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Abstract: Preheating is important to improve the mechanical properties of nickel-based superalloys
processed by additive manufacturing. The microstructure of IN718 was found to be influenced
by the preheating temperature. Different preheating temperatures affect mechanical properties by
changing microstructures. This work aims to clarify the thermal behavior for two preheated base
plate temperatures (200 ◦C and 600 ◦C) on the IN718 superalloy built by the selective laser melting
(SLM) process using the finite element method and experiments. The simulation findings indicate
that the preheated 600 ◦C model has a deeper melt pool, a slower transformation of liquid to solid,
and a slower cooling rate compared to the 200 ◦C model. As a result, the interdendritic Niobium (Nb)
segregation of IN718 is reduced, thus improving the mechanical properties of additive-manufactured
IN718 using the laser. The solidification map derived from the simulation indicates a columnar
microstructure for the IN718 superalloy. Preheating increased the size of the dendrite structure and
reduced elemental segregation, but it did not affect the morphology or size of crystal grains. We
focused on comparing the temperature gradient and cooling rate for the two preheated base plate
temperatures using the solidification map of IN718. The simulation confirmed that preheating does
not affect the grain structure.

Keywords: IN718; additive manufacturing; preheating; temperature gradient; cooling rate; solidifica-
tion map; simulation

1. Introduction

Additive manufacturing is an attractive technology for designing complicated parts
for high-temperatures environments [1]. One of the current technologies of metal additive
manufacturing is laser powder bed fusion (L-PBF), also known as selective laser melting
(SLM). In SLM, the powder on the base plate melts selectively to form any part by using
laser beam power. A new layer of powder is added after each layer has been built until the
whole part is completed. Figure 1 describes the process [1].

The SLM building chamber is filled with argon or nitrogen gas to prevent oxidation
of the heated parts [1]. In the laser powder bed fusion method, Ar gas is used to remove
fumes and the specimen surface is quenched during solidification. This rapid cooling
induces solidification segregation and solidification cracking. In powder bed fusion EBM,
preheating is commonly used to prevent smoke and charging. However, in the laser powder
bed fusion method, the use of preheating is not always common. Some SLM machines
can provide preheating to the building chamber or the substrate plate [1]. The laser beam
used in SLM makes a melt pool that solidifies very rapidly [2] in an environment of inert
gas, leading to thermal residual stress [3]. From the temperature gradient mechanism,
thermal residual stress can be generated during the heating and melting of powder or the
cooling and solidifying of the melt pool [3]. This stress has some effects on the material
properties [4]. Different techniques have been adopted to improve the mechanical proper-
ties of additive-manufactured materials by changing their microstructures, such as base
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plate preheating, optimizing process parameters, building direction, and the laser scanning
strategy [5].
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Figure 1. SLM process. (a) First layer of powder (laser melts the selected area), (b) nth layer of 
powder, (c) finished part after removing the loose powder. 

Superalloy IN718 (Inconel 718) is a common nickel-based superalloy with an out-
standing mechanical performance [6]. It is used in the engines of airliners, gas turbines, 
and many other fields [3] where high strength and corrosion resistance are required to 
protect against high temperatures [7]. IN718 is composed of Ni, Nb, Cr, Fe, and many 
other elements [8]. It has strengthening phases as well as brittle phases. 

During SLM, the rapid solidification rate and the segregation of some elements (Nb 
and Mo) increase the residual stress, forming cracks in IN718 [9]. It is therefore necessary 
to control the interdendritic Nb segregation, which results in the formation of the Laves 
phase. Subsequently, after heat treatment, it transforms into the 𝛿-phase [5]. Microsegre-
gation of Nb and Mo can be observed after laser irradiation in SLM, resulting in the pre-
cipitation of the interdendritic brittle Laves phase [8]. This causes inferior mechanical 
properties. Base plate preheating can reduce the residual stress [10] and change the me-
chanical properties [11]. This will also result in low Nb segregation [5]. Additionally, base 
plate preheating can heat the powder, leading to a reduction in the possibility of oxidation 
as moisture is eliminated from the powder [3]. 

The microstructure of any alloy depends on the cooling rate [12]. There are some 
research works on numerical simulation focusing on the cooling rates of laser additive 
manufacturing technology. The researchers analyzed the cooling rate trends for each dep-
osition [13] and for different hatch and contouring strategies [12] of direct laser metal dep-
osition techniques. The melt pool depth, width, and length increased linearly with laser 
power which was analyzed by the simulation [14]. However, the grain size of the micro-
structure increased with the increase in the cooling duration, which is reported by exper-
imental and simulation work [15]. 

