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Abstract: Photovoltaic (PV) systems are widely adopted for renewable energy generation, but
their performance is influenced by complex interactions between longer-term trends and seasonal
variations. This study aims to remove these factors and provide valuable insights for optimising PV
system operation. We employ comprehensive datasets of measured PV system performance over five
years, focusing on identifying the distinct contributions of longer-term trends and seasonal effects.
To achieve this, we develop a novel analytical framework that combines time series and statistical
analytical techniques. By applying this framework to the extensive performance data, we successfully
break down the overall PV system output into its constituent components, allowing us to find out the
impact of the system degradation, maintenance, and weather variations from the inherent seasonal
patterns. Our results reveal significant trends in PV system performance, indicating the need for
proactive maintenance strategies to mitigate degradation effects. Moreover, we quantify the impact
of changing weather patterns and provide recommendations for optimising the system’s efficiency
based on seasonally varying conditions. Hence, this study not only advances our understanding
of the intricate variations within PV system performance but also provides practical guidance for
enhancing the sustainability and effectiveness of solar energy utilisation in both residential and
commercial settings.

Keywords: photovoltaic systems; seasonal variations; long-term trends; performance analysis;
measured data; trend disaggregation

1. Introduction

Disaggregating longer-term trends from seasonal variations in measured PV system
performance is an important aspect of understanding the performance of solar photovoltaic
(PV) systems [1–3]. Seasonal variations in the performance ratios for PV systems can be
obscured by diurnal and seasonal changes, making it difficult to determine long-term
performance degradation from transient performance changes [2]. The performance ratio
(PR) is a commonly used metric to measure solar PV plant performance. Still, it is insuffi-
cient to use as the basis for a performance guarantee when precise confidence intervals are
required due to the large seasonal variation in PR [3]. To reduce seasonal variations of the
PR due to the temperature dependency of the used PV cell, the PR may be corrected for
temperature [2].

Seasonal variations can have a significant effect on the performance of solar PV sys-
tems [3–6]. For instance, the amount of sunlight hitting the solar panels varies throughout
the year, with shorter days and less direct sunlight in the winter [5]. This can result in
decreased energy output during the winter months, which can be compensated for by
increasing the size of the solar array or by storing excess energy in batteries [5,6]. However,
the temperature can affect the performance of PV systems, with the PR being corrected for
temperature to reduce seasonal variations [3].
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PV systems are subject to a multitude of factors that influence their output, such as
solar irradiance variations, temperature effects, shading, and system degradation [1–3].
While seasonal variations can be attributed to changes in solar position and meteorological
conditions, longer-term trends may arise from factors such as module ageing, perfor-
mance degradation, and gradual system efficiency disimprovement [1–3]. Identifying
and quantifying these trends is essential for accurate performance evaluation and pre-
dictive maintenance. Photovoltaic (PV) modules that convert solar energy into electrical
energy [1] gradually degrade over time [7] giving reduced output power manifest in a
lower performance ratio [8]. The module degradation rate depends on the specification
and manufacture of PV modules as well as operational ambient temperatures and their
variation, relative humidity, intensity and spectrum of incident solar radiation, wind speed,
and extent of exposure to rain, snow, and dust [1]. Even for nominally identical systems,
degradation rates measured in one location cannot thus be assumed to apply in another lo-
cation [8,9]. Distinguishing between underlying multi-annual trends and periodic seasonal
variations in measured PV system outputs is a prerequisite for identifying longer-term
performance degradation. One way to implement this is to “correct” the PV PR for either
ambient or module temperature [3,10]. Correlations between power loss in a PV system
with cell temperature, irradiance, temperature variations, and shading have been found in
previous studies [11]. For instance, the main factors that impact power loss in a PV system
are: (i) Cell Temperature: The temperature of the solar cells can significantly affect their
efficiency. As cell temperature increases, the efficiency of the cells tends to decrease due
to the negative temperature coefficient of most PV materials, which causes their output
voltage and current to decrease with increasing temperature. The correlation between cell
temperature and power loss is usually negative [12,13]. (ii) Irradiance: Irradiance refers to
the amount of solar energy that reaches the solar cells. Higher irradiance levels generally
lead to higher output power from the PV system. The correlation between irradiance and
output power is positive [14,15]. (iii) Temperature Variations: Temperature variations can
impact the performance of a PV system, including fluctuations in ambient temperature
throughout the day [13]. Temperature changes can influence the efficiency of the system
due to changes in cell temperature and, consequently, cell efficiency [13]. The correlation
between temperature variations and power loss can be both positive and negative, depend-
ing on the specific conditions [13]. (iv) Shading: Shading is a critical factor that can cause
power loss in a PV system. When a portion of the PV array is shaded, it can create “hot
spots” and reduce the overall system efficiency [14,15]. This is because the shaded cells can
become reverse-biased, leading to power losses, and potentially damaging the shaded cells.
The correlation between shading and power loss is typically negative [14,15].

