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Abstract: Artificial Intelligence (AI) can be a useful tool in the management of disease processes such
as hepatocellular carcinoma (HCC) as treatment decisions are often complex and multifaceted. AI
applications in medicine are expanding with the ongoing advances in AI including more sophisti-
cated machine learning and deep learning processes. In preliminary studies, AI algorithms have
demonstrated superiority in predicting the development of HCC compared with standard models.
Radiomics, a quantitative method used to extract features from medical imaging, has been applied
to numerous liver imaging modalities to aid in the diagnosis and prognostication of HCC. Deep
learning methodologies can help us to identify patients at higher likelihood of disease progression
and improve risk stratification. AI applications have expanded into the field of surgery as models
not only help us to predict surgical outcomes but AI methodologies are also used intra-operatively,
in real time, to help us to define anatomic structures and aid in the resection of complex lesions.
In this review, we discuss promising applications of AI in the management of HCC. While further
clinical validation is warranted to improve generalizability through the inclusion of larger and more
diverse populations, AI is expected to play a central role in assisting clinicians with the management
of complex disease processes such as HCC.
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1. Introduction

Primary liver cancer is the sixth most commonly diagnosed cancer worldwide and
hepatocellular carcinoma (HCC) accounts for over 80% of newly diagnosed cases [1]. Due
to the lack of early diagnostic markers, absence of specific symptoms in early disease,
and inadequate screening programs in most countries, nearly two out of every three
patients diagnosed with HCC have intermediate or advanced disease upon diagnosis [2,3].
Unfortunately, these patients often have a poor prognosis as their disease may not be
amenable to curative interventions, such as surgical resection, liver transplantation, or
ablation, and, until recently, effective systemic options were limited. As a result, HCC
is the fourth most common cause of cancer-related death worldwide with a relative five-
year survival rate of 18% [4,5]. However, the recent inclusion of immunotherapy into
the HCC treatment paradigm and the expansion of downstaging/bridging protocols to
liver transplantation have improved overall survival and established a new standard
of care for patients with HCC [6,7]. In addition to surgical and systemic therapeutic
options, a number of liver-directed therapies (e.g., bland transarterial embolization (TAE),
transarterial chemoembolization (TACE), radioembolization (RE)) are available depending
on the extent of cirrhosis and the stage of the disease [5]. With the expanding therapeutic
armamentarium for patients with HCC, novel tools are needed to effectively stratify patients
to maximize therapeutic benefit.

Artificial intelligence (AI) has recently emerged as a viable clinical tool with growing
utility in the management of HCC. Broadly, AI is a subdivision of data science which
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describes the theory and development of computer systems that perform tasks requiring
human-level intelligence such as visual perception or decision making. AI was originally
conceptualized in the 1950s by the mathematician Alan Turing and the field has greatly ex-
panded since its original conception. As technology continues to evolve, new AI techniques
have been developed to address more complex and sophisticated problems. Machine
learning and deep learning are two such subfields of AI (Figure 1).
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In machine learning, computer systems learn and adapt by using algorithms and
statistical models to draw inferences from patterns present in data [8]. Unlike traditional
statistical programming where the data and algorithms are provided and the output
is produced, machine learning systems are provided the data and then independently
“develop” an algorithm to process the data. Algorithm accuracy improves overtime as
the system “learns” from additional data/output cycles. Two common learning methods
are supervised and unsupervised learning. In supervised learning, the computer system
is provided human-labeled datasets including desired inputs and outputs. The operator
knows the desired output; the algorithm “learns” from the observations to identify patterns
in the data and make predictions. Examples of supervised learning include classification,
regression, and forecasting. In contrast, unsupervised machine learning systems do not
receive output information. The system identifies associations and relationships to group
the data in a more organized way without an “answer key”. Clustering and dimension
reduction are two examples of unsupervised learning [9].

The datasets used to develop machine learning models are typically divided into
training, validation, and testing datasets. Once an algorithm has been developed from a
training dataset, it is further optimized and tuned with a validation set. Upon completion
of the training phase, its performance will be evaluated with a test dataset comprising new
data which the system has not yet encountered. Ideally, the algorithm will have a similar
predictive power with the test dataset as with the one it was trained through, implying
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generalizability of the model. It is important to note the generalizability of an algorithm
is largely based upon the characteristics of its training and the validation dataset. Any
biases present within the dataset, such as homogeneity due to sampling error, will become
inherent to the model. This will ultimately lead to decreased generalizability and a poorer
predictive performance of the model [9].

