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Abstract: Taking advantage of fact that the surface electrons of metallic nanoparticles (NPs) can be
effectively released even at a low voltage bias, we demonstrate an improvement in the electrochemical
performance of nanosized Prussian Blue (PB)-based secondary batteries through the incorporation
of bare Ag or Ni NPs in the vicinity of the working PB NPs. It is found that the capacity for
electrochemical energy storage of the 17 nm PB-based battery is significantly higher than the capacity
of 10 nm PB-based, 35 nm PB-based or 46 nm PB-based batteries. There is a critical PB size for the
highest electrochemical energy storage efficiency. The full specific capacity CF of the 17 nm PB-based
battery stabilized to 62 mAh/g after 130 charge–discharge cycles at a working current of IW = 0.03 mA.
The addition of 14 mass percent of Ag NPs in the vicinity of the PB NPs gave rise to a 32% increase in
the stabilized CF. A 42% increase in the stabilized CF could be obtained with the addition of 14 mass
percent of Ag NPs on the working electrode of the 35 nm PB-based battery. An enhancement in CF

was also found for electrodes incorporating bare Ni NPs but the effect was smaller.

Keywords: rechargeable battery; Prussian blue; cathode material; metallic nanoparticle; cyclability
enhancement

1. Introduction

Although the Li-ion battery has become the most commonly used power source in
portable electronic devices, efforts to enhance the cyclability of secondary batteries toward
extending their cycle life and increasing their energy content continue [1–4]. It is the
repeated extraction and restoration of electrochemical energy in the solid electrode that
makes a battery reusable [5–8]. Prussian Blue analogues (PBAs) with the general chemical
formula AM[M′(CN)6] (A, alkali metal; M and M′, transition metal; hereafter denoted
as A-MM′) [9,10] have been favored as promising active materials for cathodes [11–15].
The three-dimensional open channels in A-MM′s, enclosed by the MN6-M′C6-MN6-M′C6
octahedral chains along the three crystallographic directions, allow for the migration of
weakly bonded ions through the channels for energy extraction and restoration [16–23].
The voids for accommodating alkali ions in the open channels of the PBAs are uniformly
distributed and spacious enough to receive ions as large as K+. There are two possi-
ble redox active sites, Mn+-M(n+1)+ and M′n+-M′(n+1)+, in A-MM′. As a Li+-ion recharge-
able battery, the reactions of 2Li → 2Li+ + 2e− at the anode coupled to the reactions of
2Li+ + 2e− + M

[
M′(CN)6

]
→ Li2M

[
M′(CN)6

]
at the cathode provide a transport path-

way for the Li+-ions for electrical conduction which are stored on the A-MM′ in the dis-
charge process. The reversal reactions of Li2M

[
M′(CN)6

]
→ M

[
M′(CN)6

]
+ 2Li+ + 2e−

at the cathode coupled to the reactions of 2Li+ + 2e− → 2Li at the anode provide a path-
way for Li+-ions to return to the anode in the charge process. Theoretically, when fully
redox active, each site can provide a specific capacity of 170.8 mAh/g during the charging–
recharging cycle [24]. However, most PBAs give a specific capacity that is considerably
smaller than 170.8 mAh/g [24], showing that only a portion of the metal ions are redox
active. A high specific capacity that can reach 140 mAh/g has been reported in K-CuFe
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with a Li-ion organic electrolyte, but the capacity decreases significantly with cycling due
to the instability of the reduced state [16–19]. Stabilization of the reduced states through
the application of a coating of stable K-NiFe onto high-capacity K-CuFe has been demon-
strated to improve cycle stability [25]. It has been shown that the capacity of K-NiFe with
organic electrolytes does not fade over 100 cycles [26,27]. Various approaches, such as
employing nanosized [27–29], core–shell [26–30], Ni-doped [31], polymer-coated [32–34] or
carbon-coated [35] PBAs, have been taken to improve cycle stability.

The transferring of H2O onto A sites and the replacement of M′(CN)6 by (H2O)6 are
unavoidable when the co-precipitation method is employed for synthesis. The intake of
H2O onto A sites reduces the number of sites available for A+ restoration, while intake
onto the M′ sites weakens the redox capability at the M′-C sites. These naturally occurring
structural imperfections limit the redox capability of PBA as a cathode material. One
way to provide additional electrons to facilitate redox activity in the PBAs is through
the incorporation of metallic nanoparticles, where surface electrons are weakly bonded
to the NPs. Recently, we have demonstrated that the addition of bare Ag or Ni NPs
into the vicinity of the nanosized K-CoCo or Na-CoFe particles can effectively improve
the electrochemical performance of the batteries, leading toward a higher energy storage
capacity [36]. In this study, we focus on the influence of particle size of the host Na-FeFe
NPs in the cathode compact on the electrochemical performance of the batteries upon the
addition of Ag or Ni NPs, and demonstrate that there is a critical Na-FeFe size to achieve
the highest electrochemical energy storage efficiency.