This work aims to observe the effect of base plate preheating on the temperature gra-
dient and cooling rate of IN718 during this process, employing laser irradiation as the heat 
source and argon gas flow for cooling, analyzed through finite element analysis. We used 
COMSOL Multiphysics 6.1 software for simulation with two preheating temperatures 
(200 °C and 600 °C). 

2. Numerical Approach: Finite Element Analysis (FEA) 
FEA is the numerical study of a situation using the finite element method (FEM). The 

FEM, which divides a large system into smaller parts called finite elements, has been 
widely used in various applications [16]. To obtain accurate and reliable results, the num-
bers of finite elements and calculation parameters need to be properly determined for each 
problem. The present work employs a two-dimensional (2D) FEM to reveal the thermal 

Figure 1. SLM process. (a) First layer of powder (laser melts the selected area), (b) nth layer of powder,
(c) finished part after removing the loose powder.

Superalloy IN718 (Inconel 718) is a common nickel-based superalloy with an out-
standing mechanical performance [6]. It is used in the engines of airliners, gas turbines,
and many other fields [3] where high strength and corrosion resistance are required to
protect against high temperatures [7]. IN718 is composed of Ni, Nb, Cr, Fe, and many other
elements [8]. It has strengthening phases as well as brittle phases.

During SLM, the rapid solidification rate and the segregation of some elements (Nb
and Mo) increase the residual stress, forming cracks in IN718 [9]. It is therefore necessary to
control the interdendritic Nb segregation, which results in the formation of the Laves phase.
Subsequently, after heat treatment, it transforms into the δ-phase [5]. Microsegregation of
Nb and Mo can be observed after laser irradiation in SLM, resulting in the precipitation
of the interdendritic brittle Laves phase [8]. This causes inferior mechanical properties.
Base plate preheating can reduce the residual stress [10] and change the mechanical proper-
ties [11]. This will also result in low Nb segregation [5]. Additionally, base plate preheating
can heat the powder, leading to a reduction in the possibility of oxidation as moisture is
eliminated from the powder [3].

The microstructure of any alloy depends on the cooling rate [12]. There are some
research works on numerical simulation focusing on the cooling rates of laser additive
manufacturing technology. The researchers analyzed the cooling rate trends for each
deposition [13] and for different hatch and contouring strategies [12] of direct laser metal
deposition techniques. The melt pool depth, width, and length increased linearly with
laser power which was analyzed by the simulation [14]. However, the grain size of the
microstructure increased with the increase in the cooling duration, which is reported by
experimental and simulation work [15].

This work aims to observe the effect of base plate preheating on the temperature
gradient and cooling rate of IN718 during this process, employing laser irradiation as the
heat source and argon gas flow for cooling, analyzed through finite element analysis. We
used COMSOL Multiphysics 6.1 software for simulation with two preheating temperatures
(200 ◦C and 600 ◦C).

2. Numerical Approach: Finite Element Analysis (FEA)

FEA is the numerical study of a situation using the finite element method (FEM). The
FEM, which divides a large system into smaller parts called finite elements, has been widely
used in various applications [16]. To obtain accurate and reliable results, the numbers of
finite elements and calculation parameters need to be properly determined for each problem.
The present work employs a two-dimensional (2D) FEM to reveal the thermal behavior of
the IN718 superalloy in the SLM process. In the simulation, the temperature-dependent
properties of materials, thermal conduction in materials, convection and radiation on the
material surface, and laser heating were considered. COMSOL Multiphysics 6.1 software



Thermo 2024, 4 50

was used for the simulation. The primary parameters of the SLM process are indicated in
Table 1.

Table 1. Processing parameters used for simulation.

Laser Power, plaser 255 W

Laser spot radius 80 µm

Layer thickness 30 µm

Scanning velocity 980 mm/s

Hatch spacing 120 µm

Based on these parameters, we constructed a model and determined calculation
conditions.

2.1. Temperature-Dependent Properties

The specific heat, density, and thermal conductivity of IN718 depend on the tempera-
ture. Based on the literature values [17], we determined the thermophysical properties of
solid and liquid IN718 (Figure 2) for the simulation.
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From these property values, we obtained the density (ρ), specific heat (c), and thermal 
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where φ is the fractional porosity of the powder, which was assumed to be 0.35 [19]. 