Deep learning is a subset of machine learning and more closely mimics human in-
telligence. The system is built upon artificial neural networks that are modeled on the
biologic neural networks of the brain [10]. Deep learning models have the ability to process
more complex data, such as images, text or sounds, and are the basis of complex models
such as speech recognition or large-scale image analysis. This method of AI processes data
through multiple neural layers, progressively extracting higher-level features to produce
a complete learned result. These networks can comprise millions of neural layers each
of which receives data from the previous layer, transforms the data, and sends them to
connected neurons in succeeding layers (Figure 2). Each of these connections has a different
weighted value based upon which characteristics are most important and predictive in
achieving an accurate output. These networks of neurons—in addition to the initial input
and final output layers—are known as hidden layers. One major limitation of deep learning
methods is that it is not always understood how the model has reached the final output,
a phenomenon known as the “black box” of deep learning. It is often unclear how the
model has transformed the data to reach the output. Furthermore, data are processed in
such a granular fashion and through countless amounts of hidden neural layers that these
connections are often not comprehensible or meaningful to the human brain [11]. Another
major limitation of deep learning is that these models require sizable training datasets in
order to extrapolate meaningful relationships within the data. This can be a deterrent to
developing functional models for entities with few observations as is frequently the case
when evaluating rare diseases [12].
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ical field. While many ethical considerations remain, recent advances in AI methodologies
have overcome some of the technical constraints. For example, Jiang et al. reported on the
superiority of a self-supervised large language model that was trained on unstructured
clinical notes from an electronic health record to predict 30-day all-cause readmission,
in-hospital mortality, comorbidity indices, lengths of stay, and insurance denial when
compared with traditional models [13]. Furthermore, an AI model using deep network
automatic segmentation outperformed a clinical model and a radiomic model in discriminat-
ing between patients with pancreatic cancer with and without lymph node metastasis [14].
These advances have improved the accuracy and expanded the clinical utility of AI systems
in the field of medicine.

This review explores the utility of AI techniques for the management of HCC. We
will review available AI models that aid in the detection and diagnosis of HCC as well as
AI-based tools that can be used as adjuncts when deciding a treatment course. This review
will also focus on the development of imaging and intra-operative AI tools that can aid
in pre-operative planning and surgical resection. We will address current limitations with
the use of AI in medicine and propose changes that may allow for the more widespread
implementation of AI in the clinical realm in the future.

2. Screening and Detection

Since many patients diagnosed with HCC have advanced disease and limited thera-
peutic options, improvements in screening and early detection are necessary to improve
outcomes. For example, a review of country-level HCC surveillance programs demon-
strated that countries with established and effective HCC surveillance programs detected
HCC at significantly earlier stages and had lower overall mortality [15]. Effective programs
identify and stratify patients at high-risk of developing HCC and enroll them into regu-
lar surveillance protocols such as biannual evaluation with liver ultrasound and liquid
tumor markers. Ideally, healthcare professionals intervene prior to the development of
irreversible HCC risk factors (i.e., cirrhosis). However, cost/benefit restraints and high
false-positive rates limit the utility of screening low-prevalence populations. AI techniques
may help us to overcome these limitations (Table 1). In a 2022 study, Blanes-Vidal et al.
evaluated asymptomatic patients from a primary care population without a prior diagnosis
of liver disease [16]. The authors tested the diagnostic performance of ensemble models, a
machine learning approach, to detect liver fibrosis and then compared the performance
with standard blood-based scoring systems. The ensemble models included data readily
available during a primary care visit. In a subset of 463 patients that received a liver biopsy,
the ensemble learning models significantly outperformed standard blood-based indices
to detect liver stiffness (>8 kPa) and fibrosis (Kleiner biopsy stage F2 to F4) with AUCs
of 0.86–0.94 vs. 0.60–0.76. Furthermore, all the ensemble models had a ≥98% negative
predictive value. Similarly, other AI models have demonstrated superiority to standard
models in predicting the development of HCC [17,18].

