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Abstract: Cancer, which is currently rated as the second-leading cause of mortality across the
globe, is one of the most hazardous disease groups that has plagued humanity for centuries. The
experiments presented here span over two decades and were conducted on a specific species of mice,
aiming to neutralize a highly carcinogenic agent by altering its chemical structure when combined
with certain compounds. A plethora of growth models, each of which makes use of distinctive
qualities, are utilized in the investigation and explanation of the phenomena of chemically induced
oncogenesis and prevention. The analysis ultimately results in the formalization of the process of
locating the growth model that provides the best descriptive power based on predefined criteria.
This is accomplished through a methodological workflow that adopts a computational pipeline
based on the Levenberg–Marquardt algorithm with pioneering and conventional metrics as well
as a ruleset. The developed process simplifies the investigated phenomena as the parameter space
of growth models is reduced. The predictability is proven strong in the near future (i.e., a 0.61%
difference between the predicted and actual values). The parameters differentiate between active
compounds (i.e., classification results reach up to 96% in sensitivity and other performance metrics).
The distribution of parameter contribution complements the findings that the logistic growth model
is the most appropriate (i.e., 44.47%). In addition, the dosage of chemicals is increased by a factor
of two for the next round of trials, which exposes parallel behavior between the two dosages. As a
consequence, the study reveals important information on chemoprevention and the cycles of cancer
proliferation. If developed further, it might lead to the development of nutritional supplements that
completely inhibit the expansion of cancerous tumors. The methodology provided can be used to
describe other phenomena that progress over time and it has the power to estimate future results.

Keywords: benzopyrene; cancer; chemoprevention; chemotherapy; mathematical modeling; polyamines;
thiols

1. Introduction

Cancer is one of the most dangerous disease groups currently affecting developed
nations, highlighted as the second-leading cause of death worldwide, after heart condi-
tions [1]. Statistics indicate that the most common cancer types in terms of new cases are
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breast, lung, colon and rectum, prostate, skin, and stomach. In terms of mortality, lung,
colon and rectum, liver, stomach, and breast cancer are the most prevalent [2]. A third
of cancer mortality is attributed to modifiable behaviors, such as using tobacco products,
drinking alcohol, consuming foods with poor nutritional value, and not exercising [3,4].
Nevertheless, regardless of the type of neoplasm, cancer can be effectively treated if diag-
nosed early. Minimizing the risk factors mentioned above may also significantly lower the
likelihood of tumor development [5].

Cancer develops when normal cells undergo a multi-stage process that often pro-
gresses from a precancerous to a malignant state, resulting in tumor cells [6]. Technological
advances have significantly contributed to cancer treatment by introducing immunothera-
pies capable of targeting genetic and protein abnormalities in cancer cells. This is particu-
larly valuable when patients have exhausted options after other therapies have failed [7,8].
Recent years have also seen a focus on targeted treatments as well as the states and features
of metastatic cells [9,10]. Despite intense scientific interest, little progress has been made in
terms of chemoprevention. As chemoprevention has been explored for treating various
malignancies, interest in understanding oncogenesis and identifying potential molecular
targets to impede the process has magnified. The developed approach focuses on the
use of organic, inorganic, or biologically active substances to delay, stop, or reverse the
progression of tumors. Several techniques, including the activation of free radical scav-
enging enzymes and the management of chronic inflammation, can potentially stop the
uncontrollable growth of tumors [11].

This study expands on prior research [12] by mathematically elucidating the phe-
nomenon of chemical oncogenesis induced in a specific mouse species through the surgical
administration of the carcinogenic agent 3,4-benzopyrene (BP). Additionally, it investigates
the concept of chemical prevention by combining compounds from the polyamine (PA)
or thiol (TH) families with BP. The analysis involves employing various mathematical
functions to realistically depict and forecast these phenomena, emphasizing curve fitting
and evaluating model performance. The study introduces a methodological workflow
for selecting the most descriptive growth model, incorporating a graphical approach and
innovative metrics for assessing model performance over time. This research diverges
from the previous one by exposing experimental subjects to double dosages, enhancing
the depth of investigation. It provides a comprehensive literature review on oncogenesis,
contributing to contextual understanding. The inclusion of diverse growth models adds
methodological sophistication and detailed experimental procedures enrich the scientific
methodology. This study also explores clinical implications, emphasizing the potential
translational impact within clinical practice.