This paper aims to develop methods to separate the long-term trends from seasonal
variations in the measured PV system performance [16]. This has been a topic of previous
research. For example, (i) Lindig et al. [2] focus on best practices for performance loss
rate (PLR) computations, and the challenges and opportunities associated with it, but it
does not directly address the methods for disaggregating longer-term trends from seasonal
variations in measured PV system performance. To address this, this study adds two
more accurate and reliable methods for calculating PLR (such as relative PLR (PLRrel)
and absolute PLR (PLRabs)). (ii) In Dierauf et al.’s [3] study, traditional PR computation
neglects array temperature, which typically results in seasonal variation. This seasonal
variation makes the PR metric insufficient to use as the basis for a performance guarantee
when precise confidence intervals are required. To reduce the seasonality effects, this study
carried out the annual average cell temperature of the three locations (Harlequins, Newry,
and Warrrenpoint). Hence, the traditional PR “uncorrected PR” now normalises with the
annual average cell temperature to become normalised PR “temperature-corrected PR”.
This resulting weather-corrected PR or “temperature-corrected PR” gives more consistent
results throughout the year, enabling its use as a metric for performance guarantees.
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2. Solar PV Performance Monitoring

Solar PV performance monitoring is the process of observing and recording the pa-
rameters from the solar PV power plant in real-time [17]. The development of an advanced
monitoring method is crucial for the efficient and reliable operation of solar PV systems [17].
The primary purposes of monitoring PV systems encompass measuring energy output,
evaluating the performance of the PV system, and promptly detecting any design faults
or operational problems [18]. In the case of large PV systems, analytical monitoring is
employed to proactively mitigate economic losses arising from operational challenges [18].
The performance analysis of grid-connected PV systems involves comparing and presenting
the operational results of such systems [19]. This includes investigating the performance
of PV systems based on different module technologies [20]. The analytical monitoring of
grid-connected PV systems involves measuring and analysing various parameters such
as irradiation sensors, energy generation measurements, and performance indicators [18].
This can also involve monitoring the performance of PV systems before and after the
application of a set of procedures for performance analysis [21]. Hence, good practices for
monitoring and performance analysis of grid-connected PV systems include [21]: (i) Es-
tablishing a standard method for monitoring the performance of long-term PV systems in
buildings. (ii) Creating a set of good practices and systematic analysis for the monitoring
of PV systems, considering performance indicators, as well as temperature, cable, and
energy conversion losses. (iii) Developing a set of procedures for performance analysis of
small grid-connected PV systems, classified in terms of project, installation site, electrical
installation, protection, safety, and maintenance.

For instance, an examination of failures in grid-connected residential PV systems
with capacities ranging from 1 to 5 kWp, installed in Germany during the 1990s [22],
revealed that, on average, a failure occurred approximately every 4.5 years per installation.
Among these failures, inverters accounted for 63%, PV modules for 15%, and other system
components for 22% of the total failures [18]. A failure detection routine (FDR) was
introduced to compare the monitored energy yield with the simulated yield for a given
period [23,24]. The FDR used comprised three core components: (i) the failure detection
system, (ii) the failure profiling method, and (iii) the footprint method. When a substantial
disparity exists between the monitored and simulated energy yields, the FDR identifies
a potential failure. It further characterises the energy loss pattern by creating a profile
of the actual failure and contrasting it with pre-defined profiles of frequently occurring
failures. Based on the correlation between the actual failure profile and these pre-defined
profiles, the FDR assesses the likelihood of various failure scenarios. The footprint method
aids in the analysis of patterns across three distinct domains: (i) normalised monitored
power, time (hour of the day), and sun elevation. This method was developed through the
examination of common system faults using data from well-monitored PV installations
within the German 1000-roofs programme. Initial findings, as reported [23], indicate that
the methodology is effective in identifying failures that are unequivocally implausible.
However, further refinement is required. Field tests, as discussed [25], have demonstrated
that the time needed to detect a failure using the PVSAT-2 routine [26], which employs
the FDR methodology, can vary considerably, ranging from as little as one day to several
months. This variability is primarily influenced by factors such as weather conditions, the
scale of the failure, and its duration.

2.1. Seasonal Variations in PV Performance

To enhance the reliability and durability of PV systems, PV manufacturers should
conduct rigorous stress tests to assess their optimised performance. This is particularly
crucial due to the impact of temperature-induced seasonal variations [27]. For instance,
Jiaying et al. [28] examined three different PV module technologies: monocrystalline silicon
(m-Si), single junction amorphous silicon (a-Si), and micromorph silicon thin-film modules.
The results of their correlation analysis indicate that temperature plays a pivotal role in
seasonal performance variations. Monocrystalline silicon exhibits the strongest correlation
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with both temperature and irradiance. In contrast, single junction a-Si modules display
lower sensitivity to temperature variations, while micromorph silicon modules demonstrate
the weakest correlation with these two variables.

Installed PV modules in real-world conditions have been shown to exhibit seasonal
performance fluctuations [29]. These variations stem from two main factors [28]: (i) Tem-
perature Variation Between Seasons: The difference in temperature between summer and
winter seasons is a key influencer. PV modules with a more negative temperature coeffi-
cient of maximum power tend to perform better in winter than in summer. Furthermore,
thin-film and a-Si modules subjected to thermal annealing processes recover from light-
induced defects (LID), leading to improved performance during the summer. (ii) Spectral
Variability Due to Sun Position: Variations in the sun’s position throughout the year affect
the spectral characteristics of sunlight and consequently impact PV system performance.
For example, in PV materials with a wider band gap, such as a-Si, spectral variability
plays a role in module performance. These modules tend to perform better in the summer
when exposed to a blue-rich spectrum of light but exhibit reduced performance in the
winter under a red-rich spectrum [30]. The output of PV modules fluctuates in response to
incident solar irradiance and module temperature, making the energy output of a system
contingent on prevailing weather conditions [4,31]. An increase in PV cell temperatures
can result in reduced output and efficiency [27]. However, the performance of a solar
photovoltaic system is dependent on many site factors such as latitude, season, cloudiness,
and air pollution [32]. This means that seasonal variations have a significant impact on the
performance of solar photovoltaic installations [32]. Thus, the following are some of the
factors that affect the seasonal variations in PV performance [4,32]: (i) Sunshine Period:
The trend of the monthly average daily sunshine period affects the performance of PV
systems. During July and August, the sunshine period was lower due to the southwest
monsoon over the Indian subcontinent, which was reflected in the yield of the PV system.
(ii) Spectral Variations: The spectral variations due to seasonal changes in the incident
spectrum also affect the performance of PV systems. A study conducted in India showed
that PV technologies which have broad spectral bands give higher utilisation factor (UF)
values compared to technologies that have narrow spectral bands. The study also found
that seasonal spectral variations have a significant impact on the performance of different
PV technologies. (iii) Seasonality: Seasonality is the variation in solar generation due to
seasonal changes in the angle of the sun. In most areas of the United States, solar panels
yield the highest generation in the summer months, followed by fall and spring. This
is because the days are longer, and the sun is higher in the sky during these months. In
contrast, solar panels generate less power in the winter months when the days are short,
and the sun is low. Therefore, to account for seasonal variations in PV performance, it is
essential to consider the factors mentioned above during the design and installation of
PV systems. The seasonal variations in PV performance should also be considered when
estimating the solar offset and monthly savings of a solar energy system [32].

