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Abstract: Additive manufacturing powders require a well-defined particle size distribution (PSD)
and spherical morphology to ensure good flowability. To simplify characterisation, powders can be
prepared using standard metallurgical techniques followed by optical imaging of the cross-sectioned
particles. Measured PSDs of particle sections are typically underestimates of the true PSD; hence,
stereological corrections are required. Variations arise in the histogram binning methods (central
binning versus upper limit binning) of commonly used stereological corrections. Although the results
show some sensitivity to the binning method used, the GCO method seemed reasonably robust
to changes in the binning method. However, authors are encouraged to follow the method as it is
intended within the literature, which was found to be especially true when using Saltykov’s method.
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1. Introduction

A well-graded particle size distribution (PSD) of spherical particles is necessary for
good powder flowability and particle packing in powder-based additive manufacturing
processes [1,2]. Hence, users of powder-based additive manufacturing processes must
regularly assess the PSD to ensure optimal part production. However, many users are
small and medium-sized enterprises (SMEs) without direct access to dedicated particle
analysis facilities such as laser size diffraction (LSD) or scanning electron microscopy. This
introduces the need to outsource analysis to third-party laboratories, increasing costs and
lead times.

Preparing powders for optical analysis using standard metallurgical procedures of
hot-mounting, grinding, and polishing provides a low-cost procedure of analysis with a
quick turnaround, thereby reducing the frequency of third-party outsourcing. However, as
shown in Figure 1, the diameters of the particle sections observed on the polished plane are
typically an underestimate of the true particle size. Hence, stereological corrections must
be applied to the apparent PSD of the sections to estimate the true PSD.

Stereology involves using probability, statistical measures, and integral geometry to
relate 2D measurements to parameters defining 3D structures. In this case, a histogram of
measured particle section profiles is used to derive a histogram of sphere sizes which could
have produced the profile histogram via reconstruction of sphere size distribution approach.
However, a question that arises is which binning method to use. Some techniques use
central binning whilst others use upper limit binning.

The first reconstructive procedure of this kind was proposed by Wicksell [3] who
considered the probability of finding an apparent section diameter, d, centered within a
bin and derived a transformation matrix for 15 bins in which the bin limits were (i − 0.5)∆
and (i + 0.5)∆, where i represents the bin number and ∆ represents the bin size. Wicksell

Eng. Proc. 2024, 65, 14. https://doi.org/10.3390/engproc2024065014 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024065014
https://doi.org/10.3390/engproc2024065014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-4551-1272
https://orcid.org/0000-0002-5015-0192
https://doi.org/10.3390/engproc2024065014
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024065014?type=check_update&version=1


Eng. Proc. 2024, 65, 14 2 of 4

also had a 1/4th bin with a range of 0 − 0.5∆. Saltykov [4] proposed a successive sub-
traction method based on a method developed by Scheil [5] which had been modified by
Schwartz [6]. Saltykov constructed a histogram using bin limits of (i − 1)∆ and i∆. The up-
per limits of the bins represented the profile and particle size for each class. Goldsmith [7]
and Cruz-Orive [8] each independently improved these previous methods, resulting in a
method that used the same bin limits as Saltykov but used class midpoints as a measure of
the particle size, similar to Wicksell’s method.
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Figure 1. Diagrams in (a) 3D and (b) 2D showing how particle section diameter, d, is typically an 
underestimate of true particle diameter, D. 
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Figure 1. Diagrams in (a) 3D and (b) 2D showing how particle section diameter, d, is typically an
underestimate of true particle diameter, D.

In some cases, binning methods are used interchangeably without explanation or
critical evaluation. Applications of Saltykov’s method (an upper limit method) have been
found in studies using the central binning method [9]. Differences in outcomes have not
been investigated to determine whether it is an acceptable practice to change binning
methods. Changes to binning are therefore investigated in this work.

2. Materials and Methods

Plasma-atomised Grade 23 Ti-6Al-4V titanium alloy powder was used in this study.
The sample preparation, digital imaging and image analysis were conducted as described
in refs. [10,11]. LSD analysis was performed to provide a ground truth for comparison
purposes. The apparent PSD was generated via automated image analysis. The Saltykov
(SSS) and Goldsmith–Cruz–Orive (GCO) methods were compared using both central and
upper limit binning. Mean absolute errors (MAE) between each stereological correction
output and ground truth (LSD) data were calculated.

3. Results

The resulting cumulative size distributions from the SSS and GCO methods, plotted
using upper and central binning methods, are shown in Figure 2 with the cumulative size
distributions of the particle sections (Na) and the LSD data.

Measures of central tendency and dispersion for each PSD are provided in Table 1
along with the calculated MAE.

Table 1. Measures of central tendency and dispersion with mean absolute error calculation for each
size distribution.

Mean
(µm)

Standard
Deviation

(µm)

Skewness
(–)

Kurtosis
(–)

MAE
(%)

Na 23.7 9.2 0.9 4.3 3.6
NvSSSCenter 24.6 8.6 1.0 4.5 4.7
NvSSSUpper 26.5 8.6 1.0 4.5 2.3

NvGCOCenter 26.5 9.0 1.0 4.5 2.4
NvGCOUpper 28.3 9.0 1.0 4.5 1.3

NvLSD 27.9 8.0 1.1 4.6 –
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Figure 2. Cumulative fraction line graphs comparing the particle size distributions obtained from 
2D apparent section sizes, LSD analysis, and stereological corrections via the SSS and GCO methods. 
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apparent section sizes, LSD analysis, and stereological corrections via the SSS and GCO methods.

4. Discussion

Although the literature recommends using the coefficients of the GCO method rather
than those of the SSS method [12], in this work, the SSSUpper method performs slightly
better than the GCOCenter method. Both methods produce the same mean particle size
(26.5 µm), skewness (1.0) and kurtosis (4.5) values, but the SSSUpper method results in
a lower standard deviation (8.6 µm vs. 9.0 µm) and lower MAE (2.3% vs. 2.4%) when
compared to the GCOCenter method. However, if the coefficients of the GCO method are
used but the resulting Nv distribution is placed at the upper bin limits (GCOUpper), the
MAE value decreases from 2.4% to 1.3%, which becomes the smallest MAE value, indicating
the best fit to the ground truth (LSD) data in this study. Furthermore, the GCOUpper method
results in a mean particle size of 28.3 µm which, although larger than the mean from LSD,
results in a smaller percentage difference of 1.4% (0.4 µm) compared to 5.0% for both the
GCOCenter and SSSUpper methods (1.4 µm), and 11.8% for the SSSCenter method (3.3 µm).
Using the coefficients of Saltykov’s method and plotting at the central bin limits is not
advised in this case as it produces a PSD with a greater MAE than even the apparent PSD.

5. Conclusions

Although results show limited sensitivity in the GCO method to changes in the
binning method used (central binning or upper limit binning), seemingly, no significant
differences could be established. However, authors are encouraged to follow any method
as it is described in the literature. This is particularly recommended for the application of
Saltykov’s method, where upper limit binning must be used as originally intended. As
shown here, the Saltykov method with central binning gave an erroneous result.
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