The contribution of this work is not limited to modeling phenomena and accurately
predicting their progression over time using progression metrics and illustrations. It further
expands to formalizing a methodological workflow that can be adopted in a variety of
fields utilizing time-related data. The proposed workflow considers a predefined ruleset
that can be adapted to the respective needs, numerous growth models, a computational
curve fitting pipeline capable of dealing with the initial guess problem, the performance
of the models based on a series of key performance and progression indicators, and the
interpretation of the resulting information; this approach aims to provide valuable insights
for the explanation, predictability, and overall simplification of the corresponding events.

2. Growth Models

Due to their similarity to homeostasis, the mechanism through which individuals
maintain optimal functioning conditions, sigmoid functions are anticipated to yield better
results. Therefore, various functions, including exponential, Gompertz, Bertalanffy, logistic,
Gauss, third-degree polynomial, Brody, Weibull, and power law, were employed to explore
their capacity to capture tumor size development.

The exponential function was leveraged to capture cases where the homeostasis
mechanism declined, resulting in rapid multiplication of the tumor. The exponential
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function assumes a constant ratio between the growth rate of cancer cells and the total
number of cancer cells at a given time. It is denoted as

V = V0eλt. (1)

The constant ratio is denoted by λ, which is an arbitrary constant. Similar to e and λ,
it is easy to notice that the doubling time of the quantity V is constant, as V0 reflects the
initial weight of the tumor and does not vary.

The Gompertz model, originally conceptualized in 1825 by Benjamin Gompertz, was
developed to describe the mortality rates of human populations. Despite its historical
origins, this mathematical model continues to find relevance and utility in contemporary
scientific and epidemiological studies. One prominent example of its ongoing application is
in the context of simulating and analyzing the spread of infectious diseases such as COVID-
19 [13]. Schematically, this model initially resembles the exponential model; however,
there are no substantial changes in the time domain near the conclusion of the curve. The
mathematical expression is given as follows:

V = V0ea(1−e−bt), (2)

where V0 represents the initial weight of the cancer, a represents the x-axis displacement,
and b represents the growth rate. Gompertz is a sigmoidal curve that is mostly employed
for advanced-stage tumors because it is manifestly unsuitable for smaller tumors. When
the tumor proliferation rate approaches infinity in sufficiently tiny tumor volumes, the
model does not provide a realistic depiction. Specifically, any growth equation or model
that follows a relative growth rate of the type P/Q, with P tending to infinity as Q goes
to zero, cannot explain or reflect the complicated biological events that occur during the
cell cycle and apoptosis. The latter processes rely on doubling times, which cannot accept
arbitrarily small values.

The Bertalanffy function was originally devised—and is currently employed—to
model the population increase of fish and other animals [14,15], but it has also proven
to be an effective model for describing the development of cancer cells. This model’s
distinctive feature is that it is based on the theory of metabolism, which can be proven
experimentally. The following are hypotheses that were relied on. The growth rate reflects
the difference between the anabolic and catabolic rates and the ratio between cell death
and cancer cell death. In addition, the disease’s morphology does not alter despite the fact
that the anabolic rate is related to the cancer cells and the volume is proportional to the
surface area. Consequently, the formula of the function is as follows:

dV
dt

= nV2/3 − mV ⇒ V = b1(1 − be−b3t

2 )3, (3)

where n and m are analogy-indicating parameters. Geometrically, this model approximates
the logarithmic function, which is the inverse of the exponential function. It is concave
in shape and the kurtosis suggests that this model will fit well in the second and third
phases of cellular cancer growth, as it has both a linear component at the beginning and a
smoothing of values at the conclusion.

