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Abstract: The Ugi-azide MCR (UA) is one of the most efficient methods for the synthesis of 1,5-
disubstituted-1H-tetrazoles (1,5-DS-T). Complex drug-like scaffolds incorporating tetrazoles have
demonstrated a wide range of therapeutic benefits such as anti-inflammatory, antiviral, antibiotic,
anti-ulcer, anti-anxiety and anti-hypertensive agents, attributable to their mimetic cis amide of
peptide bonds that enhance metabolic stability, selectivity and other beneficial physicochemical
properties, in addition to their applications in bioimaging, photoimaging and coordination chemistry.
Herein, we present the ultrasound-assisted sustainable synthesis of six novel 1,5 DS-T under solvent-
free conditions.

Keywords: Ugi-azide; isocyanide-based multicomponent reactions (IMCRs); 1,5-disubstituted
tetrazoles (1,5-DS-T)

1. Introduction

Isocyanide-based multicomponent reactions (IMCRs) stand out as highly effective
synthetic tools for designing and developing sustainable strategies. IMCRs offer several ad-
vantages, including a high atomic economy, fast and straightforward methods, a reduction
in the number of workups; extraction and purification processes, time and energy savings,
aligning closely with the 12 principles of green chemistry [1–3]. Undoubtedly, IMCR-based
strategies significantly contribute to the focus of organic synthesis in GC, allowing the easy
synthesis of relatively complex molecules with high overall yields [4].

On the other hand, 1,5-disubstituted tetrazoles (1,5-DS-T) are heterocycles of high
interest in medicinal chemistry; more complex drug-like scaffolds based on tetrazoles
have demonstrated a wide range of therapeutic benefits attributable to their mimetic cis
amide of peptide bonds, enhancing metabolic stability, selectivity and other beneficial
physicochemical properties [5]. Several procedures have been reported for the synthesis
of 1,5-disubstituted tetrazoles [6]. The traditional method for the synthesis of tetrazole
derivatives involves the [2 + 3] azide–cyanide cycloaddition reactions [7]. However, the
Ugi-azide MCR (UA) has become the main route for the synthesis of 1,5-DS-Ts, allowing
access to highly functionalized derivatives under mild conditions [8].

2. Results and Discussion

Following our main research line focused on the design and development of efficient
IMCR-based strategies to synthesize compounds of interest [9–15], in 2017, our research
group reported the first ultrasound-assisted Ugi-azide reaction under solvent-free condi-
tions using aromatic aldehydes and amines (Scheme 1) [16].
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Here, we present the ultrasound-assisted synthesis of 1,5-DS-T using heptaldehyde 
as a reaction component. We demonstrate that this methodology is applicable to aliphatic 
aldehydes and aliphatic amines, as evidenced by the successful use of cyclohexylamine 
and allylamine (Figure 1) (Scheme 2). 
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Here, we present the ultrasound-assisted synthesis of 1,5-DS-T using heptaldehyde
as a reaction component. We demonstrate that this methodology is applicable to aliphatic
aldehydes and aliphatic amines, as evidenced by the successful use of cyclohexylamine
and allylamine (Figure 1) (Scheme 2).
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rected. Commercially available reagents were used without further purification. Struc-
tures names and drawings were performed using the ChemBioDraw software (version 
16.0.1.4(61)).  

3.2. General Procedure (5–10) 
General procedure (GP): In a sealed CEM DiscoverTM microwave reaction tube with 
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3. Experimental Section
3.1. General Information, Instrumentation and Chemicals

1H and 13C NMR spectra were acquired using a Bruker Advance III spectrometer
(500 MHz). The solvent for NMR samples was CDCl3. Chemical shifts are reported in
parts per million (δ/ppm). Tetramethylsilane was used as an internal reference for NMR
(δH = 0 ppm). Coupling constants are reported in Hertz (J/Hz). Multiplicities of the
signals are reported using the standard abbreviations: singlet (s), doublet (d), triplet (t),
doublets of doublet and multiplet (m). HRMS spectra were acquired via electrospray
ionization ESI (+) and recorded via the TOF method. The reaction progress was monitored
by TLC and the spots were visualized under UV light (254–365 nm). The products were
isolated via flash column chromatography using silica gel (230−400 mesh) and eluents in
different proportions. Melting points were determined on a Fisher–Johns apparatus and
are uncorrected. Commercially available reagents were used without further purification.
Structures names and drawings were performed using the ChemBioDraw software (version
16.0.1.4(61)).

3.2. General Procedure (5–10)

General procedure (GP): In a sealed CEM DiscoverTM microwave reaction tube
with 10 mL capacity, heptaldehyde (1.0 equiv.), the respective amine (1.0 equiv., TMSN3
(1.1 equiv.), and the correspondent isocyanide (1.1 equiv.) were combined. The reaction
mixture was placed in the water bath in the sonicator. Subsequently, the mixture was
US-irradiated at room temperature for 30 min. The crude product was purified by flash
chromatography using mixtures of hexanes–EtOAc to afford the corresponding 1,5-DS-T.