2.2. FEM Simulation 
For the FEM simulation, we targeted a small portion of the whole sample (Figure 3). 

For the computation advantage, we solved the 2D model. The thickness of the powder 
layer was 30 µm and the height of the previously solidified layer, which corresponded to 
15 powder layers, was 450 µm. Each layer was 1080 µm wide. 

Figure 2. Temperature-dependent physical properties of IN718 [17].

From these property values, we obtained the density (ρ), specific heat (c), and thermal
conductivity (k) of powder IN718 using the following equations [18]:

ρpowder

ρsolid
= 1 − φ (1)

cpowder

csolid
= 1 − φ (2)

kpowder

ksolid
=

1 − φ

1 + 11φ2 (3)

where φ is the fractional porosity of the powder, which was assumed to be 0.35 [19].

2.2. FEM Simulation

For the FEM simulation, we targeted a small portion of the whole sample (Figure 3).
For the computation advantage, we solved the 2D model. The thickness of the powder
layer was 30 µm and the height of the previously solidified layer, which corresponded to
15 powder layers, was 450 µm. Each layer was 1080 µm wide.
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Figure 3. FE model. 

The temperature of the bottom of the previously solidified layer was assumed to be 
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The temperature of the bottom of the previously solidified layer was assumed to be
the same as the preheated temperature of the base plate.

The heat transfer equation used for the solid material is as follows:

ρCp
∂T
∂t

= ∇·(k∇T) + Qlaser (4)

where ρ is the density
[
kgm−3], Cp is the specific heat

[
Jkg−1K−1

]
, T is the temperature [K],

t is time [s], k is the thermal conductivity
[
Wm−1K−1

]
, and Qlaser is the laser heat source[

Wm−3].
At the powder layer surface, the convective and radiative heat transfers occur, given

by the following:

k
∂T
∂y

⌋
y=0

= h(Text − T) + εσ(T4
amb − T4) (5)

where y is the y-direction depth within powder [m], h is the convective heat transfer
coefficient

[
Wm−2K−1

]
, Text is the external gas temperature [K], ε is the surface emissivity,

σ is the Stefan–Boltzmann constant, and Tamb is the ambient radiant temperature [K].
We assumed the laser heat source to be the Gaussian beam and the Beer–Lambert law

for Qlaser (Equation (6)) [20]:

Qlaser =
2plaser

πr2
spot

Acoe f f

d
exp

−2
[
(x − xlaser)

2
]

r2
spot

exp(
−|y|

d
) (6)

where plaser is the laser power [W], rspot is the beam radius [m], Acoe f f is the absorption
coefficient of the powder layer, d is the penetration depth [m], and xlaser is the laser position
during scanning at different times.

During the SLM process, the molten material is exposed to a large mass transport due
to the volume forces and the Marangoni effect. The Marangoni effect is defined using the
shear stress at the molten pool top surface (Equation (7)) [20]:

FMarangoni = ∇sγ; γ = γ0 +
dγ

dT
(T − Tre f ) (7)

The subscript s represents the top surface of the molten pool, γ is the surface ten-
sion

[
Nm−1K−1

]
, dγ

dT is the coefficient of the surface tension, and Tre f is the reference
temperature at the melting point.

The volume force, Fg
[
Nm−3], is caused by the difference in the density of the molten

pool [20]:
Fg = g(ρ − ρre f ) (8)

where ρre f is the reference density at Tre f and g is the acceleration of gravity
[
ms−2].
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The Navier–Stokes equation and the equation of continuity were considered to indicate
the molten pool laminar flow [20] as follows:

ρ
∂u
∂t

+ ρ(u·∇)u = ∇·
[
−pI + µ(∇u +

(
∇u)T

)]
+ F) (9)

ρ∇·u = 0 (10)

where p is the pressure [Pa], u is the fluid velocity
[
ms−1], F is the sum of all other forces, I

is the three-dimensional unity tensor, and µ is the dynamic viscosity [Pas].
The number of phase transitions was 1 (liquid and solid) in this study. When θ1 and

θ2 represented the fractions of phase 1 (solid) and phase 2 (liquid), respectively, it was
assumed that the thermophysical properties could be given by the following equations:

θ1 + θ2 = 1 (11)

ρ = θ1 ρ1 + θ2 ρ2 (12)

Cp =
1
ρ

(
θ1ρ1Cp,1 + θ2ρ2Cp,2

)
+ L1→2

∂αm

∂T
(13)

αm =
1
2

θ2 ρ2 − θ1 ρ1
θ1 ρ1 − θ2 ρ2

(14)

k = θ1 k1 + θ2 k2 (15)

where L1→2 is the latent heat of fusion from phases 1 to 2 and αm is defined as the Equa-
tion (14).

