-185 is produced mainly from W-184. In contrast, Re-187 is produced from
W-186.

Our objective is to investigate the feasibility of a method for producing high-purity Re-
185 via the transmutation of natural Ta with a new isotope production process using a fast
reactor. In a fast reactor, there are excess neutrons, and it is possible to generate electricity
and produce plutonium, etc., at the same time. If this excess of neutrons can be used to
produce Re-185, a new isotope production method can be realized. In addition, isotopes
can be produced simultaneously with power generation without occupying a dedicated
machine as in the conventional isotope production method, which may lead to a reduction
in production costs. Furthermore, we propose a scheme from the transmutation of natural
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Ta to the medical use of Re-186. Produced high-purity Re-185 is chemically separated from
other elements, and Re-186 produced by the (n, γ) reaction in the nuclear reactor was used
as a radiopharmaceutical. Since some solvent extraction or anion exchange methods, etc.,
are widely studied for their separation and purification, we will not discuss them in detail
here.
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2. Analysis Methods

The feasibility of producing Re-185 via the transmutation of natural Ta was investi-
gated using a 100 MWt fast reactor modeled on the experimental fast reactor JOYO with
MK-III core. The energy spectrum of neutrons in the fast reactors is harder than that in
light water reactors, and it may be possible to adjust the energy by moderator arrangement
to achieve highly efficient transmutation, which has been used to study the transmutation
of technetium-99 (Tc-99), a long-lived fission product [17].

The main reactor parameters are listed in Table 2. The system was sodium-cooled and
uses plutonium-uranium mixed oxide (MOX) fuel. The irradiation target pin was placed in
the center of the core, as shown in Figure 3. The cylindrical moderator can be placed around
the sample. The candidate moderators were zirconium hydride (ZrH1.7) and zirconium
deuteride (ZrD1.7); these were selected based on previous studies [13–16].

The production characteristics were evaluated using a three-dimensional continu-
ous energy Monte Carlo code, MVP version 3 [18], with its burn-up calculation routine
MVP-BURN [19]. To accurately simulate the production characteristics from Ta to Re, a
transmutation chain model from Ta to osmium (Os), shown in Figure 4, was added to
the burn-up chain model “u4cm6fp50bp16F”, which is a standard set in MVP-BURN. The
evaluated nuclear data library JENDL-5 [20] was used for the cross-section data. The
number of histories and batches were set appropriately to keep the typical statistical error
for k-effective below about 0.05% with a 1σ error.

Table 2. Main core parameters of the fast reactor in this study.

Specification Data

Reactor Thermal Power (MWt) 100
Number of driver fuel subassembly
(Inner Driver Fuel and Outer Driver Fuel) 77

Equivalent core diameter (cm) 80
Core height (cm) 50
235U enrichment (wt%) 18
Pu content: Pu/(Pu+U) (wt%) 16/21 *
Fissile Plutonium content: (239Pu + 241Pu)/(Pu+U) (wt%) 12/15 *

Reflector/shielding Steel Special Use
Stainless (SUS)/B4C

* Inner Core/Outer Core.
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3. Results and Discussion
3.1. Production of Re-185 via the Transmutation of Natural Ta Compared to Natural W

Table 3 shows the results of Re production via the transmutation of natural Ta and
natural W after 1 year of irradiation without moderator and 30 days of cooling. The Re
produced from natural Ta has Re-185 with an isotopic purity of 99.9%. On the other hand,
the production of Re-185 from natural Ta is not large because it must pass through the
production of W. Furthermore, Re-186 and Re-187 were also produced by the (n, γ) reaction
of Re-185, albeit in very small amounts.

3.2. Improving the Production Rate of Re-185 from Natural Ta Using a Moderator
3.2.1. Comparison of Re-185 Production Using ZrH1.7 or ZrD1.7 as a Moderator

Table 4 shows the results of Re production from natural Ta when ZrH1.7 or ZrD1.7
is used as moderator, and Table 5 shows the energy-averaged one-group effective cross-
section σ of the (n, γ) reaction for the main nuclides, which is defined as

σ =

∫
σ(E)φ(E)dE

φ(E)dE
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where σ(E) is energy dependent microscopic cross section, and φ(E) is the energy-dependent
neutron flux [21]. The neutron energy spectrum in the irradiation target pin is shown in
Figure 5.

Table 3. Re production from natural Ta and natural W after 1 year of irradiation without a moderator
and 30 days of cooling.