2.2. Performance Ratio Corrected for Temperature (PRCorr)

The performance ratio (PR) in solar PV installations normalises system output rela-
tive to the installed capacity and the available solar irradiance at the installation site. PR
facilitates the comparison of system performance across varying installed capacities and
geographical locations [33]. The weather-uncorrected performance ratio is determined
using Equation (1) [33]. To account for temperature effects, PR can be adjusted by incor-
porating a temperature correction, resulting in a “temperature-corrected” PRCorr [3,33], as
shown in Equation (2). This is because, in 2021, the average cell temperatures across the
three locations (Harlequins, Newry, and Warrenpoint) studied were significantly increased
compared to the years 2017 through 2020. Table 1 shows the specifications and locations
of the three monitored arrays. This temperature increase was attributed to an intense
heatwave during that year, as demonstrated in Table 2.



Electricity 2024, 5 5

Table 1. Specifications and locations of the monitored arrays.

PV Array Location

Harlequins Newry Warrenpoint

Tilt and Azimuth Angles

Azimuth: −162◦, Tilt: 12◦ for
PV array 1

Azimuth: 12◦, Tilt: 12◦ for PV
array 2

Azimuth: −31◦, Tilt: 6◦ for PV
array 1

Azimuth: 149◦, Tilt: 6◦ for PV
array 2

Azimuth: −125◦, Tilt: 7◦ for
PV array 1

Azimuth: 55◦, Tilt: 7◦ for PV
array 2

Total PV Area 312.36 m2 311.04 m2 268.8 m2

Solar Cell Technology Polycrystalline silicon
(p-Si) - -

PV Module Manufacturer Renesola - -

Module Rating 260 Wp at STC - -

Number of Modules 192 - -

Installation Type Rooftop - -

PV Capacity 49.92 kWp at STC - -

Module type (s) Renesola-JC260M-24/Bbv
(260 W) - -

Inverter Sunny TriPower - -

Inverter Capacity [AC] 2 × 20 kW - -

Table 2. Average annual PV cell temperatures for Harlequins, Newry, and Warrenpoint.

Year Harlequins Newry Warrenpoint

Average cell Temperature,
Tcell_avg (◦C)

Average cell Temperature,
Tcell_avg (◦C)

Average cell Temperature,
Tcell_avg (◦C)

2017 37.87 37.21 37.09

2018 38.37 38.14 37.70

2019 39.95 37.14 36.09

2020 38.06 36.50 36.79

2021 39.98 39.76 39.68

Therefore, the novelty of this study is based on the following [34]: (i) The degradation
rates observed in the three arrays, namely Harlequins, Newry, and Warrenpoint, are linear.
This linearity arises because all the modules under investigation are operating within the
stable region of their respective “bathtub” failure rate curves. (ii) The primary parameters
governing seasonal behaviour in this context are cell temperature and solar irradiance.
This is because key performance indicators of PV systems, such as system efficiency and
power output, exhibit linear dependencies on cell temperature and irradiance. When solar
irradiance surpasses 500 W/m2, it leads to an increase in cell temperature, subsequently
causing a reduction in both the efficiency and power output of the PV system [35,36].
Consequently, an increase in cell temperature results in decreased system efficiency and
power output, while a decrease in cell temperature leads to an enhancement in both
efficiency and power output. (iii) Long-term performance assessment of PV systems can
be challenging due to the fluctuating environmental conditions that occur on a daily and
seasonal basis. To mitigate the impact of these variable conditions, the weather-uncorrected
performance ratios (PRUncorr) were adjusted through the utilisation of the annual average
cell temperature (TCell_avg) recorded in Table 2. The incorporation of this temperature
correction served to reduce the seasonal variabilities in the performance ratio, thus enabling
the separation of longer-term trends from the influence of seasonal variabilities.
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3. Materials and Methods