To include the effect of argon gas cooling, external forced convection on the plate was
applied to the upper surface. The temperature of argon gas was 45 ◦C. The parameters in
Tables 1–3 are the properties of the SLM process and the IN718 material. The parameters
used in this simulation are listed in Table 3.

Table 2. Conditions of argon gas flow.

Flow Velocity in the connecting Pipe * 23 m/s

Pressure 470.81 Pa

Temperature 45 ◦C
* Based on this information, the flow rate at the outlet was determined.

Table 3. Parameters for simulation.

Absorption Coefficient, Acoe f f 0.3

Penetration depth, d 65 µm

Emissivity, ε 0.36

Heat transfer coefficient 80 Wm−2K−1

Melting temperature, Tm 1571 K

Solidus temperature 1443 K

Liquidus temperature 1609 K

Latent heat of fusion 210 J/g

Preheated temperatures 200 ◦C, 600 ◦C

In COMSOL Multiphysics 6.1 software, we used two physics: Heat Transfer in Solids
and Laminar Flow. There are also Nonisothermal Flow and Marangoni Effect under the
Multiphysics node.

In the Heat Transfer in Solids node, we included Surface-to-Ambient Radiation for
the laser irradiation effect. The Heat Source node was used for the effect of temperature
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from the laser. The values of the laser source can be given in the Variables node. The
Temperature node was used for the preheated surface. The Heat Flux node was used for
argon gas convection and cooling effect. We also included the Phase Change Material node
for the effect of transforming IN718 solid to liquid.

In the Laminar Flow node, we included the Gravity node and no-slip in the Wall
node. For the Volume Force node, we followed the guidelines from the COMSOL tutorial
model [21]. We selected one random point for the Pressure Point Constraint node.

We used a time-dependent solver for this simulation. The initial and boundary condi-
tions are as follows in Table 4.

Table 4. Initial and boundary conditions.

Initial Conditions Boundary Conditions

Previously solidified layers
and the new layer → Room

temperature (25 ◦C)

Top surface of powder →

Convection (convective heat
transfer coefficient and using

heat flux node)

Velocity field (laminar flow
node) → 0 m/s

Argon cooling effect (external
forced convection and using

heat flux node)

Pressure (laminar flow node)
→ 0 Pa

Radiation (using
surface-to-ambient

radiation node)

Bottom surface of powder → Preheated temperature (200 ◦C,
600 ◦C) (using temperature node)

No-slip condition (using wall in laminar flow node)

Conduction from powder to solid material

Figures 4 and 5 illustrate the laser travel time and scanning direction considered in
the simulation. The dimensions of the original IN718 cube (from where we took a small
portion to simulate) processed by the SLM were 45 × 45 × 45 mm. The laser scanning
took 17.265 s to complete a layer, and the whole cube took approximately 7 h to build. The
hatch distance was 120 µm and the scanning speed was 980 mm/s. After the laser heating
initiated from a corner (x = y = 0 µm) at 0 s, it reached the next point (horizontally) in 0.046 s
and completed the total distance of 1080 µm in approximately 0.231 s.
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The same time duration was used in the 2D simulation as the time required by the 
laser heating to scan a distance of 1080 µm in the real scenario. We observed the thermal 
behavior when the laser beam had passed 540 µm (which is the midpoint of 1080 µm) 
using the simulation. 

Extremely fine mesh was used for the simulation and the study time was 18 s, as the 
laser scanning took 17.265 s to complete a layer. The adaptive mesh-refinement and the 
time-dependent solver were used. 
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ters: laser power 255 W, scanning speed 980 mm/s, hatch spacing 120 µm, and layer thick-
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(Ballerup, Denmark) automatic polishing machine and etched with 20% phosphoric acid 
+ 80% water solution. The observation was performed using a scanning electron micro-
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Figure 5. Laser travel time.

The same time duration was used in the 2D simulation as the time required by the
laser heating to scan a distance of 1080 µm in the real scenario. We observed the thermal
behavior when the laser beam had passed 540 µm (which is the midpoint of 1080 µm) using
the simulation.

Extremely fine mesh was used for the simulation and the study time was 18 s, as the
laser scanning took 17.265 s to complete a layer. The adaptive mesh-refinement and the
time-dependent solver were used.