The Verhulst–Pearl model, also known as the logistic equation, was developed in
1845 to describe the increase in population. This concept is quite close to Bertalanffy’s but
more adaptable. If early-stage observations reveal behavior comparable to exponential
development, we select a small value for ‘b’. In this instance, the logistic model shares
behavior with the exponential model across the whole time domain. If the data do not
exhibit exponential behavior, we select a large ‘b’ to achieve the desired slowdown in cancer
cell development. Its original purpose was to depict the self-limiting growth of a biological
population, based on the idea that the reproduction rate is proportional to both the existing
population and the amount of available resources. From the shape of this sigmoid function,
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additional information can be derived. Parameter ‘a’ sets the growth rate, whereas ‘b’
provides the maximal mass of cancer cells, as shown in

dV
dt

= αV − βV2 ⇒ V =
α

e−αt a
V0−b + b

. (4)

Thus, the line y = a
b is an asymptote of the logistic function on the horizontal axis. In

biology, organisms are classified as a-strategic or a
b -strategic based on the natural selection

during their historical evolution. Consequently, these parameters influence the evolution
and inheritance of species. In the current scientific landscape, it is notable that a substantial
number of researchers have adopted the logistic model as a valuable tool for forecasting
cumulative cases of infectious diseases, such as COVID-19, and for modeling the dynamics
of insect outbreaks [16,17]. This mathematical model, originally introduced by Pierre
François Verhulst and widely applied in epidemiology and population ecology, continues
to be a favored choice for addressing these crucial scientific challenges.

The Gaussian function is a statistics-based model characterized by a symmetric curve
with a bell-shaped shape, denoted as

V = ae
−(x−b)2

2c2 . (5)

Parameter ‘a’ represents the curve’s height. Argument ‘b’ specifies the location of the
bell’s center, while parameter ‘c’ specifies its width. A bell-shaped morphology is attributed
to sigmoidal phenomena because its components can be isolated. Keeping the beginning of
the curve and its largest height constant, the curve follows a conventional sigmoidal shape.
Therefore, exponentiality, linearity, and convexity are all satisfied. Due to the symmetry
of the curve, the third component (convexity) is restricted in time, as it is followed by a
sharp decrease in the curve and hence appears diminished in size. As aging contributes
to a more gradual and symmetric process, this model has not been applied to cancer cell
growth, whereas it has been extensively applied to the description of plant growth.

The polynomial model is widely employed in general growth modeling and is an
empirical model without a strong physiological basis. Studies typically employ polynomial
models, models derived from divisions of these (e.g., explicit models), and other operations,
such as the addition of two polynomials with different parameters (e.g., the two-term poly-
nomial model). The key benefits of these models stem from their simplicity, interpretability,
adaptability, and ease of application. However, there are several drawbacks to this model.
Models with a high degree of polynomial degree generate oscillations between values of
high precision. Polynomials are capable of adapting to a variety of data types, but their
oscillatory nature typically allows them to escape the boundaries. In addition, by their
very nature, polynomials have a limited understanding of asymptotic behavior and, hence,
may not accurately model asymptotic phenomena. In conclusion, polynomials exhibit a
particularly poor trade-off between morphology and degree. Third- and fourth-degree
polynomials are the most commonly used since a higher degree reduces the bias and results
in overfitted data. In the current study, third-degree polynomials were used; their formula
is as follows:

V = p1t + p2t2 + p3t3 + p4. (6)

The Brody growth model for biological growth was developed in 1945. While its
descriptive ability has been applied to breast cancer cell growth with an interest in the
breast region, the model has not been sufficiently applied to malignant growth using actual
data [18]. Thus, we cannot be certain of the conclusions obtained beforehand. However,
the slope of this model is initially logarithmic and smooths out over time. We utilize the
following formula:

V = A(1 − Be−kt), (7)
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where A is the upper asymptote of the curve and serves as the upper limit for the function.
Theoretically, it should fail to reproduce the first recordings of the experiments, but it will
more closely resemble the time-averaged recordings of longer durations.

