
Citation: Estévez, R.J.; Balo, R.;

Fernández, A.; Estévez, J.C.

Organocatalytic Properties of

3,4-Dihydroxyprolines. Chem. Proc.

2023, 14, 107. https://doi.org/

10.3390/ecsoc-27-16117

Academic Editor: Julio A. Seijas

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Organocatalytic Properties of 3,4-Dihydroxyprolines †

Ramón J. Estévez , Rosalino Balo, Andrés Fernández and Juan C. Estévez *

Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares, Departamento de Química
Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
ramon.estevez@usc.es (R.J.E.); rosalino.balo@gmail.com (R.B.); andres_gd93@hotmail.com (A.F.)
* Correspondence: juancarlos.estevez@usc.es
† Presented at the 27th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-27), 15–30

November 2023; Available online: https://ecsoc-27.sciforum.net/.

Abstract: The synthesis and organocatalytic properties of (2S,3R,4R)-3,4-bis((tert-butyldimethylsilyl)
oxy)pyrrolidine-2-carboxylic acid are reported. Using the aldol condensation of cyclohexanone with
p-nitrobenzaldehyde as a model, a yield of 86%, an enantiomeric excess of 99% and a diastereomeric
excess of 25:1 were achieved.
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1. Introduction

Asymmetric synthesis is the most powerful tool available to organic chemists for
synthesizing molecules of high functional and stereochemical complexity as it allows
stereoselective introduction of stereogenic centers.

Among the available strategies, catalytic methods are particularly attractive as they
avoid having to use stoichiometric amounts of expensive chiral reagents. In addition to
enzymes and transition metals, the use of organocatalysts has shown enormous potential,
having allowed access to natural products by efficient, economical and environmentally
benign procedures. Their tolerance to moisture and oxygen, as well as their compatibility
with mild reaction conditions and low toxicity, is particularly attractive.

The use of small organic molecules as organocatalysts was first described indepen-
dently by Eder [1] and by Hajos [2]. However, it was only recently, following the con-
tributions of List and Barbas III [3] and the seminal work of McMillan [4], that the high
potential of organocatalysis was rediscovered, leading to an intensive study of its synthetic
possibilities which continues today.

The asymmetric aldol condensation reaction is an attractive method of forming carbon–
carbon bonds by the enantioselective production of aldols. A wide range of organocatalysts
have been developed that have allowed excellent results to be achieved in the asymmetric
version of this and other organic reactions [5], and two main mechanisms of organocatalytic
processes have been proposed: enamine catalysis [4] and iminium catalysis [5]. While
iminium catalysis makes use of chiral imidazolium salts to activate aldehydes by reversible
formation of an iminium ion, enamine catalysis uses amino acids (or derivatives), of
particular interest being L-proline, whose conformational rigidity favors selectivity. L-
proline and similar catalysts act via an enamine intermediate, with the catalyst performing
two specific functions: it first activates the nucleophile through the formation of an enamine,
and then activates the electrophile to which it coordinates via its carboxyl group. All this
leads to a transition state that explains the high selectivity of the reaction [6].

Although the existing organocatalysts have achieved excellent results, there are prob-
lems that have not yet been satisfactorily solved: the use of organic solvents is required
and, in addition, a fairly high catalyst load is usually necessary.

Chem. Proc. 2023, 14, 107. https://doi.org/10.3390/ecsoc-27-16117 https://www.mdpi.com/journal/chemproc

https://doi.org/10.3390/ecsoc-27-16117
https://doi.org/10.3390/ecsoc-27-16117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/chemproc
https://www.mdpi.com
https://orcid.org/0000-0002-3764-0832
https://ecsoc-27.sciforum.net/
https://doi.org/10.3390/ecsoc-27-16117
https://www.mdpi.com/journal/chemproc
https://www.mdpi.com/article/10.3390/ecsoc-27-16117?type=check_update&version=1


Chem. Proc. 2023, 14, 107 2 of 5

The most recent efforts in this field are directed towards the use of water as a solvent
as it is a safe and environmentally friendly medium, avoiding the contamination problems
inherent to organic solvents.

The first case of the use of proline as organocatalysts in an aqueous medium for the
aldol reaction is shown in Scheme 1, corresponding to the reaction of benzaldehyde with
cyclohexanone, catalyzed by (4R)-4-((tert-butyldiphenylsilyl)oxy)-L-proline (3), which gave
the adduct 4 with a diastereoisomeric ratio of 13:1 and an enantiomeric excess of 99% [7].
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Scheme 1. Aldol reaction catalyzed by proline 3, in an aqueous medium.

An ulterior similar contribution involved the aldol condensation of p-nitrobenzaldehyde
with cyclohexanone, catalyzed by (2S,4R)-4-((tert-butyldiphenylsilyl)oxy)-L-proline (3), pro-
viding adduct 9 with a 20:1 diastereoisomeric ratio and an enantiomeric excess of 99%
(Scheme 2) [8]. This reaction was used as a model for a similar organocatalytic with
3,4-dihydroxyproline, as reported by studies.
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Scheme 2. Aldol reaction catalyzed by proline 3 in an aqueous medium.

2. Result and Discussion

Proline 9 was prepared from the known proline 7, according to the protocol shown in
Scheme 3.
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Scheme 3. Synthesis of proline 9.

Next, proceeding as depicted in Scheme 4, to a solution of p-nitrobenzaldehyde (1.0 eq)
and cyclohexanone (5.0 eq) in water the catalyst 8 (0.1 eq) was added and the mixture
was stirred at room temperature for 5 hours, stopping the reaction by neutralizing with a
phosphate-buffered solution pH 7. The elaboration of the reaction mixture was followed by
purification by column chromatography [AcOEt/Hex 1:4]. The mixture of aldols 10, 11, 12
and 13 was isolated with a yield of 86%.

From its 1H NMR spectrum (Figure 1), the diastereomeric relationship between the
anti and syn enantiomer pairs could be easily established. For the anti enantiomers, the
signal due to the proton at position 4 (at α to the hydroxyl group) appears as a doublet
of doublets located at 4.89 ppm, whereas in the case of the syn enantiomers this signal
appears as a triplet at 5.48 ppm. Relative integration of the two signals gave an approximate
diastereomeric ratio of 1 (syn):25 (anti) (Figure 2).
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The enantiomeric excess was determined by HPLC-UV. To establish the optimal separa-
tion conditions for the anti enantiomers, a sample of the racemic mixtures without and anti,
obtained when the standard reaction was carried out using pyrrolidine as catalyst, was first
prepared. Optimum separation conditions were obtained when an OD-H column was used
in a hexane/isopropanol mixture (8:2) and a flow rate of 0.5 mL/min, as indicated in the
chromatogram shown in Figure 2, for 3 min, corresponding to the mixture of enantiomers
of the aldols, a peak at 34.6 min due to aldol (2S-4R)-10 and a peak at 38.3 min due to aldol
(2R-4S)-12. Peak assignments were carried out by comparison with the literature [9].
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Using these separation conditions, the chromatogram obtained for the reaction mix-
ture resulting from carrying out the standard reaction with organocatalyst 9 showed that
the major product of the reaction was aldol (2S,4R)-10, obtained with an enantiomeric
excess greater than 99% (Figure 3). In addition, the optical rotation value obtained [+10.4◦

(c 4.95, CHCl3)] for the mixture also showed that the major compound corresponded to the
dextrorotatory aldol (2S,4R)-10.
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