Radiomics, a quantitative method to extract features (e.g., shape, intensity, texture)
from medical imaging, can significantly improve the diagnostic yield of imaging modal-
ities, especially when combined with other AI techniques such as deep learning. While
established criteria exist for the radiologic diagnosis of HCC in high-risk patients (i.e.,
LI-RADS), the true proportion of patients with LI-RADS 5 lesions (diagnostic of HCC) is
unclear. Additionally, this classification system only applies to patients at high risk of HCC
(e.g., cirrhosis, HBV infection) [19]. The diagnostic uncertainty of many newly identified
liver lesions may lead to unnecessary serial imaging, invasive procedures (e.g., biopsy),
and undue psychological stress on the patient. For these reasons, much energy has been
devoted to building radiomic-based models that can accurately detect and diagnose HCC
(Table 1). Yasaka et al. developed a deep learning model using a convolutional neural
network (CNN) to differentiate malignant liver lesions from non-malignant lesions [20].
In this retrospective study, the authors built a CNN using imaging sets from 460 patients
who were found to have liver lesions on triple-phase CT. The lesions were classified into
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five categories as follows: classic HCC (A), malignant tumors other than HCC (B), inde-
terminate masses and rare benign liver masses (C), hemangiomas (D), or cysts €. The
CNN accurately identified malignant lesions with the median AUC of 0.92 for differenti-
ating categories A–B from categories C–E. Furthermore, Mokrane et al. used a radiomic
model to improve the diagnostic accuracy of HCC in cirrhotic patients with indeterminate
liver nodules [21]. In this multicenter retrospective study, multiphasic CT scans of 178
cirrhotic patients who had undergone the biopsy of indeterminate liver nodules were
included. Nearly 14,000 quantitative features were extracted from imaging sets. With
machine learning algorithms, a radiomic signature was created and validated to classify
these indeterminate liver nodules as HCC or non-HCC. While the LI-RADS scores were
similar between the HCC and non-HCC groups, the radiomic signature reached an AUC
of 0.70 in the discovery cohort and 0.66 in the validation cohort. AI has also been used to
augment the diagnostic capabilities of other imaging modalities including ultrasound and
magnetic resonance imaging (MRI) [22–24].

While the generalizability of screening and diagnostic models derived from AI tech-
niques requires further evaluation, these models offer non-invasive and resource-efficient
means to reliably screen and detect HCC in select populations. This technology can be
especially useful in low resource centers where specialized liver radiologists may not be
readily available to aid in the diagnosis of complex liver lesions. Furthermore, these models
may help institutions and governments to more efficiently allocate scarce resources to HCC
screening and intervention due to improved risk stratification. For example, using a deep
learning recurrent neural network model to generate HCC risk scores, Ioannou et al. found
that 80% of HCC cases diagnosed in the subsequent three years occurred in the highest
51% of risk scores [18]. Risk-based screening supported by AI algorithms may increase
diagnostic yield, optimize resource utilization, and help us to overcome the suboptimal
performance of existing tools [25].

Table 1. Select studies utilizing AI in screening and diagnosis of HCC.

Author, Year Model Design Population AI Methodology Accuracy

Blanes-Vidal et al. (2022) [16]
Prediction of liver fibrosis using
clinical data readily available to

primary care physicians

Low-prevalence primary
care population

Ensemble
learning model

AUC:
0.86–0.94

Ioannou et al. (2020) [18]
Identification of patients at high risk

of developing HCC by extracting
data from electronic medical records

Patients with known
Hepatitis C Virus and

cirrhosis

Recurrent neural
network AUROC: 0.759

Yasaka et al. (2018) [20]
Differentiation of liver masses on CT,
with categorization into HCC, other
liver tumors, hemangiomas, or cysts

Patients who had
undergone dynamic

contrast-enhanced CT for
evaluation of liver lesions

Convolutional
neural network AUROC: 0.92

Mokrane et al. (2020) [21]
Diagnosis of liver nodules as HCC
vs. non-HCC based on quantitative
features extracted from triphasic CT

Patients with cirrhosis and
biopsy-proven

indeterminate liver
nodules

Machine
learning-based

radiomic
signature

AUROC: 0.66

Schmauch et al. (2019) [22]