The Weibull distribution in probability theory and statistics is a continuous probability
distribution. It is named after Wallodi Weibull, a Danish mathematician who described
it in detail in 1951. As a mathematical model and, consequently, a growth model, it
is extremely adaptable, as its morphology can alter significantly. It is capable of both
symmetric sigmoidal and logarithmic forms. The formula for the three-parameter Weibull
model is as follows:

V = A(1 − e−ktm
), (8)

where A marks the upper asymptote of the curve and serves as the upper constraint for
the cancer mass, whereas k is a morphological factor similar to m. Also, the Weibull and
Brody models have a close relationship, as in the case where ‘m’ and ‘B’ are equal to 1, the
models are identical. The Weibull model has been a significant and enduring analytical tool
in the realm of oncology for several decades. Currently, its versatile application includes
estimating cancer latency times [19] and analyzing gastric cancer patient survival [20],
exemplifying its utility in both research and clinical settings.

The power law model assumes that a relative change in one quantity results in a pro-
portional change in another, independent of their original sizes. Specifically, one quantity is
identified as the driving factor of the other. The mathematical formula for this function is

V = At−b. (9)

Considering the model to be a straight proportional function, it performs well on
data with a small number of records that mostly capture the exponential phase, but not as
effectively on data with a larger number of records. However, we would like to emphasize
its natural basis, which is the existence of a ratio between time and cancer weight. As
the ratio of quantities varies during each phase of homeostasis, it would likely be more
appropriate to apply three distinct power law functions. However, due to the uniqueness
of organisms and their responses, we do not know the exact or even approximate time
frames of when these changes occur.

In order to present the most realistic explanation of oncogenesis and inhibitory mech-
anisms, it is necessary to identify some criteria that growth models must satisfy in order
to end this discussion. Therefore, we desire the model to adequately approximate multiple
data series, reflect comparable behavior, and avoid oscillations between ideal and subpar
outcomes. These criteria need to be translated into mathematical expressions and integrated
into the developed framework, as shown in Table 1. However, it is important to note that
these criteria are quite stringent and it is possible that no existing model may meet all of them.
Therefore, it may be necessary to relax some of the constraints to ensure that the framework
remains feasible.

Table 1. Growth model criteria and their implementation.

Criteria Method

Adequately approximate multiple data series
On the basis of the high-performance indi-
cators (e.g., SSE), the model should capture
a large proportion of data series (e.g., 80%)

Reflect comparable behavior Avoid models whose behaviors are incon-
sistent across data.

Avoid oscillations between ideal and sub-
par outcomes

Avoid models whose performance values are
the lowest for some data and the highest
for others.
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3. Related Work

The role of chemopreventive natural substances has been extensively studied in the
literature, but few clinical trials have been conducted to validate and demonstrate their
efficacy. For instance, the chemopreventive capabilities of phytochemicals produced from
diverse medicinal plants have been shown to reduce several risk factors linked to different
types of cancer [21]. The significance of antioxidants in chemoprevention, carcinogenesis,
and chemoprevention processes utilizing this strategy were further elaborated, showing that
curcumin [22], resveratrol [23], hesperidin [24], quercetin [25,26], and gingerol [27], among
others, can potentially regulate certain genes to inhibit tumor invasiveness, anti-migration,
antiproliferation, and apoptosis. It is also worth noting that, on certain occasions, compounds
of organic origin derived from venomous organisms, flora, or microorganisms provide a more
elucidating perspective on the molecular compositions and mechanisms of action underpin-
ning their efficacy in combating cancer [28], such as Cuban Blue Scorpion’s venom [29] and
paclitaxel derived from the bark of the Pacific yew tree (i.e., Taxus brevifolia) [30].