2. Materials and Methods
2.1. Synthesis of Prussian Blue Nanoparticles

Four sets of Na-FeFe NPs were synthesized by the co-precipitation method. All
reagents were purchased from Alfa-Aesar, Acros-Organics or Nihon-Shiyaku and used
without further purification. The deionized water used in the synthetic procedures was
obtained from a Milli-Q-Gard purification system. Fast PES Bottle Top Filters with a 0.45 µm
pore size obtained from Nalgene were used during the synthesis process. Two separate
solutions of 0.1 M Na4Fe(CN)6 and 0.1 M FeCl3 were simultaneously dropped at a rate
of 5 s/drop into deionized water maintained at a temperature of 25, 50, 70 or 85 ◦C, as
illustrated in Figure 1. Each solution was slowly stirred at 200 rpm for another 24 h after
the addition of the reaction solution was completed. The microcrystalline powder was
isolated from the solution through centrifugation before being washed and redispersed in
100 mL of deionized water. This washing process was repeated three times before the wet,
muddy powder was dried at 95 ◦C in a vacuum for 24 h.

2.2. Synthesis of Ag and Ni Nanoparticles

The Ag/Ni NPs were fabricated by employing the gas condensation method. High-
purity Ag/Ni ingots (0.6 g, 99.99% pure, ~2 mm in diameter) were heated by a current
source of 65/50 A and were evaporated at a rate of 0.05 Å/s in an Ar atmosphere of 1.5 torr.
The evaporated particles were collected on a non-magnetic SS316 stainless steel plate placed
20 cm above the evaporation source, maintained at 77 K. After natural cooling to room
temperature, the NPs, which were only loosely attached to the collector, were stripped off
in a N2 atmosphere. The samples thus fabricated were in powdered form, consisting of
macroscopic amounts of individual Ag/Ni NPs.
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from a Cu target and collimation slits of 0.3 mm in width before and after the sample was 
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Figure 1. The process for the fabrication of Na-FeFe nanoparticles, following the co-precipitation
method. The four sets of Na-FeFe nanoparticles were synthesized separately with the reaction
solution maintained at temperatures of 25, 50, 70 or 85 ◦C.

2.3. X-ray Diffraction

The X-ray diffraction measurements were performed on a Bruker D8 ADVANCE
diffractometer, employing reflection geometry with an incident wavelength of λ = 1.5406 Å
from a Cu target and collimation slits of 0.3 mm in width before and after the sample was
positioned. For each measurement, ~0.1 g of the sample was shaped into a width of ~1 mm
to receive the whole of the X-ray beam at all scattering angles.

2.4. Transmission Electron Microscopy Images

The transmission electron microscopy (TEM) images were taken on a JOEL 200CX,
operated at an acceleration voltage of 160 kV.

2.5. X-ray Photoemission Spectrum

The X-ray photoemission spectra (XPS) were taken on a Thermo Scientific K-Alpha+

XPS system, by Thermo Fisher Scientific, East Grinstead, UK, employing an Al-Kα monochro-
mator with an energy resolution of 0.2 eV.

2.6. Electrochemical Experiments

Electrochemical tests were conducted using a CR2032 coin–cell configuration assem-
bled in a N2 atmosphere with H2O and O2 levels both below 0.01 ppm. The circular working
electrode (coated onto thin aluminum foil that was 0.02 mm thick) for Li-ion insertion and
extraction contained a uniformly mixed Na-FeFe/Ag/Ni NPs (if applicable)/acetylene-
black (AB)/polyvinylidene-fluoride (PVDF)/N-Methyl-pyrrolidone (NMP) slurry (dried
in a vacuum at 120 ◦C for 24 h) with mass ratios of 7:1 (14%), 1.75 (25%) or 2.45 (35%):2:1:40.
Details of the electrode fabrication processes are shown in Figure 2. The mass loading for
the electrode was 1.9 mg of Na-FeFe over the circular working area, which was 15 mm
in diameter and 0.1 mm thick (17.67 mm3 in volume). A piece of porous polypropylene
(1.8 mm thick) was used as a separator between the Na-FeFe containing the working
electrode and lithium metal electrode, which was filled with 1 M of LiPF6 dissolved in
mixed ethylene carbonate (EC) and diethyl carbonate (DEC) solutions (1:1 v/v %) as the
electrolyte. The charge–discharge experiments were performed with an HOKUTO HJSD8
in constant current mode, with a cut-off voltage of 1.5 V for Li-ion insertion and 4.0 V for
Li-ion extraction. All capacities are expressed per gram of PB.
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Figure 2. The procedure for the preparation of the working electrode containing Na-FeFe NPs,
where AB represents acetylene-black, PVDF the polyvinylidene-fluoride and NMP the N-Methyl-
pyrrolidone. Mass ratios of 7:1, 7:1.75 or 7:2.45 were used for the Na-FeFe/Ag/Ni NPs amounts to
provide a mass ratio of 14%, 25% or 35% of Ag/Ni NPs in the electrode.