Detection and characterization of
focal liver lesions as benign- vs.
malignant-based on ultrasound

characteristics

Patients with known liver
nodules

Residual neural
network AUROC: 0.935

3. Prognosis and Treatment
3.1. HCC Prognosis and Risk of Recurrence

Recent multi-omic investigations have advanced our understanding of the carcino-
genic mechanisms responsible for HCC, revealing many potential biomarkers [26]. Eval-
uating these large data sets with AI methods may improve current prognostic ability by
identifying more aggressive subtypes and patients at high risk of recurrence (Table 2). In an
early study using a deep learning framework to integrate multi-omic data in patients with
HCC, Chaudhary et al. developed a deep learning model from 360 patients with HCC using
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RNA sequencing, miRNA sequencing, and methylation data from The Cancer Genome At-
las [27]. The model identified a more aggressive subtype with worse survival characterized
through frequent TP53 mutations; a higher expression of KRT19, EPCAM, and BIRC5; and
activated Wnt and Akt signaling pathways. The investigators then validated the model on
five external data sets with acceptable results.

In addition to detecting relationships within large multi-omic data sets to improve
prognostication, AI techniques can help us identify biomarkers in the preoperative setting
typically only identified through pathologic evaluation such as microvascular invasion
(MVI) [28]. For example, multiple studies have shown the feasibility of using machine
learning algorithms to accurately predict the presence of MVI based on preoperative axial
imaging characteristics [29–31]. Chong et al. built a radiomic-based nomogram to assess the
risk of MVI [32]. This retrospective study analyzed preoperative MRIs from 356 patients
with pathologically confirmed solitary HCC less than 5 cm. The nomogram, built by
extracting radiomic features from images containing tumors, peritumoral tissue, and
non-tumoral liver parenchyma, accurately predicted the risk of MVI as well as recurrence-
free survival.

Similarly, other groups have identified biomarkers of HCC recurrence using machine
learning methods (Table 2) [33]. Yan et al. created a deep learning MR signature derived
from imaging characteristics including tumor size, arterial phase enhancement type, cap-
sular appearance, presence of a hypointense halo, intratumoral necrosis, satellite nodules,
and peritumoral hypointensity [34]. When combined with clinical factors such as MVI and
tumor number, the MR signature predicted early recurrence better than clinical data alone.
Another model created by Ji et al. extracted radiomic features from preoperative CT scans
to build a radiomic signature that, when integrating clinical data such as MVI, AFP level,
and tumor number, accurately predicted the risk of recurrence in patients after resection of
early-stage HCC [35]. Improved prognostication and risk stratification with AI techniques
may better inform management decisions for patients with HCC.

Table 2. Key studies utilizing AI to predict prognosis and risk of recurrence of HCC.

Author, Year Model Design Pertinent Risk Factors Population AI Methodology Accuracy

Chaudhary et al.
(2018) [27]

Predictive model for HCC
prognosis based on molecular

signature and
multi-omic data

- TP53 inactivation
mutation

- EPCAM, KRT1, BIRC5
upregulation

HCC patients
within the Genome

Cancer Atlas
(TCGA)

Deep learning C-index:
0.68

Liu et al.
(2021) [30]

Prediction of MVI
preoperatively based on CT
imaging characteristics and

patient clinical factors

- Radiomic features
identified from CT images

Patients with HCC Residual Neural
Network

AUC:
0.845

Chong et al.
(2021) [32]

Creation of radiomic-based
nomogram to preoperatively

predict risk of MVI and
recurrence-free survival,

based. on MRI characteristics
and clinical data

- Elevated AFP, total
bilirubin

- Radiomic values
- Peritumoral enhancement
- Incomplete or absent

capsule enhancement

Patients with
solitary HCC

smaller than 5cm
Random Forrest AUC:

0.92

Ji et al.
(2020) [35]

Creation of radiomic
signature with pre- and

post-resection features to
predict recurrence for

early-stage HCC

- Tumor number
- Cirrhosis
- Arterial peritumoral

enhancement
- Tumor necrosis
- Satellite lesion
- MVI

Patients with HCC
that met the Milan

Criteria and
underwent

curative intent
resection

Machine
learning-based

radiomic
signature

C-index:
0.77

3.2. Pathologic Assessment

AI techniques have also been applied to evaluate associations between histologic
features and outcomes in numerous disease processes, including HCC (Table 3) [36–39].
Using whole-slide imaging, Yamashita et al. developed a deep learning-based system
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to predict a recurrence-free disease interval after curative-intent hepatectomy in patients
with HCC. Their model stratified patients into low-risk and high-risk subgroups and
outperformed the standard tumor–node–metastasis (TNM) staging system [40].