2.3. Experimental Setup

A 45 × 45 × 45 mm IN718 cube was built with SLM 280HL, which included a pre-
heating system (SLM Solutions Group AG, Estlandring, Lubeck, Germany). The base plate
preheatings at 200 ◦C and 600 ◦C were completed with the following processing parameters:
laser power 255 W, scanning speed 980 mm/s, hatch spacing 120 µm, and layer thickness
30 µm. For the microstructural observation, we polished the specimens using Struers
(Ballerup, Denmark) automatic polishing machine and etched with 20% phosphoric acid
+ 80% water solution. The observation was performed using a scanning electron micro-
scope (SEM; Hitachi, Tokyo, Japan) with an accelerating voltage of 15 kV and a scanning
transmission electron microscope (STEM; JEOL, Tokyo, Japan).

3. Results
3.1. Change in Melt Pool

As explained in Section 2.2, after the laser starts scanning it takes 0.231 s to complete
scanning 1080 µm, and then the laser deactivates. To observe the melt pool condition
(Figure 6) for both preheated temperatures, we targeted 0.281 s, which is 0.050 s after the
laser deactivates and starts to become stable.
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Figure 6. Melt pool for (a) preheated 200 ◦C and (b) preheated 600 ◦C (color code: 100% is completely
liquid, 0% is no liquid or completely solid).
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From Figure 6, we can clearly see that the melt pool depth for the preheated 600 ◦C
model is greater than that for the preheated 200 ◦C model. As the other conditions re-
main the same, the deeper melt pool for the preheated 600 ◦C model suggests a slower
solidification rate than that for the preheated 200 ◦C model.

The calculated melt pool depth can be half of the melt pool width [23]. The melt pool
depth approximation derived from the Rosenthal equation that was used by Tang et al. [19]
is as follows (properties are for room temperature):

2 × Depth = Width ≈

√
8Acoe f f plaser

πeρCPV(Tm − T0)
(16)

where Acoe f f plaser is the laser power absorbed by the part, e is Euler’s number, ρ is the

density
[
kgm−3], Cp is the specific heat

[
Jkg−1K−1

]
, V is the scanning velocity

[
ms−1],

Tm is the melting temperature [K], and T0 is the preheated temperature [K]. From Table 3,
Acoe f f is 0.3 and from Table 1, plaser is 255 W.

According to this Equation (16), the melt pool depth for the powder layer is 94 µm for
the preheated 200 ◦C model and 117 µm for the preheated 600 ◦C model. However, in the
simulation, when considering temperature-dependent properties for both the powder layer
and previously solidified layers, the values are different (at 0.281 s), with simulated depths
of 359 µm for the preheated 200 ◦C model and 400 µm for the preheated 600 ◦C model. The
inconsistency in the values is because the analytical results considered room temperature
properties at stable condition while the simulation considered temperature-dependent
properties with time. But in both cases, the melt pool depth for the preheated 600 ◦C model
is deeper.

3.2. Solidification Parameters

We determined the solidification parameters (temperature gradient, solidification rate)
for the melt pool. The temperature gradient (unit: K/m) is the change in temperature with
distance; the solidification rate (unit: m/s) is the growth rate of solidification (liquid–solid
interface velocity). At different locations of the melt pool, the cooling rate, temperature
gradient (G in Figure 7b), and solidification rate (R in Figure 7c) vary [23].

Figure 7 indicates the molten pool’s local thermal history. Figure 7a shows the tempera-
ture field distribution obtained from simulation at 0.281 s after the laser starts scanning. The
local temperature rises sharply (Figure 7b) because a huge amount of heat is concentrated
within the narrow molten pool [24]. The local temperature starts to decrease once the laser
moves away from the pool. The molten pool begins to solidify after the local temperature
drops below the liquidous temperature of IN718 [24]. This present work considers the
liquidus temperature of IN718 to be 1609 K or 1335.85◦C. From the simulation, it is observed
that the temperature along the depth direction (Figure 7a) in the powder layer (thickness
30 µm) for the preheated 200 ◦C model falls below the liquidus temperature at around
0.311 s while it takes around 0.327 s for the preheated 600 ◦C model (Figure 8).

In our study, as Figure 9 shows, we can see the relationship between the solidification
rate and the temperature gradient-magnitude variation in different locations of the melt
pool depth direction of the powder layer.