The study aims to address the challenge of disaggregating longer-term trends from
seasonal variations in measured PV system performance. To achieve this, a comprehensive
approach that integrates statistical and time-series analyses is employed. The following
sections outline the materials used and the methods applied in this study: (i) Data Col-
lection and Pre-processing: Five years of historical data from an operational PV system,
including solar irradiance, module temperature, and output power measurements, are
collected. The data are obtained from a diverse range of geographical locations (Harlequins,
Newry, and Warrenpoint in Northern Ireland) and periods to ensure the robustness of the
analysis. Data pre-processing used in this study involves outlier removal, missing value
imputation, and synchronisation of time-series data [37]. (ii) Time-Series Decomposition:
Classical time-series decomposition techniques, such as the seasonal decomposition of
time-series (STL), are applied to disaggregate the underlying components of the PV sys-
tem’s performance [38]. (iii) Wavelet Analysis: Wavelet transform is employed to analyse
the time–frequency representation of the PV system’s output power. By decomposing
the time series into different frequency components, wavelet analysis helps identify both
short-term fluctuations and underlying long-term trends [39]. Hence, three roof-mounted
grid-connected PV arrays located in Northern Ireland were monitored for five years. These
arrays are designated (after their locations) “Harlequins”, “Newry”, and “Warrenpoint”.
The specifications and locations of the three arrays are provided in Table 1. In-plane ir-
radiance (GPOA), AC output power (PAC), and cell temperature (Tcell) were measured at
fifteen-minute intervals using pyranometers, AC power meters, and thermocouples. The
continuous monitoring of the PV system performance parameters (such as electrical output,
efficiency, and temperature) across the three locations was conducted using data logging
equipment. From the data collected, performance fluctuations were observed as a result
of seasonal variations. To disaggregate longer-term trends from seasonal variations in
measured PV system performance located in Harlequins, Newry, and Warrenpoint, the
weather-uncorrected performance ratios as seen in Equation (1) of Section 4 were converted
to temperature-corrected performance ratios (i.e., weather-corrected performance ratios)
using the average annual cell temperatures (Tcell_avg) shown in Table 2 and Equation (3).
The azimuth and tilt angles of the PV arrays are shown in the first row of Table 1.

4. Results
4.1. Data Collection and Preprocessing

PV systems used in this study are typically equipped with sensors and monitoring
equipment that record various performance metrics such as solar irradiance, temperature,
voltage, current, and power output. Data were reliably and consistently collected from
these sensors which spread across Harlequins, Newry, and Warrenpoint at fifteen-minute
intervals. To clean up the data, missing data were handled through data interpolation.
Outliers were removed to avoid distortion in the data analysis [37].

4.2. Time Series

To investigate long-term degradation, relative performance loss rates (PLRrel), abso-
lute performance loss rates (PLRabs), and nonlinear trends over five years were fitted to
simple best-fit linear lines. Uncorrected and module temperature-corrected annual monthly
relative and absolute performance loss rates from Harlequins, Newry, and Warrenpoint
arrays from 2017 to 2021, the gradient (β1) and the y-intercept (βo) of each year across the
three arrays were found using the time-series (Yt{XE “Yt:Linear regression model”}) linear
regression model, as shown in Equation (12) [40]. This separates longer-term trends from
seasonal variations [39].

4.3. Wavelet Analysis

By utilising temperature-corrected performance ratios, it becomes possible to discern
long-term performance degradation trends with a high degree of confidence after just six
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months for one PV array and within three years for the other two arrays. If a lower level of
statistical confidence in these trends is acceptable, it is still feasible to identify long-term
degradation rates within one year of operation for all PV arrays under investigation. These
findings hold significant implications, as they suggest that relatively brief outdoor PV
performance monitoring can reliably serve as a means to estimate long-term degradation
and/or to calibrate the typically conducted accelerated testing processes. For instance,
data exhibiting a high coefficient of determination (R2) concerning a linear trend suggests
that the trend can be extrapolated with reliability. In this context, R2 values of 0.810 and
0.999 are selected to signify a robust correlation with the dataset. Figures 1 and 2 illustrate
the enhancements in coefficients of determination (R2) for PR, computed over varying
cumulative time intervals. Temperature-corrected PR values achieve R2 coefficients of
determination of 0.810 and 0.999 within cumulative degradation trend evaluation periods
ranging from 6 months (for the Warrenpoint PV array and system) to approximately 3 years
for the Harlequins and Newry PV arrays and systems. In contrast, “weather-uncorrected”
PR values necessitate lengthier cumulative evaluation periods, approximately 4 years, to
attain R2 coefficients of determinations of 0.810 and 0.999 for their long-term degradation
trends. These findings highlight that temperature-corrected PR values enable the earlier
detection of long-term degradation trends.
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4.4. Performance Ratio

The photovoltaic system performance ratio (PR) compares the actual and theoretical
energy yields of the PV systems [41]. By normalising system performance to its installed
power and available solar radiation at the installation site, the PR enables comparison of
the performances of dissimilar PV systems in different geographic locations [4,38,42,43].
PR can be calculated on a yearly, monthly, or daily basis. The performance ratio, PRuncorr,
is calculated using Equation (1) [33]:

PRunco =
∑ PAC_t

∑
t
[PSTC(

GPOA
GSTC

)]
× 100%, (1)

where PAC{XE “PAC:Measured AC electrical generation”}: measured AC electrical genera-
tion (W).

PSTC: installed PV module capacity (in the instance of the PV arrays examined
49,920 Wp).

GPOA: measured plane of array irradiance (W/m2).
t{XE “t:data collection period”}: data collection period.
GSTC{XE “GSTC:Irradiance at standard test conditions”}: irradiance at standard test

conditions (1000 W/m2).
Introducing a correction based on cell temperature to calculate PRcorr gives [35]

PRcorr =
∑ PAC_t

∑
t
[PSTC(

GPOA
GSTC

)(1 − δ
100

(
Tcell_avg−Tcell

)
)]

, (2)

where Tcell{XE “Tcell_avg: Average annual solar cell temperature”}_avg: average annual PV
cell temperature (◦C).