Chen et al. built a neural network that was able to assist in the prognostication
of HCC based on histologic whole-slide imaging. The model used hematoxylin and
eosin slides from a genomic database to train a neural network to classify liver lesions
as malignant with 96.0% accuracy and predict lesion histopathological grade with 89.6%
accuracy. Furthermore, the model also predicted select gene mutations including CTNNB1,
FMN2, TP53, and XFZ4 [41]. AI-based pathology models can also predict the activation
of immune signatures in HCC. Zeng et al. used deep learning approaches on whole-slide
histologic images and gene expression profiling, derived from the Cancer Genome Atlas
Liver Hepatocellular Carcinoma (TCGA-LIHC) public dataset, to develop models that
predicted the activation of six key immune signatures that, when overexpressed, correlated
with the response to immunotherapy [42]. While prospective validation studies are needed,
these data demonstrate the potential utility of AI to select patients who will have a greater
response to immunotherapy and may inform adjuvant therapy decisions.

Table 3. Key studies demonstrating the use of AI on whole-slide imaging.

Author, Year Model Design Population AI Methodology Accuracy

Qu et al. (2022) [36]
Creation of histological score using

whole-slide imaging to predict
HCC recurrence

Patients with early-stage HCC
who had undergone surgical

resection in a single institutional
dataset and the TCGA dataset

Convolutional neural
network

C-index:
0.804

Saillard et al. (2020) [37]

Use of whole-slide imaging to
predict risk of HCC recurrence and

stratifying it into low- and
high-risk subgroups

Patients with HCC who had
undergone surgical resection in a
single institutional dataset and

the TCGA dataset

Convolutional neural
network C-index: 0.72

Yamashita et al.
(2021) [40]

Use of whole-slide imaging to
formulate a risk score predictive of

HCC recurrence

Patients with HCC in the TCGA
and Stanford-HCC dataset

Convolutional neural
network C-index: 0.724

Zeng et al. (2022) [42]
Prediction of activation of immune

gene signatures based on
whole-slide imaging

Patients with HCC who had
undergone surgical resection in

the TCGA dataset

Clustering-constrained
attention multiple
instance learning

AUROC:
0.78–0.91

3.3. Locoregional Therapies

AI-based models may help to select patients who are good candidates for locoregional
therapies such as radiofrequency ablation (RFA) (Table 4). Wu et al. built an artificial
neural network based on fifteen clinical variables from HCC patients who had undergone
CT-guided RFA [43]. Variables included patient characteristics, tumor size, tumor number,
and laboratory values (e.g., AFP). Ultimately, the artificial neural network model predicted
one-year disease-free survival with an AUC of 0.84 and one-year disease-free survival with
an AUC of 0.75. Lui et al. created a deep learning radiomic-based model of preoperative
contrast-enhanced liver ultrasound images and predicted the response to the first TACE
session in patients with HCC [44]. In another study, investigators trained and validated
a CNN to automatically assess splenic volume. Patients with higher splenic volumes, as
automatically determined by the CNN, had significantly higher risk of hepatic decompen-
sation and lower overall survival after TACE. Conversely, axial and craniocaudal splenic
diameter did not correlate with outcomes [45].