We have considered different thermal conductivities, densities, and other properties
for the powder layer and previously solidified layers of IN718. Here, we focus only on the
powder layer (30 µm). The solidification rate starts to increase while at the same time the
temperature gradient shows a decreasing trend (Figure 9). From this figure, it is noticeable
that the solidification rate and the temperature gradient are higher in preheating to 200 ◦C
(Figure 9) than in preheating to 600 ◦C (Figure 9) at 0.281 s. Higher preheating temperatures
show a decrease in thermal gradient during cooling [3]. At the lowest temperature gradient,
the solidification rate is highest for both cases.
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Figure 7. (a) Simulated temperature field distribution (at 0.281 s), (b) change in temperature along 
the depth direction (at 0.281 s), (c) change in temperature according to time for points 1, 2, 3, 4, 5 
indicated in (a). 

Figure 7 indicates the molten pool’s local thermal history. Figure 7a shows the tem-
perature field distribution obtained from simulation at 0.281 s after the laser starts scan-
ning. The local temperature rises sharply (Figure 7b) because a huge amount of heat is 
concentrated within the narrow molten pool [24]. The local temperature starts to decrease 
once the laser moves away from the pool. The molten pool begins to solidify after the local 
temperature drops below the liquidous temperature of IN718 [24]. This present work con-
siders the liquidus temperature of IN718 to be 1609 K or 1335.85°C. From the simulation, it 
is observed that the temperature along the depth direction (Figure 7a) in the powder layer 
(thickness 30 µm) for the preheated 200 °C model falls below the liquidus temperature at 
around 0.311 s while it takes around 0.327 s for the preheated 600 °C model (Figure 8). 
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Figure 7. (a) Simulated temperature field distribution (at 0.281 s), (b) change in temperature along
the depth direction (at 0.281 s), (c) change in temperature according to time for points 1, 2, 3, 4, 5
indicated in (a).
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siders the liquidus temperature of IN718 to be 1609 K or 1335.85°C. From the simulation, it 
is observed that the temperature along the depth direction (Figure 7a) in the powder layer 
(thickness 30 µm) for the preheated 200 °C model falls below the liquidus temperature at 
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Figure 8. Temperature along the depth direction (a) at 0.311 s for preheating to 200 ◦C and (b) at
0.327 s for preheating to 600 ◦C.
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Figure 9. Temperature gradient magnitude and solidification rate variation with melt pool depth 
for powder layer at 0.281 s for preheating to 200 °C and 600 °C. 

We have considered different thermal conductivities, densities, and other properties 
for the powder layer and previously solidified layers of IN718. Here, we focus only on the 
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temperature gradient shows a decreasing trend (Figure 9). From this figure, it is noticeable 
that the solidification rate and the temperature gradient are higher in preheating to 200 
°C (Figure 9) than in preheating to 600 °C (Figure 9) at 0.281 s. Higher preheating temper-
atures show a decrease in thermal gradient during cooling [3]. At the lowest temperature 
gradient, the solidification rate is highest for both cases. 

Figure 10 shows the cooling rate (K/s) at different locations of melt pool depth for the 
powder layer for the two preheated temperatures. The cooling rate varies within 1.55 ൈ 10ହ ~ 2.65 ൈ 10ହ (K/s) near the melt pool of the powder layer for preheating to 200 
°C and within 3.69 ൈ 10ସ ~ 4.44 ൈ 10ସ  (K/s) for preheating to 600 °C at 0.190 s (laser 
crosses the midpoint). So, the cooling rate is higher for preheating to 200 °C than for pre-
heating to 600 °C. 

 

Figure 9. Temperature gradient magnitude and solidification rate variation with melt pool depth for
powder layer at 0.281 s for preheating to 200 ◦C and 600 ◦C.

Figure 10 shows the cooling rate (K/s) at different locations of melt pool depth for
the powder layer for the two preheated temperatures. The cooling rate varies within
1.55 × 105∼2.65 × 105 (K/s) near the melt pool of the powder layer for preheating to 200 ◦C
and within 3.69 × 104∼4.44 × 104 (K/s) for preheating to 600 ◦C at 0.190 s (laser crosses
the midpoint). So, the cooling rate is higher for preheating to 200 ◦C than for preheating to
600 ◦C.
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Figure 10. Cooling rate (K/s) at different depths of melt pool of powder layer.