3. Results and Discussion
3.1. Chemical Composition

There are two lattice sites in the A-MM′ where H2O can transfer onto them during the
co-precipitation reactions [37]. The M ions in A-MM′ form a face-centered cubic sublattice
allowing for the accommodation of either M′(CN)6 or (H2O)6 between the two M ions, giv-
ing rise to a stoichiometric composition of M[M′(CN)6]1−y[(H2O)6]y. The voids enclosed by
the MN6 and M′C6 octahedra can accommodate either A ions or H2O molecules or be left
empty, giving a stoichiometric composition of A2x·z(H2O), with 2x + z ≤ 1. Taking A = Na,
M = Fe, M′ = Fe and H2O on the O sites in the present PB compounds gives a constrained sto-
ichiometric composition of Na2xFe[Fe′(CN)6]1−y[(H2O)6]y·z(H2O), with a charge balance of
2x + z ≤ 1 and x + 2 − 3(1 − y) = 0 for diffraction pattern refinement. The diffraction patterns
were analyzed using the General Structure Analysis System (GSAS) program [38], following
the Rietveld profile refining method, assuming a cubic Fm3m symmetry. Figure 3a–d illus-
trate the observed (crosses) and calculated (solid lines) diffraction patterns of the Na-FeFe
synthesized with reaction solutions of 25, 50, 70 and 85 ◦C, respectively, giving a chemical
composition of Na0.38Fe[Fe(CN)6]0.82[(H2O)6]0.18·0.34H2O (marked Na0.38-FeFe) for the
Na-FeFe synthesized at 25 ◦C, Na0.41Fe[Fe(CN)6]0.84[(H2O)6]0.16·0.36H2O (marked Na0.41-
FeFe) for that synthesized at 50 ◦C, Na0.34Fe[Fe(CN)6]0.81[(H2O)6]0.19·0.34H2O (marked
Na0.34-FeFe) for that synthesized at 70 ◦C, and Na0.36Fe[Fe(CN)6]0.84[(H2O)6]0.16·0.38H2O
(marked Na0.36-FeFe) for that synthesized at 85 ◦C. Figure 4 illustrates the atomic arrange-
ment of Na-FeFe, with 2/8 of the 8c sites and 1/9 of the 24e sites being occupied by
H2O. Occupations of H2O on the 8c or 24e sites will limit the redox capability during
the electrochemical processes. Photoemissions from C 1s, N 1s, Fe 2p and Na 1s were all
detected in the XPS taken on the Na0.38-FeFe NPs (Figure 5a–d) and on the Na0.41-FeFe
NPs (Figure 5e–h), giving a composition ratio of Na/Fe/C/N = 0.20:1:2.76:2.74 (corre-
sponding to Na0.36-Fe[Fe(CN0.99)6]0.85) for the former and 0.23:1:2.78:2.72 (corresponding
to Na0.43-Fe[Fe(CN0.97)6]0.86) for the latter. The composition ratio obtained from the XPS
and from the X-ray diffraction analysis agree reasonably well. The binding energies of C
1s (Figure 5a,e), N 1s (Figure 5b,f), Fe 2p (Figure 5c,g) and Na 1s (Figure 5d,h) obtained
for Na0.38-FeFe are all slightly lower than those for Na0.41-FeFe NPs, suggesting that the
particle size of the Na0.38-FeFe is somewhat smaller.
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suming a cubic Fm3m symmetry for the crystalline structure, giving a chemical composition of
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tical lines mark the calculated positions of the Bragg reflections of the proposed crystalline structure.
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Figure 4. A schematic drawing of the crystalline structure of Na-FeFe, with 2/8 of the 8c sites and
1/9 of the 24e sites occupied by H2O. This structure of PB can be viewed, when there is no atomic
deficiency, as consisting of Fe-N-C-Fe-C-N-Fe chains along the three crystallographic axis directions.
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3.2. Particle Size

The X-ray diffraction peaks of Na0.38-FeFe are significantly broader in width than those
of Na0.36-FeFe (Figure 3a,b), revealing that the particles in the Na0.38-FeFe NP assembly
are much smaller than those in the Na0.36-FeFe assembly. In addition, the X-ray diffraction
peaks of the four Na-FeFe, Ag and Ni NP assemblies appear to be much broader than the
instrumental resolution, reflecting the broadening of the peak profiles due to the finite-size
effect. The size distributions and mean particle diameters of the NP assemblies were
determined by fitting the diffraction peaks to the diffraction profiles of finite-sized particles.
Taking a Lorentzian diffraction profile of the peak width wi(di) from each nanoparticle of
diameter di, the diffraction intensity Ihkl of the (hkl) Bragg reflection at a scattering angle 2θ
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from a multi-dispersed NP assembly with a log-normal size distribution ni(di) takes the
following form [39,40]:

Ihkl(2θ, wi, ni) = C∑
di

(
2
π

)[
wi

4
(
2θ − 2θhkl)2 + w2

i

]
ni(di) (1)

with wi(di) =
0.94λ

dicos θhkl

and ni(di) =
1

di
√

2πσ
exp

{
− (lndi − lndm)

2

2σ2

}
,

where C is the instrumental scale factor, 2θhkl is the Bragg position of the (hkl) reflection, λ
is the X-ray wavelength, dm is the mean particle diameter and σ is the standard deviation
of the size distribution of the NP assembly. Figure 6a–d show the observed (crosses) and
calculated (solid lines) {200} and {220} diffraction peak profiles of the Na0.38-FeFe, Na0.41-
FeFe, Na0.34-FeFe and Na0.36-FeFe NP assemblies, respectively, obtained from the fits of the
diffraction profiles to the expression (1). A mean particle diameter of d = 10(1) nm with
a deviation width of σ = 0.45(1) was obtained for the Na0.38-FeFe NP assembly (inset to
Figure 6a), that of d = 17(2) nm with σ = 0.65(1) for the Na0.41-FeFe NP assembly (inset to
Figure 6b), that of d = 35(2) nm with σ = 0.50(2) for the Na0.34-FeFe NP assembly (inset to
Figure 6c) and that of d = 46(2) nm with σ = 0.55(4) for the Na0.36-FeFe NP assembly (inset
to Figure 6d). Figure 7 displays the representative TEM images obtained for the Na0.38-FeFe
(Figure 7a) and Na0.41-FeFe (Figure 7b) assemblies, giving an average particle diameter of
9.5 nm for the Na0.38-FeFe assembly and 17.5 nm for the Na0.41-FeFe assembly. There is no
noticeable asymmetry in the shape of the nanoparticles identified in the TEM images. The
average particle diameters of the PB NPs obtained from the X-ray diffraction and from the
TEM images agree very well. It appears that larger particles were obtained for the Na-FeFe
synthesized at a higher reaction temperature. A profile analysis of the X-ray diffraction
peaks of the Ag and Ni NP assemblies gives d = 7.6(3) nm with σ = 0.65(8) for the Ag NP
assembly (Figure 8a) and d = 12.4(3) nm with σ = 0.51(7) for the Ni NP assembly (Figure 8b).
The reaction temperature, chemical composition, lattice parameters, mean particle diameter
and deviation width of the size distribution for each of the four Na-FeFe compounds, the
Ag NP assemblies and the Ni NP assemblies are listed in Table 1.

Table 1. The labels, reaction solution temperatures, chemical compositions, lattice parameters, mean
particle diameters and deviation widths of the size distributions of the four Na-FeFe compounds
used in this study.

Label T (◦C) Chemical Composition a (Å) d (nm) σ

Na0.38-FeFe 25 Na0.38Fe[Fe(CN)6]0.82[(H2O)6]0.18·0.34H2O 10.145(1) 10(1) 0.45(2)

Na0.41-FeFe 50 Na0.41Fe[Fe(CN)6]0.84[(H2O)6]0.16·0.36H2O 10.248(1) 17(2) 0.65(1)

Na0.34-FeFe 70 Na0.34Fe[Fe(CN)6]0.81[(H2O)6]0.19·0.34H2O 10.196(1) 35(2) 0.50(2)

Na0.36-FeFe 85 Na0.36Fe[Fe(CN)6]0.84[(H2O)6]0.16·0.38H2O 10.185(2) 46(2) 0.55(4)

Ag Ag 4.088(1) 7.6(3) 0.65(8)

Ni Ni 3.526(3) 12.4(3) 0.51(7)

T = temperature of reaction solution; a = lattice constant at room temperature; d = mean particle diameter;
σ = deviation width of size distribution of nanoparticle assembly.
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ing an average particle diameter of 9.5 nm for the Na0.38-FeFe assembly and 17.5 nm for the Na0.41-
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images. 

Figure 6. The observed (crosses) and calculated (solid lines) {200} and {220} peak profiles of the
Na-FeFe synthesized with reaction solutions at (a) 25 ◦C, (b) 50 ◦C, (c) 70 ◦C and (d) 85 ◦C, assuming a
log-normal size distribution, given a mean particle diameter of d = 10(1) nm with a standard deviation
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(c) and d = 46(2) nm with σ = 0.55(4) for (d). The insets show the size distributions obtained from
the fits.
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Figure 7. Representative TEM images of the (a) Na0.38FeFe and (b) Na0.41FeFe NP assemblies,
showing an average particle diameter of 9.5 nm for the Na0.38-FeFe assembly and 17.5 nm for the
Na0.41-FeFe assembly. There is no noticeable asymmetry in the shape of the NPs identified in the
TEM images.
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show the size distributions obtained from the fits. 
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similar (Table 1). It is mainly the size of Na-FeFe that gives rise to the differences in the 
GCD behavior. Apparently, there is a size limit to the Na-FeFe NPs to obtain the highest 
electrochemical energy storage efficiency. The higher energy storage efficiency of the 
17NFF battery compared to the 35NFF and 46NFF batteries is a direct result of there being 
more Na-FeFe particles for dispersal in the working electrode allowing for the receiving 
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surfaces of the Na-FeFe NPs facing the anode. The reduction in energy storage efficiency 
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Figure 8. The {111}+{200} peak profiles of the (a) Ag and (b) Ni NP assemblies obtained at room
temperature. The crosses indicate the intensities observed. The solid lines indicate the calculated
diffraction profiles, assuming a log-normal size distribution, as shown in the insets, revealing mean
particle diameters of 7.6(3) nm for the Ag NP assembly and 12.4(3) nm for the Ni NP assembly. The
insets show the size distributions obtained from the fits.