3.4. Automatic Methods for Liver and Tumor Segmentation

Automatic liver and tumor segmentation has numerous clinical applications which
may aid in the management of HCC such as the preoperative volumetric quantification
and assessment of treatment responses to locoregional therapies (Table 4). The use of
manual and semi-automatic liver segmentation methods can lead to inconsistencies due
to user variability. Furthermore, segmentation is often a slow, labor-intensive process.
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With advancements in deep learning techniques and CNNs, completely automatic liver
segmentation is now feasible [46–48]. However, automatic algorithms do have their own
limitations including the need for large training datasets to develop accurate algorithms.
Automatic tumor segmentation can be even more challenging as tumor characteristics,
such as variability in size, variability in location, and indiscrete borders between healthy
liver parenchyma and tumors, can decrease the accuracy of models. Regardless, early
studies demonstrate that automatic segmentations outperform semi-automatic methods
with regard to the accuracy and repeatability of segmentation [49]. Meng et al. used a
three-dimensional (3D) dual-path multiscale CNN to build a liver and liver tumor segmen-
tation algorithm based on abdominal CT images. The dual path multiscale 3D network
architecture allowed the model to capture large scale global features through one path while
capturing more granular local features through the second path. Notably, their algorithm
performed best on large tumors [50]. Zheng et al. built a four-dimensional (4D) deep
learning model to segment HCC lesions based on dynamic contrast-enhanced MRIs. In an
attempt to avoid the “black box” learning that occurs with many automatic segmentation
models, the investigators first build a 3D CNN to separately extract imaging features from
each individual phase of imaging. From there, these data were fed into a convolutional long
short-term memory (C-LSTM) network module in order to extract higher-level features,
including temporal information and dynamic features, that varied through the multi-phase
imaging. This allows us to use dynamic features that are not only characteristic of HCC
but critical to diagnosis, such as arterial phase hyperenhancement and portal venous or
delayed-phase washout. Their model achieved a Dice score of 0.825 ± 0.077 for HCC tumor
segmentation in an internal test set and 0.786 ± 0.073 in an external set, implying good
generalizability of this model [51].

3.5. Surgical Complications

Many HCC patients have some level of hepatic dysfunction upon presentation, in-
creasing the risk of post-hepatectomy liver failure (PHLF). PHLF remains the most frequent
cause of postoperative mortality in patients following hepatectomy, highlighting the impor-
tance of identifying patients at high risk of PHLF prior to resection to more effectively select
patients for adjuncts such as portal vein embolization. Wang et al. constructed a machine
learning clinical model using laboratory values, tumor characteristics, and surgical vari-
ables (e.g., surgical approach, extent of resection, intraoperative blood loss) to predict the
risk of PHLF. The model outperformed traditional models such as MELD, Child-Turcotte-
Pugh, or albumin-bilirubin grade when predicting PHLF [52]. AI-derived algorithms have
successfully predicted other surgical complications. Laino et al. predicted the risk of a
postoperative bile leak following hepatectomy using a combined clinical–radiomic model
in 378 patients with a preoperative CT. Radiomic data was extracted from a virtual liver
biopsy obtained from a 2 cm cylinder of non-tumoral liver parenchyma on the portal phase
of preoperative CT. Their combined model (AUC 0.74) outperformed a model using clinical
data alone (AUC 0.61) to predict the risk of a bile leak [53].

Table 4. Key studies demonstrating the use of AI in management of HCC.

Author, Year Model Design Population AI Methodology Accuracy

Wu et al.
(2017) [42]

Prediction of disease-free survival after
radiofrequency ablation based on clinical

variables

Patients who underwent
CT-guided radiofrequency

ablation
Artificial neural network AUC:

0.75–0.84

Liu et al.
(2020) [44]

Prediction of response to first TACE
session using contrast- enhanced liver

ultrasound

Patients who underwent
ultrasound within one week of

TACE for HCC

Radiomic-based deep
learning

AUC:
0.81–0.93

Meng et al.
(2020) [50]

Automatic liver parenchyma and liver
tumor segmentation from CT images

Multi-institutional liver tumor
segmentation (LiTS) dataset

Dual path multiscale
convolutional neural

network

Dice:
0.689–0.965
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Table 4. Cont.