4. Discussion

In this work, we observed how base plate preheating temperatures can influence the
temperature gradient and cooling rate of IN718 superalloy. The melt pool is deeper when
preheated to 600 ◦C than when preheated to 200 ◦C (Figure 6). The cooling rate at the
powder layer of the melt pool is higher when preheated to 200 ◦C than when preheated
to 600 ◦C (Figure 10). The deeper melt pool depth corresponds to the fact that preheating
to 600 ◦C results in slower cooling than preheating to 200 ◦C. The validation is further
supported by the percentage of solid at the same point for both preheated temperatures.
The simulated temperatures indicate that the temperature drops below the liquidus line
at 0.311 s for preheating to 200 ◦C and at 0.327 s for preheating to 600 ◦C (for the 2D
model considered here). The solidification direction (Figure 11) is opposite to the laser heat
direction [25], so solidification starting from the bottom (30 µm) goes to the top surface of
the powder layer. The solid fraction (Figure 11) is higher in preheating to 200 ◦C (at 0.311 s)
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than in preheating to 600 ◦C (at 0.327 s). This indicates that preheating to 200 ◦C makes the
melt pool solidify more quickly than preheating to 600 ◦C.
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When solidification initiates, it leads to the formation of dendrites, which exhibit a 
tree-like crystal structure [26]. The determination of the primary dendrite arm occurs 
when the surface normal is parallel to the growth direction, as shown in [27] (Figure 12). 
The primary dendritic arm spacing is defined as the distance from the center of the pri-
mary dendrite to the center of the nearest neighboring primary dendrite [28]. The second-
ary dendrite arm spacing is determined when the surface normal is perpendicular to the 
growth direction [27] (Figure 12). 

 

Figure 11. Solid fraction (%) at the same point for two preheated base plates.

When solidification initiates, it leads to the formation of dendrites, which exhibit a
tree-like crystal structure [26]. The determination of the primary dendrite arm occurs when
the surface normal is parallel to the growth direction, as shown in [27] (Figure 12). The
primary dendritic arm spacing is defined as the distance from the center of the primary
dendrite to the center of the nearest neighboring primary dendrite [28]. The secondary
dendrite arm spacing is determined when the surface normal is perpendicular to the growth
direction [27] (Figure 12).
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Figure 12. Illustration of the primary (λP) and secondary (λS) dendrite arm spacing [28].

The primary and secondary dendritic arm spacings reveal the sizes of the solidification
structures. The primary and secondary arm spacing can be obtained as a function of the
cooling rate (K/s) in the form of λ = A(GR)n, where GR is the cooling rate and A and n
are fitting parameters [29]. For IN718, the A and n values for the primary dendritic arm
spacing (λP, µm) [30] and secondary dendritic arm spacing (λS, µm) are [29]:

λP = 97(GR)−0.36 (17)

λS = 34(GR)−0.34 (18)

In preheating to 200 ◦C, the primary dendritic arm spacing (λP) values are approx-
imately 1.08 µm to 1.31 µm for the melt pool in the powder layer. On the other hand,
preheating to 600 ◦C presents slightly higher λP values than preheating to 200 ◦C, ap-
proximately 2.1 µm to 2.06 µm for the same locations, resulting in a lower cooling rate
(Figures 13 and 14). Also, in the case of secondary dendritic arm spacing, λS, preheating to
600 ◦C has slightly higher λS values (ranging between 0.89 and 0.95 µm) than preheating
to 200 ◦C (ranging between 0.48 and 0.58 µm). Figure 14 shows this scenario for a small
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area of powder layer for better understanding of where the cooling rate varies within
2.31 × 105∼2.62 × 105 (K/s) for preheating to 200 ◦C and 4.18 × 104∼ 4.38 × 104 (K/s) for
preheating to 600 ◦C. So, the higher cooling rate is causing smaller dendritic arm spacing.
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Figure 13. (a) Primary and (b) secondary dendritic arm spacing (µm) at different depths (µm) of 
melt pool of the powder layer. 

So, preheating to 200 °C exhibits higher cooling rates, smaller primary dendritic arm 
spacing, and secondary dendritic arm spacing than preheating to 600 °C. Higher cooling 
rates mean rapid solidification and typically cause small grain sizes [22]. 