3.3. Spectral Data
3.3.1. N-(1-(1-(tert-butyl)-1H-tetrazol-5-yl)heptyl)aniline (5)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), aniline (0.020 mL, 0.219 mmol), tert-butyl
isocyanide (0.027 mL, 0.241 mmol) and TMSN3 (0.032 mL, 0.241 mmol) were mixed together
to afford 5 (32 mg, 44%) of a yellow solid; mp 119–123 ◦C; Rf = 0.73 (Hex-AcOEt = 7:3; v/v);
FT-IR (ATR) vmax 3287, 2923, 1603, 1500, 1369, 1319, 1208, 1128, 870, 755, 694 cm−1; 1H
NMR (500 MHz, CDCl3) δ 7.18 (t, J = 7.9 Hz, 2H), 6.77 (t, J = 7.4 Hz, 1H), 6.66 (t, J = 7.9 Hz,
2H), 4.99 (m, 1H), 4.12 (d, J = 10.4 Hz, 1H), 2.06 (m, 2H), 1.74 (s, 9H), 1.43 (m, 1H), 1.27 (m,
7H), 0.85 (t, J = 6.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 156.3, 146.2, 129.7, 119.2, 114.3,
61.5, 50.6, 35.2, 31.7, 30.3, 29.1, 26.3, 22.6, 14.1; HRMS calcd for C18H29N5 [M + H]+ m/z
316.2496; found: 316.2554.
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3.3.2. N-(1-(1-(tert-butyl)-1H-tetrazol-5-yl)heptyl)cyclohexanamine (6)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), cyclohexyl amine (0.025 mL, 0.219 mmol),
tert-butyl isocyanide (0.027 mL, 0.241 mmol) and TMSN3 (0.032 mL, 0.241 mmol) were mixed
together to afford 6 (38 mg, 52%) a yellow solid; mp 108–110 ◦C; Rf = 0.63 (Hex-AcOEt = 7:3;
v/v); FT-IR (ATR) vmax 3327, 2925, 1686, 1451, 1373, 1234, 1103, 889, 814, 725 cm−1; 1H
NMR (500 MHz, CDCl3) δ 4.21 (m, 1H), 2.15 (m, 1H), 1.77 (m, 2H), 1.73 (s, 9H), 1.65 (m, 4H),
1.53 (m, 2H), 1.24 (s, 8H), 1.10 (m, 5H), 0.84 (t, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3)
δ 159.1, 61.0, 54.3, 51.5, 36.6, 33.9, 33.4, 31.8, 30.4, 29.2, 26.4, 26.1, 24.9, 24.6, 22.7, 14.2; HRMS
calcd for C18H35N5 [M + H]+ m/z 322.2965; found: 322.2913.

3.3.3. N-allyl-1-(1-(tert-butyl)-1H-tetrazol-5-yl)heptan-1-amine (7)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), allyl amine (0.016 mL, 0.219 mmol),
tert-butyl isocyanide (0.027 mL, 0.241 mmol) and TMSN3 (0.032 mL, 0.241 mmol) were
mixed together to afford 7 (28 mg, 44%) as a yellow solid; mp 108–110 ◦C; Rf = 0.53 (Hex-
AcOEt= 7:3; v/v); FT-IR (ATR) vmax 3324, 2927, 1727, 1456, 1375, 1236, 1105, 995, 918, 812,
725 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.81 (ddt, J = 16.3, 10.9, 5.8 Hz, 1H), 5.14 (dd,
J = 17.2, 1.5 Hz, 1H), 5.07 (dd, J = 10.3, 1.2 Hz, 1H), 4.15 (dd, J = 7.8, 5.4 Hz, 1H), 3.16 (dd,
J = 14.1, 5.4 Hz, 1H), 3.00 (dd, J = 14.1, 6.1 Hz, 1H), 1.91 (br s, 1H), 1.79 (m, 2H), 1.72 (s,
9H), 1.55 (m, 1H), 1.28 (m, 7H), 0.86 (t, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 158.1,
136.5, 116.5, 61.2, 53.7, 49.9, 36.4, 31.8, 30.4, 29.3, 26.3, 22.7, 14.2; HRMS calcd for C15H29N5
[M + H]+ m/z 280.2501; found: 280.2549.