Author, Year Model Design Population AI Methodology Accuracy

Zheng et al.
(2022) [51]

Automatic segmentation of HCC lesions
based on dynamic MRI

Patients with HCC who
underwent dynamic

contrast-enhanced MRI

Convolutional neural
network and recurrence

neural network

Dice:
0.825

Wang et al.
(2022) [52]

Prediction of post-hepatectomy liver
failure based on clinical characteristics

and surgical variables

Patients with HCC who
underwent hepatectomy

Light gradient boosting
machine learning

AUC:
0.822–0.944

4. Intraoperative Use of Artificial Intelligence

A thorough understanding of the vascular and biliary anatomy from adequate mul-
tiphasic abdominal imaging is necessary to perform a safe hepatectomy and minimize
complications. Three-dimensional liver reconstruction technology may improve periopera-
tive outcomes in patients undergoing a major hepatectomy by further elucidating spatial
relationships between the tumor and critical vascular and biliary structures. A meta-
analysis evaluating the efficacy and safety of 3D-reconstruction liver models in patients
undergoing a major hepatectomy showed shorter operative times, less intraoperative blood
loss, fewer hepatic inflow occlusion events, shorter hospital stays, and fewer postoperative
complications when using such technology [54]. Deep learning algorithms can help us to
automate the reconstruction of 3D liver models with reliable accuracy and detail [55].

As an adjunct to intraoperative liver ultrasound (IOUS), machine learning algorithms
may help us to overcome some limitations of traditional ultrasounds and improve the
accuracy of identifying liver lesions intraoperatively. Barash et al. trained a CNN on
intraoperative ultrasound imaging to detect liver lesions. The algorithm achieved an AUC
of 80.2% and an overall classification accuracy of 74.6% [56]. Furthermore, Takamoto et al.
used real-time virtual sonography (RVS), an AI-assisted platform that merges preoperative
CT images with real-time IOUS, to enhance IOUS with the identification of small intrahep-
atic lesions [57]. The median liver lesion size was 6.0 mm and RVS significantly improved
surgeon confidence in lesion identification. Importantly, of the 17 lesions undetectable
using fundamental IOUS, 14 were identified through RVS and ultimately treated.

However, despite the successful applications of AI technology during liver surgery,
several challenges remain. This is especially true of 3D overlays, which are difficult to use
during hepatectomy. The mobilization of the liver and the deformation of the parenchyma
during hepatectomy make real-time overlays onto tissues more challenging and less ac-
curate. This is in comparison with other surgical disciplines such as neurosurgery, where
the target—in this case the brain—is rigid and fixed, allowing for an easy overlay of 3D
reconstructions. Preliminary studies demonstrate the feasibility of a physics-based elastic
augmented reality model that can provide a real-time 3D overlay during hepatectomy,
allowing for the deformation and mobilization of the tissue; however, further quality
improvement needs to occur prior to meaningful use during hepatectomy [58].

5. Challenges and Future Directions
5.1. Barriers to Clinical Implementation

While many studies have shown that AI can be a useful tool to supplement clinical
decision making, few of these AI-based models have been adopted into clinical practice
or recommended in national or institutional treatment guidelines. Many of these studies
that illustrate the advantageous qualities of AI are preliminary or demonstrate proof of
the concept. Few AI-based models have been validated in clinical practice or shown to
improve patient outcomes.

The lack of clinical implementation can be, in part, attributed to the lack of prospective
trials. The vast majority of AI studies are retrospective, using historically labeled datasets to
develop algorithms. Notably, only a handful of randomized control trials on AI have been
performed across all medical specialties [59–61]. For example, one randomized control
trial by the INFANT collaborative group studied the use of decision-support software that
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assists clinicians in the interpretation of cardiotocographs during labor. The investigators
found no improvement in maternal or infant clinical outcomes [62]. Further prospective
studies demonstrating how AI will either positively or negatively affect patient outcomes
are necessary prior to the widespread adoption of AI-based models.

Furthermore, many models were developed using single-center institutional datasets,
putting algorithms at risk of overfitting and limiting generalizability. As the predictive
power of models is highest using the datasets from which they are developed, it is unclear
how these models will perform when using real-world data. For these reasons, multi-
institutional collaboration between high-volume centers should be considered to create
and maintain shared datasets from which investigators can develop more accurate and
generalizable AI models. However, patient privacy is one major consideration when
building these large datasets. While datasets are de-identified, there remains a significant
risk of re-identification [63]. Opponents of large datasets have suggested the use of other
techniques, such as federated learning or distributed models, that would train across
multiple servers while the data remains in situ [64]. While access to large amounts of data
are essential for the development of AI algorithms and the establishment of large datasets
should continue to be explored, more rigorous practices to prevent breaches in patient
privacy are essential.