Nuclide

Irradiation to Natural Ta Irradiation to Natural W

Initial
(g)

after 1 Year of Irradiation
and 30 Days of Cooling

(g)

Initial
(g)

after 1 Year of Irradiation
and 30 Days of Cooling

(g)

Ta-181 1571 1344 — —

W-182 — 221.3 476.4 452.6
W-183 — 6.2 258.7 252.1
W-184 — 0.32 556.9 561.6
W-186 — 2.1× 10−7 522.3 505.1

Re-185 — 4.9× 10−3

(99.96%)
— 22.0

(59.9%)

Re-186 — 8.3× 10−8

(0.00%)
— 3.7× 10−4

(0.00%)

Re-187 — 2.0× 10−6

(0.04%)
— 14.8

(40.1%)

Os (total) — 3.7× 10−4 6.6

Table 4. Re production when either ZrH1.7 or ZrD1.7 are used as a moderator after 1 year of irradiation
and 30 days of cooling.

Nuclide Initial (g)

After 1 Year of Irradiation and 30 Days of Cooling (g)

with ZrH1.7
Moderator

with ZrD1.7
Moderator

(without
Moderator) *

Ta-181 1571 715.1 1170 1344

W-182 — 552.2
(64.9%)

381.5
(94.6%)

221.3
(97.1%)

W-183 — 202.7
(23.5%)

18.5
(4.5%)

6.2
(2.7%)

W-184 — 101.8
(11.6%)

3.5
(0.8%)

0.32
(0.1%)

W-186 — 1.0× 10−3

(0.0%)
1.7× 10−5

(0.0%)
2.1× 10−7

(0.0%)

W (Total) — 856.7
(100.0%)

403.5
(100.0%)

227.9
(100.0%)

Re-185 — 1.2
(80.4%)

0.11
(99.6%)

4.9× 10−3

(99.96%)

Re-186 — 4.9× 10−4

(0.03%)
5.5× 10−6

(0.00%)
8.3× 10−8

(0.00%)

Re-187 — 0.29
(19.5%)

5.0× 10−4

(0.4%)
2.0× 10−6

(0.04%)

Os (Total) — 4.75 3.1× 10−2 3.7× 10−4

* From Table 3.

W (total) and Re-185 production increased with the use of the moderator. In particular,
Re-185 production, in the case where the ZrH1.7 moderator was used, increased by more
than 200 times compared to the case without the use of the moderator. This is because
the effective cross-sections of the major nuclides from Ta to Re tend to be larger in the
low-neutron energy [22], and the softening of neutron energy by the moderator increases
the (n, γ) reaction rate. On the other hand, in the case where the ZrH1.7 moderator was
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used, the production ratio of Re-185 was 80.4% of the total Re, which was smaller than
in the other cases. This is mainly due to the larger effective cross-sections of W-185 and
Re-185, which increased Re-187 production through the production paths shown below.

185W(n, γ)186W(n, γ) 187W(β−) 187Re
185Re(n, γ)186Re(n, γ) 187Re

Here, in addition to the above paths, there are also other paths in which Re-186 is produced
by its own β decay to Os-186.

The ZrD1.7 moderator case produced less Re-185 than the ZrH1.7 moderator case but
produced Re-185 with an isotopic purity of 99.6%. The effective cross-section of W-184,
which directly affects the production of Re-185, was slightly smaller than that of the ZrH1.7
moderator case, but there was no significant difference, while the effective cross-section of
Re-185 was about 1/10 smaller than that of the ZrH1.7 moderator case. This is advantageous
in preventing the produced Re-185 from being transmuted to another nuclide. These results
suggest that the ZrH1.7 moderator is more efficient for the production of W from natural Ta
and that the ZrD1.7 moderator is more efficient for the production of Re-185 from W.

Table 5. One-group effective cross-section of main nuclides from Ta to Re with either ZrH1.7, ZrD1.7,
or no moderator.

Nuclide

The One-Group Effective Cross-Section (Barn)

with ZrH1.7
Moderator

with ZrD1.7
Moderator

without
Moderator

Ta-181 3.09 0.99 4.79
Ta-182 1285.17 3.34 0.73
Ta-183 19.71 1.89 0.37

W-182 1.68 0.28 0.16
W-183 2.31 1.27 0.38
W-184 0.40 0.36 0.18
W-185 4.80 1.32 0.36
W-186 11.21 0.89 0.13
W-187 8.04 0.87 0.17
W-188 0.66 0.06 0.03

Re-185 32.89 3.37 0.92
Re-186 33.13 4.00 1.04
Re-187 10.16 2.48 0.82
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3.2.2. Improvement in the Re-185 Production Rate via Two-Step Irradiation with ZrH1.7
and ZrD1.7 Moderators