3.3. Ultimate Size for Energy Storage

The galvanostatic charge–discharge (GCD) cycles were performed in constant working
current IW mode for each cycle. The working electrodes packed using 10, 17, 35 and 46 nm
Na-FeFe are labeled 10NFF, 17NFF, 35NFF and 46NFF, respectively. Obvious differences
in the GCD profiles are observed for the batteries using different sizes of Na-FeFe in the
working electrode. The GCD profiles of the 17NFF battery took the longest in time to
complete a cycle, followed by the 35NFF battery and then the 46NFF battery, but the 10NFF
battery took the shortest time (Figure 9). Among the four batteries studied, the 17NFF
battery had the highest energy capacity. The full specific capacity (FSC) CF of the 17NFF
battery reached 86 mAh/g in the initial cycle at IW = 0.015 mA, but it gradually decayed
to 76 mAh/g and then stabilized after 40 GCD cycles (open triangles in Figure 10a). A
relatively low CF of 42 mAh/g, which is only 50% of that for 17NFF, was obtained for
the 10NFF battery (open stars in Figure 10a). The decay profiles of CF with respect to
the number of GCD cycles completed for the four batteries are similar, with Coulombic
efficiencies for all of the cycles studied in the four batteries reaching between 95 and 99%
(Figure 10b–e). The Na and H2O contents in the four Na-FeFe compounds studied are
similar (Table 1). It is mainly the size of Na-FeFe that gives rise to the differences in the
GCD behavior. Apparently, there is a size limit to the Na-FeFe NPs to obtain the highest
electrochemical energy storage efficiency. The higher energy storage efficiency of the 17NFF
battery compared to the 35NFF and 46NFF batteries is a direct result of there being more
Na-FeFe particles for dispersal in the working electrode allowing for the receiving and
releasing of Li+ ions. On the other hand, the Li+ ions are received and released at the
surfaces of the Na-FeFe NPs facing the anode. The reduction in energy storage efficiency of
the 10NFF battery is thus a result of the appearance of a large amount of surface atoms that
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cannot effectively store Li+ ions. It is the competition between the number of NPs that are
available for dispersal over the electrode and the loss of storage capability for the atoms on
the surfaces of the NPs that result in the ultimate size limitation for electrochemical energy
storage by the Na-FeFe NPs.
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Figure 10. (a) Direct comparisons between the decay profiles CF(n) of the 17NFF (open triangles),
35NFF (open circles), 46NFF (open squares) and 10NFF (open stars) batteries at IW = 0.015 mA.
All four batteries have similar decay profiles CF(n). (b) Coulombic efficiency of the 17NFF bat-
tery. (c) Coulombic efficiency of the 35NFF battery. (d) Coulombic efficiency of the 46NFF battery.
(e) Coulombic efficiency of the 10NFF battery.
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The full specific capacity CF can be affected by the working current employed in
running the GCD cycles. The CF of the two 35NFF batteries, configured using working
electrodes with the same set of coatings, was measured by employing a sequence of different
IWs for the GCD cycles (Figure 11a). A CF of 84 mAh/g was obtained for the two 35NFF
batteries at IW = 0.015 mA. A direct drop in CF appeared whenever the IW was raised. The
CF dropped to 60 mAh/g after runs through a series of changes in the IW from 0.015 to
0.03 to 0.06 to 0.09 mA. Remarkably, the CF jumped back to 78 mAh/g when the IW was
subsequently reduced to 0.015 mA. The behavior of the CF with respect to the IW shows
that the loss of the CF at a high IW is linked to the reduced efficiency in receiving Li+ onto
the Na-FeFe. Coulombic efficiencies for all of the cycles studied in the two batteries reached
~99% (Figure 11b,c). Discharging at a high IW drives the accumulation of more Li+ ions onto
the cathode plate rather than causing them to enter the Na-FeFe NPs for energy storage,
which builds the potential between the cathode and the anode, but with fewer Li+ ions
stored in the Na-FeFe NPs.
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Figure 11. (a) Variations in the full specific capacity CF in relation to the working current IW employed
in the charge–discharge cycles. The CF drops from 86 to 60 mAh/g as the IW increases from 0.015
to 0.03 to 0.06 to 0.09 mA, but jumps back to 78 mAh/g once the working current is subsequently
reduced to 0.015 mA. (b) Coulombic efficiency of the 35NFF-1 battery. (c) Coulombic efficiency of the
35NFF-2 battery.