Tcell: instantaneous PV cell temperature (◦C).
δ : tmperature coefficient of PV array power decreases with cell temperature (typically

−0.4%/◦C).

Tcell_avg =
∑(G POA × Tcell_i)

∑ GPAO_i
(3)

GPOA_i: measured plane of array irradiance (W/m2) in a given period.
Tcell_i: instantaneous PV cell temperature ((◦C) in an ith period.
To examine the effect on PR using module temperature correction, relative and ab-

solute power loss rates (PLR) of uncorrected and corrected PR were compared. The
percentage reduction in seasonal variations of corrected PR compared with uncorrected
PR was calculated. Statistical analyses were performed using the t-distribution with sig-
nificance levels (α) at 0.05, 0.10, and 0.01 and confidence intervals (C.I) at 95%, 90%, and
99%. The value of the t-distribution (tcal) and confidence intervals (C.I) are calculated using
Equations (4) and (5).

tcal =
∑ di√

n(∑ di2)−(∑ di)2

DF

, (4)

where tcal: calculated t-value.

di: difference between corrected and uncorrected PR (see Equation (6)).
n: number of monitored data points.
DF = n − 1: degree of freedom.

dmean = ± (TC.I × S.E(dmean)) (5)

where: dmean: mean difference.

TC.I: t-test at a particular confidence interval (C.I).
S.E(dmean): standard error of the mean difference.
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di = PRcorr − PRuncorr (6)

dmean =
∑ di

n
(7)

S.E(dmean) =
σ
√n

(8)

where: σ is the standard deviation.

TC.I = 1 − C.I (9)

The relative performance loss rate PLRrel and the absolute performance loss rate
PLRabs are calculated using Equations (10) and (11) [40]:

PLRrel{XE“PLRrel : Relative performance loss rate”}[%/a{XE“a : Annual”}] = (β1
t
βo

)× 100 (10)

PLRabs {XE “PLRabs:Absolute performance loss rate”}[/a] = (β1 × t), (11)

where β1{XE “β1:Gradient”}{XE “β1:Gradient”} is the gradient and βo{XE “βo:y-intercept
of the linear trend line for PLR”}{XE “βo:y-intercept”} is the y-intercept of the linear trend
line for PLR, t is a scaling parameter that converts the time scale at which power or
performance ratio (PR) is observed to a yearly scale, as PLR is per year (12 months), and
S.E (dmean) is the standard error of mean difference, dmean (see Equations (6) and (7)).

Yt{XE “Yt:Time series linear regression model”} = β1t + βo (12)

An annual aggregate gradient (β1) of the linear fit divided by the y-intercept (βo) gives
the final linear relative performance loss rate (PLRrel) of PV systems in Harlequins, Newry,
and Warrenpoint. The annual aggregate gradient (β1) of the linear function multiplied
by the annual scale (12 months) gives the final linear absolute power loss rates (PLRabs)
(see Equation (11)). Figure 3a–c shows seasonal variations in performance metrics for
the Harlequins, Newry, and Warrenpoint PV arrays from 2017 to 2021. Uncorrected
performance ratios calculated using Equation (1) show high seasonality, with low values
in warmer months and higher values in colder months [43]. The temperature-correction
PR calculated using Equation (2) shows that the introduction of the module temperature
correction (shown in Table 2) reduces seasonal variation in the performance ratio. The
y-intercept (βo) shows that the PR values for the five-year uncorrected and temperature-
corrected PR values for the Harlequins array (93.96% and 95.61%), the Newry array (93.96%
and 95.14%), and the Warrenpoint array (93.84% and 95.43%) are nearly constant, where
Arr. is the PV array and Sys. is the PV system.

From Figure 4a,b, the performance loss rates differ in the three PV arrays and PV
systems because of differences in their meteorological conditions (such as the ambient
temperature, relative humidity, wind speed, and air pressure) and system conditions
(solar cell temperature and solar radiation). Figure 5a,b show the analyses of the annual
relative performance loss rate (PLRrel) and absolute performance loss rate (PLRabs) of
Harlequins, Newry, and Warrenpoint arrays for five years as shown in Tables A1–A4. The
losses in a system are caused by various factors, including solar cell temperature losses,
DC/AC inverter conversion losses, and solar radiation reflection losses. These losses
can be further broken down into specific types of losses, such as shading losses, spectral
losses, and inverter losses [44]. The following are some of the factors that contribute
to system losses [44]: (i) Solar cell temperature losses: for every 1 ◦C above 25 ◦C, the
output from a solar cell drops by 0.5%. (ii) DC/AC inverter conversion losses: PV inverter
efficiency decreases from 0.3 to 1% per 150 V DC input voltage amplitude and the efficiency
decreases down to 5% due to the power consumption of the control unit and switching
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losses. (iii) Solar radiation reflection losses: there is some loss of output around 2.5% when
sunlight reflects off panel surfaces rather than being absorbed to generate electric current.
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Figure 5. (a) Relative performance loss rate (PLRrel) and (b) absolute performance loss rate (PLRabs)
for Harlequins, Newry, and Warrenpoint arrays from 2017 to 2021, where /a, as used in the legend of
Figure 5, is per year or annum.