The experimental observation shows coarser dendrites for the specimen preheated to 
600 °C. A slower cooling rate can cause coarser dendrites [31]. Figure 15 demonstrates the 
microstructure observation. From this SEM image, we initially calculated the ten primary 
dendritic arms’ spacings (10 PDAS), that is, 𝜆௉ and then used Equation (17) to determine 
the cooling rate. The 𝜆௉ is 0.699 µm for preheating to 200 °C and 0.953 µm for preheating 
to 600 °C, whereas the simulated values for the powder layer are on average 1.2 µm and 
2.1 µm, respectively. The cooling rate is 1.05 ൈ 10଻ (K/s) for preheating to 200 °C and 3.86 ൈ 10଺ (K/s) for preheating to 600 °C, whereas the simulated values are 2.09 ൈ 10ହ 

Figure 13. (a) Primary and (b) secondary dendritic arm spacing (µm) at different depths (µm) of melt
pool of the powder layer.
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Figure 15. SEM microstructure showing primary dendritic arm spacing for preheating to (a) 200 °C 
and (b) 600 °C (BD means building direction). 

Figure 14. Variation in primary (λP) and secondary dendritic arm spacing (λS) (µm) with cooling
rate (K/s).

So, preheating to 200 ◦C exhibits higher cooling rates, smaller primary dendritic arm
spacing, and secondary dendritic arm spacing than preheating to 600 ◦C. Higher cooling
rates mean rapid solidification and typically cause small grain sizes [22].

The experimental observation shows coarser dendrites for the specimen preheated to
600 ◦C. A slower cooling rate can cause coarser dendrites [31]. Figure 15 demonstrates the
microstructure observation. From this SEM image, we initially calculated the ten primary
dendritic arms’ spacings (10 PDAS), that is, λP and then used Equation (17) to determine
the cooling rate. The λP is 0.699 µm for preheating to 200 ◦C and 0.953 µm for preheating
to 600 ◦C, whereas the simulated values for the powder layer are on average 1.2 µm and
2.1 µm, respectively. The cooling rate is 1.05 × 107 (K/s) for preheating to 200 ◦C and
3.86 × 106 (K/s) for preheating to 600 ◦C, whereas the simulated values are 2.09 × 105 (K/s)
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and 4.04 × 104 (K/s), respectively, for the powder layer. Both the microstructure observa-
tion and simulated results show a higher cooling rate and smaller dendritic arm spacing
for preheating to 200 ◦C than 600 ◦C.
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Figure 15. SEM microstructure showing primary dendritic arm spacing for preheating to (a) 200 °C 
and (b) 600 °C (BD means building direction). 

Figure 15. SEM microstructure showing primary dendritic arm spacing for preheating to (a) 200 ◦C
and (b) 600 ◦C (BD means building direction).

During SLM, the Nb-segregated Laves phase in the interdendritic regions can be
reduced by lowering the cooling rate of the molten liquid [32] (Figure 16). This present
simulation work also shows a lower cooling rate for preheating to 600 ◦C than for preheating
to 200 ◦C, which corresponds to the experimental result exhibiting lower Nb segregation
for 600 ◦C.

If we can predict the microstructure, we can also predict the mechanical properties
of SLM-ed products. Columnar, mixed, and equiaxed are three possible microstructures
influenced by the solidification rate and temperature gradient [33]. Promoppatum et al. [23]
have predicted a columnar microstructure for Inconel 718 in the log scale from the solidifica-
tion map for Inconel 718 [22] (Figure 17). H. Li et al. have shown the columnar-to-equiaxed
transition for the high-entropy alloy [24].

Figure 18 shows a solidification map for this work obtained from simulation at 0.139 s
for the two preheated temperatures in the log scale for the powder layer. It also shows
columnar growth for IN718 for both preheating temperatures.
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5. Conclusions

This study determines the effect of preheating the base plate on the temperature
gradient and cooling rate of IN718 during SLM using a simulation tool. According to the
simulation results, we can arrive at the following conclusions:

1. Blocks built with preheating to 600 ◦C have a slower cooling rate and higher primary
dendritic arm spacing (λ) than those preheated to 200 ◦C. This indicates a change in
the microstructure by preheating to 600 ◦C.

2. The solidification map shows columnar microstructures for base plates preheated to
both temperatures.

3. The melt pool depth is greater in the preheating to 600 ◦C model than in the 200 ◦C
model. Analysis of the solid percentage at the same points reveals that the model pre-
heating to 200 ◦C undergoes a quicker transformation from liquid to solid compared
to preheating to 600 ◦C.

4. Preheating increased the size of the dendrite structure and reduced elemental segre-
gation, but it did not affect crystal grain morphology or size. A simulation confirmed
that grain structure is unaffected by preheating.

Therefore, we can say that the preheating temperature influences the temperature
gradient, which consequently changes the microstructure of IN718. Based on the simulation
results, we can further change other parameters in the future to observe the effects on the
temperature gradient of IN718.
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