3.4. Enhanced Electrochemical Stability

The amount of Ag/Ni NPs added into the electrode is specified in the label for each
battery. For example, the label 17NFF+14%Ag indicates a 17NFF battery with an addition
of 14 mass percent of Ag NPs onto the working electrode. In the initial stage, represented
by the second GCD cycle, the 35NFF+14%Ni battery took 10% longer to complete a GCD
cycle than did its counterpart battery 35NFF (dashed lines in Figure 12a). The difference in
the time taken to complete a GCD cycle increased to 15% after the completion of 200 GCD
cycles (solid lines in Figure 12a). The Coulomb efficiency of nearly 100% obtained for the
second GCD cycle was retained after 200 GCD cycles. It appears that the incorporation of
Ni NPs onto the working electrode can enhance as well as stabilize the energy capacity
stored in the battery.



Solids 2024, 5 219
Solids 2024, 5, FOR PEER REVIEW 12 
 

 

 
Figure 12. (a) A direct comparison between the charge–discharge profiles of the 35NFF and 
35NFF+14%Ni batteries in the 2nd (dashed lines) and 200th (solid lines) GCD cycles. Differences in 
the full specific capacity CF between the two batteries increase from 10% in the 2nd cycle to 15% in 
the 200th cycle. (b) Variations in differential capacity dC/dV with potential V of the 35NFF and 
35NFF+14%Ni batteries in the 2nd (dashed lines) and 200th (solid lines) GCD cycles. The two sepa-
rated peaks clearly reveal that both the Fe2+-C and the Fe3+-N sites do participate in redox reactions. 

The two separated peaks are clearly revealed in the dC/dV curves for the initial GCD 
cycles (dashed lines in Figure 12b). The one at around 3.0 V is from the redox reaction at 
the Fe3+-N sites, whereas the one at around 3.8 V is from reaction at the Fe2+-C sites. The 
lower redox efficiency for the Fe2+-C sites reflects a reduction in the redox activity because 
of the partial occupation of the sites by H2O. The main difference between the dC/dV 
curves of the 35NFF and 35NFF+14%Ni batteries in the initial stage (dashed lines in Figure 
12b), which appears in the high-voltage regime, shows that the incorporation of Ni NPs 
facilitates the redox reactions more on the Fe2+-C sites than on the Fe3+-N sites. As expected, 
there is a reduction in the redox efficiency at both the Fe2+-C and Fe3+-N sites after 200 GCD 
cycles, but at a noticeably smaller rate for the 35NFF+14%Ni battery than for the 35NFF 
battery. The incorporation of Ni NPs in the vicinity of Na0.24-FeFe NPs enhances the GCD 
cycle stability. This behavior may be understood as arising from the participation of 
loosely bounded surface electrons of the Ni NPs in the redox reactions with Li+ ions during 
GCD cycles. 

In the initial stage, the full specific capacity CF of the 35NFF+14%Ni battery reached 
95 mAh/g, which is 10% higher than the 86 mAh/g of the 35NFF battery (open circles in 
Figure 13a). The CF of both batteries stabilized after 200 GCD cycles. The CF of the 
35NFF+14%Ni battery reduced to 67 mAh/g, but this was still 15% higher than the 58 
mAh/g of the 35NFF battery. The profiles of the decay of the CF with respect to the number 
n of GCD cycles completed of the 35NFF+14%Ni and 35NFF batteries are similar, with 
Coulombic efficiencies for all of the cycles studied in the two batteries reaching ~98% (Fig-
ure 13b,c). An enhancement in the capacity is also seen in the batteries with Ag NPs incor-
porated in the working electrodes. The amount of Ag NPs added to the working elec-
trodes significantly affects the enhancement factor and the decay profile of the CF(n) (Fig-
ure 14a). The incorporation of 14% Ag NPs enhances the CF by 30%, with the initial CF 
reaching 110 mAh/g and stabilizing at 78 mAh/g after 30 GCD cycles (open circles and 

Figure 12. (a) A direct comparison between the charge–discharge profiles of the 35NFF and
35NFF+14%Ni batteries in the 2nd (dashed lines) and 200th (solid lines) GCD cycles. Differences
in the full specific capacity CF between the two batteries increase from 10% in the 2nd cycle to 15%
in the 200th cycle. (b) Variations in differential capacity dC/dV with potential V of the 35NFF and
35NFF+14%Ni batteries in the 2nd (dashed lines) and 200th (solid lines) GCD cycles. The two sepa-
rated peaks clearly reveal that both the Fe2+-C and the Fe3+-N sites do participate in redox reactions.