Figure 6a,b show the difference between the module temperature-corrected and uncor-
rected relative and absolute performance losses which are computed using (13) and (14):

DPLRcorr = PLRrel.corr − PLRabs.module (13)

DPLRuncorr = PLRrel.uncorr − PLRabs.uncorr, (14)

where DPLRcorr {XE “DPLRcorr:Differences in temperature-corrected performance loss rates
in arrays and systems”} and DPLRuncorr{XE “DPLRuncorr:Differences in uncorrected perfor-
mance loss rates in arrays and systems.”} are differences in temperature-corrected and un-
corrected performance loss rates in arrays and systems. PLRrel.corr{XE “PLRrel.corr:Relative
temperature-corrected performance loss rates in arrays and systems.”} and PLRrel.uncorr{XE
“PLRrel.uncorr:Relative uncorrected performance loss rates in arrays and systems.”} are rela-
tive temperature-corrected and uncorrected performance loss rates in arrays and systems.
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Figure 6. The difference in (a) temperature correction and (b) uncorrected performance loss rates
between relative and absolute performance loss rates in Harlequins, Newry, and Warrenpoint arrays
from 2017 to 2021.

PLRabs.corr{XE “PLRabs.corr:Absolute temperature-corrected performance loss rates in
arrays and systems”} and PLRabs.uncorr{XE “PLRabs.uncorr:Absolute uncorrected performance
loss rates in arrays and systems”} are absolute temperature-corrected and uncorrected
performance loss rates in arrays and systems.

To normalise relative and absolute temperature-corrected performance loss rate, the
PLRcorr{XE “PLRcorr:Relative weather-corrected performance loss rate”} from weather-
uncorrected performance loss rate (PLRuncorr{XE “PLRUncorr:Relative weather-corrected
performance loss rate”}) and the average cell temperatures, as shown in Table 2, for each
PV array installed at Harlequins, Newry and Warrenpoint are used. Hence, the PLRcorr for
PLRrel and PLRabs are normalised using Equations (15) and (16).

PLRcorr_rel =
PLRuncorr_rel

1 − δ
100

(
Tcellavg

) (15)
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PLRcorr{XE“PLRcorr_abs : Absolute weather − corrected performance loss rates”}_abs =
PLRuncorr_abs

1 − δ
100 (Tcellavg)

(16)

4.5. Statistical Analyses Using t-Distribution and Confidence Intervals

Figures 7a–c and 8a–c show graphs of module temperature-corrected relative perfor-
mance loss rates, PLRcorr_rel, and module temperature-corrected absolute performance loss
rates, PLRcorr_abs, across the three arrays and systems. The standard deviation error bars in
these figures are overlapped because of the closeness of their standard deviation values, as
shown in Tables 3 and 4.

Above, µrel{XE “µrel:Relative averages of the temperature-corrected performance loss
rates”} and µabs{XE “µabs:Absolute averages of the temperature-corrected performance loss
rates”} are relative and absolute averages of the module temperature-corrected performance
loss rates, while σrel{XE “σrel:Relative standard deviations of the temperature-corrected
performance loss rates”} and σabs{XE “σabs:Absolute standard deviations of the temperature-
corrected performance loss rates”} are relative and absolute standard deviations of the
module temperature-corrected performance loss rates.
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Figure 7. (a–c) Standard deviation error bars show the overlap between relative and absolute module
temperature-corrected performance loss rates of PV arrays monitored for a five-year period.
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Figure 8. (a–c) Standard deviation error bars show the overlap between relative and absolute
temperature-corrected performance loss rates of PV systems monitored for five years.
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Table 3. Comparative analysis of relative and absolute average and standard deviation of module
temperature-corrected performance loss rates in arrays.

Harlequins Newry Warrenpoint

µrel σrel µabs σabs µrel σrel µabs σabs µrel σrel µabs σabs

−1.75 0.44 −1.66 0.41 −1.00 2.17 −1.99 0.66 −1.89 0.81 −1.79 0.79

Table 4. Relative and absolute average and standard deviation values of module temperature
corrected performance loss rates in systems.

Harlequins Newry Warrenpoint

µrel σrel µabs σabs µrel σrel µabs σabs µrel σrel µabs σabs

−1.04 3.91 −1.06 3.57 −1.26 1.00 −1.17 0.94 −1.91 1.56 −1.79 1.46

The test of significance for relative and absolute temperature-corrected performance
loss rates across the three sites is computed using Equation (17).

tcal =
∑ di√

n(∑ di2)−(∑ di)2

DF

, (17)

where di{XE “di:Difference between corrected absolute and relative performance loss rates”} =
PLRcorr_abs − PLRcorr_rel.

(18)

n = 5 is the number of monitored data points.
DF{XE “DF:Degree of freedom”} = n − 1 is the degree of freedom.
tcal{XE “tcal:Calculated t-value”} is the calculated t-value.
PLRabs_corr is the absolute weather-corrected performance loss rate.
PLRrel_corr is the relative weather-corrected performance loss rate.
Calculated t-values (tcal) for Harlequins and Warrenpoint arrays for temperature-

corrected performance loss rates are greater than the critical values, tcritical (tcal > tcritical),
at 0.05, 0.10, and 0.01 levels of significance, and the Newry array tcal value is less than the
critical value, tcritical (tcal < tcritical), at 0.05, 0.10, and 0.01 levels of significance, while tcal
for the Harlequins system for temperature-corrected performance loss rates is less than
the critical values, tcritical (tcal < tcritical), at 0.05, 0.10, and 0.01 levels of significance. This is
shown in the t-distribution statistical table in Table 5. Warrenpoint and Newry systems are
significant at 0.05 and 0.10 because tcal > tcritical, while they are not significant at 0.01 because
tcal < tcritical. This means that the difference, di, between the PLRabs_corr and PLRrel_corr
for the Harlequins array, Warrenpoint array, and Newry system are all significant at 0.05,
0.10, and 0.01 because tcal > tcritical, while the Harlequins system and Newry array are not
significant because tcal < tcritical. The Warrenpoint system is only significant at 0.05 and 0.10
using Equation (17).