3.3.4. N-(1-(1-cyclohexyl-1H-tetrazol-5-yl)heptyl)aniline (8)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), aniline (0.020 mL, 0.219 mmol), cyclohexyl
isocyanide (0.030 mL, 0.241 mmol) and TMSN3 (0.032 mL, 0.241 mmol) were mixed together
to afford 8 (43 mg, 55%) as a white solid; mp 112–114 ◦C; Rf = 0.83 (Hex-AcOEt= 7:3; v/v);
FT-IR (ATR) vmax 3331, 2930, 1604, 1498, 1436, 1315, 1095, 895,750, 698 cm−1; 1H NMR
(500 MHz, CDCl3) δ 7.14 (t, J = 7.8 Hz, 2H), 6.75 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 8.2 Hz, 2H),
4.83 (q, J = 7.2 Hz, 1H), 4.38 (m, 1H), 4.06 (d, J = 7.4 Hz, 1H), 2.02 (m, 2H), 1.95 (m, 1H),
1.86 (m, 4H), 1.74 (m, 2H), 1.42 (m, 1H), 1.28 (m, 10H), 0.86 (t, J = 6.8 Hz, 3H); 13C NMR
(126 MHz, CDCl3) δ 155.4, 146.3, 129.6, 119.4, 114.0, 58.4, 49.9, 35.0, 33.3, 33.3, 31.6, 31.0,
29.0, 26.0, 25.5, 25.5, 24.9, 22.6, 14.1; HRMS calcd for C20H31N5 [M + H]+ m/z 342.2658;
found: 342.2712.

3.3.5. N-(1-(1-cyclohexyl-1H-tetrazol-5-yl)heptyl)cyclohexanamine (9)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), cyclohexyl amine (0.025 mL,
0.219 mmol), cyclohexyl isocyanide (0.030 mL, 0.241 mmol) and 0.032 mL of TMSN3
(0.241 mmol) were mixed together to afford 9 (31 mg, 39%) as a yellow solid; mp 108–110 ◦C;
Rf = 0.67 (Hex-AcOEt = 7:3; v/v); FT-IR (ATR) vmax 3318, 2926, 1727, 1449, 1275, 1127, 893,
754 cm−1; 1H NMR (500 MHz, CDCl3) δ 4.61 (m, 1H), 4.25 (t, J = 7.2 Hz, 1H), 2.14 (m, 1H),
2.04 (m, 2H), 1.94 (m, 5H), 1.77 (m, 3H), 1.62 (m, 4H), 1.39 (m, 3H), 1.25 (m, 8H), 1.12 (m,
4H), 1.01 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 156.2, 57.9, 54.7,
50.7, 35.5, 34.4, 33.6, 33.2, 33.1, 31.7, 29.1, 26.2, 26.1, 25.6, 25.0, 24.8, 22.6, 14.1; HRMS calcd
for C20H37N5 [M + H]+ m/z 348.3122; found: 348.3188.

3.3.6. N-allyl-1-(1-cyclohexyl-1H-tetrazol-5-yl)heptan-1-amine (10)

Based on GP, 1-heptanal (0.031 mL, 0.219 mmol), allyl amine (0.016 mL, 0.219 mmol),
cyclohexyl isocyanide (0.030 mL, 0.241 mmol) and TMSN3 (0.032 mL, 0.241 mmol) were
mixed together to afford 10 (34 mg, 49%) of a yellow solid; mp 108–110 ◦C; Rf = 0.50
(Hex-AcOEt = 7:3; v/v); FT-IR (ATR) vmax 3320, 2929, 1672, 1451, 1275, 1096, 992, 918,
816, 756 cm−1; 1H NMR (500 MHz, CDCl3) δ 5.78 (ddt, J = 16.6, 11.1, 5.9 Hz, 1H), 5.11 (d,
J = 17.2 Hz, 1H), 5.07 (d, J = 10.26 Hz, 1H), 4.51 (m, 1H), 4.09 (t, J = 7.2 Hz, 1H), 3.08 (dd,
J = 14.2, 5.3 Hz, 1H), 3.01 (dd, J = 14.2, 6.3 Hz, 1H), 2.02 (m, 2H), 1.93 (m, 4H), 1.78 (m, 3H),
1.29 (m, 12H), 0.84 (t, J = 6.8 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 155.6, 136.1, 116.6, 57.9,
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52.8, 50.1, 35.1, 33.3, 31.6, 29.1, 26.0, 25.6, 25.5, 25.0, 22.6, 14.1; HRMS calcd for C17H31N5 [M
+ H]+ m/z 306.2652; found: 306.2716.

4. Conclusions

A series of six 1,5-disubstituted-1H tetrazoles in moderate to good overall yields
(39–55%) were synthesized via a one-pot Ugi-azide reaction under ultrasound irradiation,
free of solvent and under mild conditions. Notably, this methodology allowed the use of
fewer reported aliphatic aldehydes and amines, as demonstrated by the successful reactions
employing heptaldehyde, cyclohexylamine, and allylamine as reactants.
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