The two separated peaks are clearly revealed in the dC/dV curves for the initial GCD
cycles (dashed lines in Figure 12b). The one at around 3.0 V is from the redox reaction
at the Fe3+-N sites, whereas the one at around 3.8 V is from reaction at the Fe2+-C sites.
The lower redox efficiency for the Fe2+-C sites reflects a reduction in the redox activity
because of the partial occupation of the sites by H2O. The main difference between the
dC/dV curves of the 35NFF and 35NFF+14%Ni batteries in the initial stage (dashed lines
in Figure 12b), which appears in the high-voltage regime, shows that the incorporation of
Ni NPs facilitates the redox reactions more on the Fe2+-C sites than on the Fe3+-N sites. As
expected, there is a reduction in the redox efficiency at both the Fe2+-C and Fe3+-N sites
after 200 GCD cycles, but at a noticeably smaller rate for the 35NFF+14%Ni battery than for
the 35NFF battery. The incorporation of Ni NPs in the vicinity of Na0.24-FeFe NPs enhances
the GCD cycle stability. This behavior may be understood as arising from the participation
of loosely bounded surface electrons of the Ni NPs in the redox reactions with Li+ ions
during GCD cycles.

In the initial stage, the full specific capacity CF of the 35NFF+14%Ni battery reached
95 mAh/g, which is 10% higher than the 86 mAh/g of the 35NFF battery (open cir-
cles in Figure 13a). The CF of both batteries stabilized after 200 GCD cycles. The CF of
the 35NFF+14%Ni battery reduced to 67 mAh/g, but this was still 15% higher than the
58 mAh/g of the 35NFF battery. The profiles of the decay of the CF with respect to the
number n of GCD cycles completed of the 35NFF+14%Ni and 35NFF batteries are similar,
with Coulombic efficiencies for all of the cycles studied in the two batteries reaching ~98%
(Figure 13b,c). An enhancement in the capacity is also seen in the batteries with Ag NPs
incorporated in the working electrodes. The amount of Ag NPs added to the working
electrodes significantly affects the enhancement factor and the decay profile of the CF(n)
(Figure 14a). The incorporation of 14% Ag NPs enhances the CF by 30%, with the initial
CF reaching 110 mAh/g and stabilizing at 78 mAh/g after 30 GCD cycles (open circles
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and squares in Figure 14a). On the other hand, the CF(n) remains stable for batteries incor-
porating 25% or 35% Ag NPs onto the working electrode, with the CF remaining around
78 mAh/g (open stars and triangles in Figure 14a). The CF of the three 35NFF+14%Ag,
35NFF+25%Ag and 35NFF+35%Ag batteries stabilized to 78 mAh/g, 44% higher than the
55 mAh/g of the 35NFF battery. Coulombic efficiencies for all of the cycles studied in the
four batteries reached between 95 and 98% (Figure 14b–e).
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Figure 13. (a) A direct comparison between the decay profiles CF(n) of the 35NFF (open triangles) and
35NFF+14%Ni (open circles) batteries. (b) Coulombic efficiency of the 35NFF battery. (c) Coulombic
efficiency of the 35NFF+14%Ni battery.

The decay rate of the CF(n) is largely reduced when Ag or Ni NPs are added into
the working electrodes of the 17 nm Na0.41-FeFe batteries. The CF(n) of the 17NFF battery
decayed by 30% (from 88 to 62 mAh/g) before stabilizing after 130 GCD cycles (open
squares in Figure 15a). The addition of 14% Ni NPs reduced the decay in the CF(n) to 16%
(from 88 to 74 mAh/g) (open triangles and stars in Figure 15a), whereas the addition of
14% Ag NPs reduced the decay in the CF(n) to 7% (from 88 to 82 mAh/g) (open circles in
Figure 15a). Coulombic efficiencies for all of the cycles studied in the four batteries reached
between 95 and 98% (Figure 15b–e). The higher efficiency in stabilization of the CF for
the 7.6 nm Ag NPs compared to the 12.4 nm Ni NPs arises from there being more surface
electrons available for redox reactions of Li+ ions in the Ag NPs than in the Ni NPs.
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Figure 14. (a) A direct comparison between the decay profiles CF(n) of the 35NFF (open squares),
35NFF+14%Ag (open circles), 35NFF+25%Ag (open stars) and 35NFF+35%Ag (open triangles) bat-
teries. (b) Coulombic efficiency of the 35NFF+14%Ag battery. (c) Coulombic efficiency of the
35NFF+35%Ag battery. (d) Coulombic efficiency of the 35NFF+25%Ag battery. (e) Coulombic
efficiency of the 35NFF battery.