Table 5. Test of significance for the temperature-corrected performance loss rates in Harlequins,
Newry, and Warrenpoint arrays and systems.

tcritical at Level of
Significance, α

tcal for Harlequins tcal for Newry tcal for Warrenpoint

Array System Array System Array System

α0.05 = 2.13 6.24 −0.15 −1.45 3.10 7.65 2.51

α0.10 = 1.53 6.24 −0.15 −1.45 3.10 7.65 2.51

α0.01 = 3.74 6.24 −0.15 −1.45 3.10 7.65 2.51



Electricity 2024, 5 17

A paired t-test, utilising the t-distribution, was employed to assess the significance
of temperature correction in mitigating seasonal fluctuations of the performance ratios.
The assessment was conducted at various significance levels (α = 0.05, 0.10, and 0.01) and
confidence intervals (C.I = 95%, 90% and 99%). The statistical analysis outcome indicates
that for the Harlequins, Newry, and Warrenpoint PV arrays, the calculated t-values (tcal)
for α = 0.05, 0.10, and 0.01, as shown in Table 6, demonstrate statistical significance, leading
to the rejection of the null hypothesis (H0) and the acceptance of the alternative hypothesis
(H1). Figure 9 illustrates the confidence intervals (C.I) at 95%, 90%, and 99%, aligning with
the confidence levels reported for tcal values in Table 6 across the three PV arrays. Notably,
the standard error of the mean difference (SE(dmean)) displayed in Figure 9, along with
tcal, remains consistent. This consistency is anticipated since physically similar PV arrays
should exhibit akin S.E (dmean) and tcal values. The congruence between S.E (dmean) and
tcal values provides compelling evidence that the implementation of module temperature
correction effectively diminishes seasonal performance ratio variations. As a result, an
enhancement in PV performance is achieved.

Table 6. Statistical analysis for Harlequins, Newry, and Warrenpoint systems.

Harlequins Newry Warrenpoint

α tcritical dmean Σ S.E(dmean) tcal dmean σ S.E(dmean) tcal dmean σ S.E(dmean) tcal

0.05 2.00

1.91 4.85 0.63 3.04 1.70 4.74 0.61 2.80 1.85 4.67 0.60 3.060.10 1.67

0.01 2.66
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Above, α is the level of significance; dmean is the mean difference; σ is the standard de-
viation; tcal is the calculated t-value; S.E(dmean) is the standard error of the mean difference;
DF = n − 1 is the degree of freedom; n = 60 is the number of monitored data points; and
TC.I is the t-test at a particular confidence interval (C.I).

5. Discussion

The discussion on “disaggregating longer-term trends from seasonal variations in
measured PV system performance” revolves around the exploration of a method or ap-
proach that aims to separate and analyse the longer-term trends in the performance of PV
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systems from the shorter-term variations. This type of analysis is crucial for understanding
the overall performance of PV systems, identifying underlying factors that affect perfor-
mance changes over time and making informed decisions for system optimisation. This
study introduced a novel methodology that allows for the decomposition of measured
PV system performance data into two main components: longer-term trends and seasonal
variations. This separation enables a more detailed and accurate examination of the factors
that influence PV system performance. In this discussion, several key points are typically
addressed: (i) Overview of the Methodology: This study provides a concise summary of
the method developed to disaggregate the longer-term trends and seasonal variations in
PV system performance. This includes appropriate mathematical equations and statistical
techniques used to achieve this separation. (ii) Significance of Longer-Term Trends: The
study discusses the importance of understanding the longer-term trends in PV system
performance. These trends are indicative of factors such as degradation, efficiency improve-
ments, technological advancements, and changing environmental conditions over the years.
(iii) Seasonal Variations: The study delved into the significance of seasonal variations in PV
system performance. These variations are influenced by factors such as solar irradiance,
temperature, shading, and maintenance practices. Hence, understanding these variations
is crucial for optimising system performance.

6. Conclusions

The PV performance ratios underwent adjustments utilising the average annual cell
temperature (TCell_avg), leading to the acquisition of performance ratios that have been
rectified for module temperature. Through the utilisation of data gathered from a five-
year examination involving three arrays, a comprehensive statistical investigation was
conducted employing paired t-tests and confidence intervals. The primary goal was to
ascertain the extent to which the variation in seasonal performance ratios decreased due to
the module temperature correction. This investigation encompassed 95%, 90%, and 99%
confidence intervals (C.I), alongside significance levels of 0.05, 0.10, and 0.01. Remarkably,
the confidence values of C.I, tcal values, and S.E(dmean) demonstrated consistency, reflecting
the similarity of the PV arrays. As a consequence of this observed similarity, the outcome
of PRcorr exhibited more pronounced enhancement when compared to PRuncorr.
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Appendix A

The relative performance loss rates (PLRrel) and absolute performance loss rates
(PLRabs) for the Harlequins, Newry, and Warrenpoint arrays and systems, as shown in
Figure 4a,b are summarised in Tables A1–A4.

https://arrow.tudublin.ie/engdoc/140/
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Table A1. Temperature-correction for relative performance loss rates (PLRrel) for Harlequins, Newry,
and Warrenpoint arrays and systems.