Another barrier to clinical application is the lack of a framework for insurance reim-
bursement. Direct reimbursement of AI models remains very limited; however, the use
of certain models is now reimbursable. For example, the first radiology AI algorithm to
receive Centers for Medicare & Medicaid Services (CMS) reimbursement, which measures
coronary fractional flow reserve, will receive its own category I CPT code in 2024 [65].
Further frameworks need to be established as a lack of reimbursement may be a deterrent
in creating and utilizing algorithms in the future.

The “black box” of deep learning has likewise been a deterrent for the wider adaptation
of AI in clinical medicine. High-functioning deep learning models often have thousands of
parameters and, in turn, countless hidden layers. While models will give a clear output, it
is often not feasible to understand how the algorithm reached this output. Some physicians
argue that high-risk medical decisions should not be based on AI algorithms as we cannot
understand how the model’s conclusions were reached. This can also lead to worse patient
outcomes if a physician fails to recognize when a model has output inaccuracies.

5.2. The Role of AI in Healthcare Disparities

One major concern that has been raised as AI is implemented in medicine is the
propagation of healthcare disparities. Small datasets, which are often used to develop
algorithms, may easily exclude historically underserved populations, including racial
minorities or patients of lower socioeconomic status. Furthermore, depending on which
data are used for the input layer, algorithms may be inherently biased despite diverse
populations being included in the dataset. For example, Obermeyer et al. found that
an algorithm used to predict which patients would benefit from enrollment into a care
management program had a significant racial bias against black patients. This algorithm
used medical expenditure to identify high-risk patients and black patients were less likely
to be flagged as benefitting from enrollment into the program as they had lower healthcare
expenditure despite having a higher rate of comorbidities [66]. As minority groups often
have decreased access to care and decreased medical expenses, algorithms based upon
metrics such as this can misrepresent and disadvantage these groups.

Conversely, AI can be a useful tool for identifying and mitigating healthcare dis-
parities. Models aimed at studying under-represented populations can help to identify
barriers to care or factors contributing to disparities [67–69]. Likewise, AI can increase
the accessibility of healthcare such as through models that facilitate cancer screening in
low-income or resource-constrained settings [70,71]. Models can also help to predict which
treatment strategies will be an increased financial burden for at-risk patients in an attempt
to ameliorate healthcare associated costs [72].
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5.3. Potential Applications

A potential application of artificial intelligence is through the use of neural networks
in multidisciplinary tumor boards (MTB). With the release of publicly accessible large lan-
guage models, such as chatGPT™ (OpenAI, San Francisco), many groups have investigated
how these models fair in comparison with a traditional MTB in making management deci-
sions. While certain studies have demonstrated concordance rates of up to 86%, others have
shown much lower rates and significant management errors [73,74]. These models seem
to be especially limited in stage IV disease as the treatment of metastatic disease is often
highly individualized and dependent on numerous patient factors [75,76]. While the use of
AI has yet to be explored in liver tumor boards, this is currently under investigation [77].

Another facet of AI currently under investigation is the economic impact of AI on
healthcare. Overall, many believe AI may help us to optimize clinical operations, decrease
physician workload, and facilitate resource allocations, with the ultimate outcome of a
reduction in healthcare spending. Many models have been developed to increase cost-
effectiveness, especially in low-income settings. Cost-effective cancer screening models
have been developed for numerous disease processes, such as for breast, cervical, and
lung cancer [78–80]. Other models have focused on improving the cost-effectiveness of
diagnostics, such as that of distinguishing subtypes of lymphoma [81]. However, further
research is needed in this area as very few studies have rigorously assessed the true
economic impact that AI will have on healthcare [82].

In conclusion, while still in the early stage of development, AI tools have demon-
strated immense potential to improve the management of patients with complex medical
conditions. With specific regard to liver disease, AI techniques can help us to identify
high-risk patients, improve diagnostic yield, risk-stratify surgical patients, enhance opera-
tive outcomes, and optimize surveillance programs. However, as AI-based technologies
are developed and new discoveries are made using machine learning and deep learning
methodologies, more robust clinical validation and prospective studies are warranted prior
to their incorporation into societal and institutional management guidelines.
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