A lower working current giving rise to a higher energy storage rate is also seen in the
17 nm Na0.41-FeFe batteries with and without the addition of Ag/Ni NPs onto the working
electrodes. A higher CF for the 17NFF+14%Ag compared to the 17NFF+14%Ni and the
17NFF is revealed regardless of the IW employed (Figure 16a). The CF of the 17NFF+14%Ag
battery stabilized from 88 to 81 mAh/g after 130 GCD cycles when IW = 0.03 mA was
employed from the initial cycle (open circles in Figure 16a). On the other hand, it was
reduced from 135 to 101 mAh/g after five GCD cycles with IW = 0.015 mA, but then
dropped directly to 79 mAh/g once the IW was raised to 0.03 mA in the sixth GCD cycle,
and then further dropped to 61 and 52 mAh/g at IW = 0.06 and 0.09 mA, respectively (open
triangles in Figure 16a). The CF jumped back to 101 mAh/g once the IW was again reduced
to 0.015 mA. This behavior of a lower IW which gives rise to a higher CF with a larger decay
in the CF was also observed in the 17NFF+14%Ni and 17NFF batteries (filled circles and
open squares in Figure 16a). Coulombic efficiencies for all of the cycles in the three batteries
reached 98% (Figure 16b–d).
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Figure 15. (a) A direct comparison between the decay profiles of the CF(n) of the 17NFF (open squares),
17NFF+14%Ni (open circles and stars) and 17NFF+14%Ag (open triangles) batteries. (b) Coulombic
efficiency of the 17NFF+14%Ag battery. (c) Coulombic efficiency of the 17NFF+14%Ni battery.
(d) Coulombic efficiency of the 17NFF+14%Ni battery. (e) Coulombic efficiency of the 17NFF battery.
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4. Conclusions

Prussian Blue with a general chemical formula of NaxFe[Fe′(CN)6]1−y[(H2O)6]y·z(H2O)
is demonstrated to be an active cathode material for electrochemical energy storage.
Four sets of Prussian Blue NPs, with mean particle diameters of 11, 17, 35 and 46 nm,
were fabricated through co-precipitation of Na4Fe(CN)6 and FeCl3 in deionized water
each at a selective temperature. Among these, the 17 nm Na-FeFe NPs had the highest
efficiency in terms of electrochemical energy storage when used as the working electrode of
a rechargeable battery. There are two redox active Fe2+-C and Fe3+-N sites in Na-FeFe. The
unavoidable replacement of Fe(CN)6 by (H2O)6 during the co-precipitation in deionized
water limits the redox activity of Na-FeFe when used as a working electrode. We demon-
strate that the introduction of bare Ag or Ni NPs in the vicinity of the working Na-FeFe
NPs can effectively stabilize the GCD cycles. In particular, the addition of 14 mass percent
of 7.6 nm Ag NPs to the vicinity of the 17 nm Na-FeFe NPs could enhance the storage
capacity by as much as 32%, and the addition of 14 mass percent of 12.4 nm Ni NPs led
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to an enhancement in storage capacity of 24%. The storage capacity of Na-FeFe NPs was
enhanced by the participation in redox reactions of the weakly bonded surface electrons
of the Ag/Ni NPs. It is hence essential to use capping free metallic NPs for effective
enhancement. Enhancement in storage capacity through the addition of Ag or Ni NPs has
also been observed in K-CoCo-based and Na-CoFe-based cathodes [36]. Comparisons of
the electrochemical data obtained in Ref. [36] and this work are listed in Table 2.

Table 2. Direct comparisons of the electrochemical data of the batteries reported in Ref. [36] and
this work.

Chemical Composition d
(nm)

mAg
(%)

mNi
(%)

IW
(mA)

CFi
(mAh/g)

CFs
(mAh/g) n

Na0.38Fe[Fe(CN)6]0.82
[(H2O)6]0.18·0.34H2O

(this work)
10 0.015 42 28 50

Na0.41Fe[Fe(CN)6]0.84
[(H2O)6]0.16·0.36H2O

(this work)
17 0.03

86 61 130

14 86 81 130

14 86 74 120

Na0.34Fe[Fe(CN)6]0.81
[(H2O)6]0.19·0.34H2O

(this work)
35

0.015

74 55 35

14 110 78 30

25 82 78 10

35 86 78 20

0.03
86 59 200

14 95 67 210

Na0.36Fe[Fe(CN)6]0.84
[(H2O)6]0.16·0.38H2O

(this work)
46 0.015 56 35 25

K0.58Co[Co(CN)6]0.86
[(H2O)6]0.14·0.24H2O

(Ref. [36])
120 0.03

300 40 60

14 340 130 120

10 305 40 125

14 310 125 120

Na0.46Co[Fe(CN)6]0.84
[(H2O)6]0.16·0.25H2O

(Ref. [36])
80 0.03

110 56 90

10 110 60 95

10 110 70 110

d = mean particle diameter; mAg = mass percentage of Ag NPs; mNi = mass percentage of Ni NPs; Iw = working
current; CFi = initial full specific capacity; CFs = stabilized full specific capacity; n = number of charge–discharge
cycles prior to stabilization.
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