Harlequins Observation Newry Observation Warrenpoint Observation

Arr.
PLRrel
(%/a)

Sys.
PLRrel
(%/a)

This means that
PLRrel of the
Harlequins
array shows

that solar panel
generation will
increase at the
annual rate by
−0.27%/a,

which shows an
improvement,

while PLRrel of
the Harlequins
system shows

that PV system
generation will
decrease at the
annual rate of

0.018%/a.

Array
PLRrel
(%/a)

Sys.
PLRrel
(%/a) There are

improvements
in both the

Newry array
and system.

For this reason,
both the PLRrel
for the Newry

array and
system show
that they will
both increase
at the annual

rates by
−0.23%/a and
−0.00635%/a,
respectively.

Arr.
PLRrel
(%/a)

Sys.
PLRrel
(%/a)

The PLRrel in
Warrenpoint

array shows that
there is an

improvement in
the array. This

means that solar
panel generation
will increase at

an annual rate of
−0.17%/a, while
the PLRrel in the

Warrenpoint
system shows
that PV system
generation will
decrease at the
annual rate of
0.00514%/a.

−0.27 0.018 −0.23 −0.00635 −0.17 0.00514

Table A2. Temperature-correction for absolute performance loss rates (PLRabs) for Harlequins, Newry,
and Warrenpoint arrays and systems.

Harlequins Observation Newry Observation Warrenpoint Observation

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)
The PLRabs of
the Harlequins
array show that

solar panel
generation will
increase at the
annual rate of
−0.26/a, which

shows an
improvement,

while the
PLRabs of the
Harlequins

system shows
that PV system
generation will
decrease at the
annual rate of

0.017/a.

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)

Both the
Newry array
and system

show
improvements.

This means
that their

PLRabs will
increase at the
annual rates by
−0.21/a and
−0.006/a,

respectively.

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)

Warrenpoint array
shows a PLRabs
improvement

while the
Warrenpoint

system shows a
decrease in PLR
abs. This shows
that solar panel
generation will
increase at an
annual rate of

−0.16/a, while the
Warrenpoint

system shows that
PV system

generation will
decrease at an
annual rate of

0.0048/a.

−0.26 0.017 −0.21 −0.006 −0.16 0.0048
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Table A3. Weather-uncorrected relative performance loss rates (PLRrel) for Harlequins, Newry, and
Warrenpoint arrays and systems.

Harlequins Observation Newry Observation Warrenpoint Observation

Arr.
PLRrel
(%/a)

Sys.
PLRrel
(%/a)

Both the
Harlequins array

and system
showed an

improvement at
their PLRrel. This
shows that solar

panel and PV
generations will

increase at
annual rates of
−0.16%/a and
−0.023%/a,

respectively. It
will be difficult
to predict any

PLRrel in the PV
array and system

due to the
seasonal

variation effect
noticed in
weather-

uncorrected
relative

performance loss
rates. To resolve
this, the weather-

uncorrected
PLRrel are

normalised with
the average cell

temperature.

Array
PLRrel
(%/a)

Sys.
PLRrel
(%/a)

There are
improvements
in the Newry

array and
system. For this

reason, their
PLRrel shows
that both the
Newry array

and system will
increase at the
annual rates by
−0.01%/a and
−0.00104%/a,
respectively.
Just like the
Harlequins
array and

system, it will
be difficult to
predict any

PLRrel in the PV
array and

system due to
the seasonal

variation effect
noticed in
weather-

uncorrected
relative

performance
loss rates. To

resolve this, the
weather-

uncorrected
PLRrel are

normalised with
the average cell

temperature.

Arr.
PLRrel
(%/a)

Sys.
PLRrel
(%/a)

There is an
improvement in
the Warrenpoint

array and a
decrease in the
Warrenpoint
system. This

shows that solar
panel generation

will increase at an
annual rate by

−0.063%/a, while
the Warrenpoint

system shows that
PV system

generation will
decrease at the
annual rate of
0.00259%/a.

−0.16 −0.023 −0.01 −0.00104 −0.063 0.00259
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Table A4. Weather-uncorrected absolute performance loss rates (PLRabs) for Harlequins, Newry, and
Warrenpoint arrays and systems.

Harlequins Observation Newry Observation Warrenpoint Observation

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)
Both the

Harlequins array
and system show
improvements in

PLRabs. This
show that solar
panel and PV

generations will
increase at

annual rates of
−0.15/a and
−0.022/a. Just

like PLRrel in the
Harlequins array

and system, it
will be difficult
to predict any

PLRrel in the PV
array and system

due to the
seasonal

variation effect
noticed in
weather-

uncorrected
relative

performance loss
rates. To resolve
this, the weather-

uncorrected
PLRrel are

normalised with
the average cell

temperature.

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)

There are
improvements

in both the
Newry array
and system.

This means that
their PLRabs

show that both
the Newry array
and system will
increase at the
annual rates by
−0.0096/a and
−0.0096/a,
respectively.
Just like the
Newry array

and system, it
will be difficult
to predict any

PLRrel in the PV
array and

system due to
the seasonal

variation effect
noticed in
weather-

uncorrected
relative

performance
loss rates. To

resolve this, the
weather-

uncorrected
PLRrel are

normalised with
the average cell

temperature.

Arr.
PLRabs

(/a)

Sys.
PLRabs

(/a)

Performance
improvement is
noticed in the

Warrenpoint array
and there is a
decrease in

performance in the
Warrenpoint
system. This

means that solar
panel generation

will increase at an
annual rate of

−0.06/a, while the
Warrenpoint

system shows that
PV system

generation will
decrease at the
annual rate of

0.0024/a.

−0.15 −0.022 −0.0096 −0.0096 −0.06 0.0024
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