To further improve the production rate, a two-step production scheme is proposed, in
which W is efficiently produced from natural Ta with the ZrH1.7 moderator and Re-185 is
efficiently produced from tungsten with the ZrD1.7 moderator. The ratio of the irradiation
period with the ZrH1.7 moderator (first-step) and the subsequent irradiation period with
the ZrD1.7 moderator (second-step) up to 1 year was studied and the results are shown in
Figure 6. Each irradiation period was followed by 15 days of cooling. The best balance for
production of irradiation period between the first-step and the second-step was achieved
when (ZrH1.7 : ZrD1.7) = (8 : 4). The Re-185 produced at this ratio was 2.3 g (about
0.15%/year from natural Ta) and that with an isotopic purity of 95.4%. This is about twice
the production rate with the ZrH1.7 moderator, and about 470 times the production rate
without moderator over the entire irradiation period. In addition, this results also suggest
that the isotopic purity of Re-185 can be controlled by adjusting the balance of irradiation
period.
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Figure 6. Re-185 production and isotopic purity with the ratio of irradiation period with ZrH1.7 and
ZrD1.7 moderator up to 1 year irradiation.

3.3. Estimated Doses of Medical Re-186 Produced from Re185

The dose of Re-186 produced for medical use was estimated, assuming that the Re-185
produced in this study is irradiated in a thermal neutron reactor.

The High Flux Reactor in Petten, which is light-water-cooled and moderated (op-
erated at 45 MWt), was employed, as it is commonly used to produce medical isotopes.
The obtained specific radioactivity of Re-186 was 68 GBq/mg after 240 h of irradiation
(2.2–3 × 1014 n/cm2/s), with 97.4% Re-185 in that reactor [5]. Therefore, although the ratio
of Re-185 is slightly different, the 2.3 g of Re-185 obtained in this study corresponds to
more than 150,000 GBq of Re-186. In addition, the maximum tolerated dose of Re-186
HEDP (1-hydroxy-ethylidene-1,1 diphosphonic acid) complex, which is widely used for
the palliative treatment of bone metastases caused by breast cancer and prostate cancer, is
estimated to be 2.4 GBq [4,23]. Assuming that it takes approximately 1 week from the end
of irradiation to the final product and accounting for the decay of radioactivity, the results
of this study are equivalent to more than 17,000 doses.

3.4. Scheme for the Production of Medical Re-186 Starting from the Transmutation of Natural Ta

We propose a scheme of transmutation of natural Ta to Re-186 for medical use, as
shown in Figure 7. In this study, a 100 MWt fast reactor was used to verify that Re-185
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can be produced from natural Ta, but obviously the production Re-185 would be much
higher if a large fast reactor were used (as in previous studies). In the chemical separation
process, Re-185 could be separated from Ta, W, and Os; for example, Re, W, and Os
would be co-separated from Ta by a conventional extraction with Tri-butyl Phosphate in
low-concentration nitric acid media. Further, the mutual separation of Re and W would
be possible using the separation process of the W-188/Re-188 generator [24]. Further
investigations into Os behavior in this separation process are required. The purified Re-185
can be transmuted to Re-186 for medical use through using a nuclear reactor or accelerator-
driven neutron sources with (n, γ) reaction. The remaining Ta and W should be recycled for
the next irradiation, as it will increase the production rate of Re-185 due to its higher-order
W content already produced in the previous irradiation.
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Figure 7. Production scheme of medical Re-186 starting from the transmutation of natural Ta. Using
a fast reactor, irradiation is divided into two steps to improve the production rate of Re-185. After
chemical separation, the remaining Ta and W should be utilized again for the production of Re-185,
which will further improve the production rate.

4. Conclusions

The feasibility of producing rhenium-185 (Re-185) via nuclear transmutation was
evaluated using a continuous energy Monte Carlo code MVP version 3/MVP-BURN.
It was found that Re-185 with an isotopic purity of 99% can be produced through the
transmutation of natural tantalum (Ta) using a 100 MWt fast reactor. In addition, it was
found that the use of moderators is effective in improving the production rate of Re-
185. This can be achieved with a zirconium hydride (ZrH1.7) moderator in the main
transmutation process from natural Ta to tungsten (W) and with a zirconium deuteride
(ZrD1.7) moderator in the main transmutation process from W to Re-185. Through two-step
irradiation, first-step irradiation with a ZrH1.7 moderator, and second-step irradiation with
a ZrD1.7 moderator, the production rate of Re-185 from natural Ta can be increased by up
to 470 times compared with irradiation without a moderator, and 2.3 g of Re-185 can be
obtained from 1571 g of natural Ta in 1 year of irradiation. This can be estimated as the raw
material for more than 17,000 doses of Re-186 radiopharmaceutical treatment.

A cost evaluation for the practical application of Re-185 production was not performed
in this study. We plan to investigate this in a commercial fast reactor and compare it to the
conventional isotope production process.
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