Broadly, dietary polyphenols display chemopreventive effects by modulating apopto-
sis, autophagy, cell cycle progression, inflammation, invasion, and metastasis [31]. Polyphe-
nols have potent antioxidant properties and regulate various molecular events by activating
tumor suppressor genes and inhibiting oncogenes implicated in carcinogenesis. Polyphe-
nols can be considered as a potential cancer medication as well, presenting both advantages
and disadvantages [32]. Their ability to target cancer cells in various ways is a key benefit,
preserving host cell integrity. However, their limited bioavailability poses a challenge,
requiring high doses that may be harmful. This drawback can be mitigated through a plant-
based diet. Studies show a growing preference for plant-based or alternative treatments
among cancer patients, emphasizing the need to enhance treatment efficacy and reduce
side effects [33].

In the context of practical application, the development of tumor growth models
under bevacizumab treatment in a mouse population has also been conducted [34]. The
model incorporates equations for tumor cell proliferation, inhibitor clearance, and the
drug’s inhibitory effect on tumor growth. Notably, it simplifies the drug’s indirect impact
on angiogenesis, a factor influencing tumor growth. The resulting differential equations,
derived from mass-action kinetics, describe measurable tumor volume, with model param-
eters including the tumor growth rate, inhibition rate, and inhibitor clearance, identified
from experiments.

Investigations into discrete mathematical models for the study of aggressive and
invasive cancers have been pursued, deviating from conventional growth models [35].
These models account for cancer heterogeneity, mutation rates, tumor microenvironment
acidity, cellular competition, resistance to chemotherapy, and drug toxicity. By consid-
ering these factors, the research provides a more comprehensive and dynamic approach
to understanding cancer dynamics and identifying effective treatment strategies. The
proposed approach was validated through simulations involving various parameter sets.
Adhering to a coherent approach to discrete modeling, a novel approach to modeling
pharmacokinetics–pharmacodynamics for tumor growth and anticancer effects in a con-
tinuous time framework has also been devised [36]. The emphasis is on a daily time
scale, using data derived from NMRI female mice experimentation. The innovation lies in
transforming this continuous model into a discrete system of nabla fractional difference
equations using Riemann–Liouville fractional derivatives. In parallel, an online tool for the
statistical analysis of tumor growth curves over time has been developed [37]. These curves
are developed based on the tumor’s diameter, surface area, and volume. The proposed
software tool provides a series of statistical tests that can be performed across and between
different groups of tumor growth. Additionally, it generates a diverse arsenal of visualiza-
tion and analytical tools that can be applied to complex datasets, including longitudinal,
cross-sectional, and time-to-endpoint measurements.

The performance of growth models against their fractional variations has also been
tested, revealing the superiority of the former over their integer-order counterparts [38].
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This conclusion emerges naturally when an additional parameter is added to the models,
increasing complexity while also enhancing curve flexibility. The exponential models
showed the highest performance for the experimental breast cancer data, highlighting the
necessity of adopting higher-order fractional growth models to improve their ability to
forecast the future. To assess the applicability of logistic, exponential, and Gompertz models,
a comprehensive analysis was conducted on experimental data from three distinct animal
models with breast and lung cancer [39]. The Gompertz model performed significantly
better than the others, with its parameters showing a significant correlation. By exploiting
this correlation, the dimensionality of the model was reduced, which led to the creation of a
more simple function. When Bayesian inference was used in conjunction with the previous
function to estimate the times of tumor incidence, it was shown that it was highly efficient.

4. Materials and Protocols

The data presented herein, although limited in volume, robustly demonstrate a strong
proof-of-concept for the developed theoretical and methodological approaches. Despite its
limitations, this dataset is sufficient to unveil meaningful insights and achieve statistical
significance. These findings substantiate the validity and efficacy of our approach within
the confines of the study’s design and available resources, especially considering the
sensitivity to experiments on animals. Moreover, we have thoughtfully considered and
justified the choices, balancing the need for scientific rigor with ethical, legal, and regulatory
concerns. It is worth noting that addressing this limitation through future research has the
potential to yield narrower confidence intervals, consequently enhancing the reliability
and informativeness of the results. However, it is important to emphasize that such an
endeavor lies beyond the scope of the present article.

4.1. Naval Medical Research Institute Mice

The inclusion of Naval Medical Research Institute (NMRI) mice in the study was based
on several considerations, the most pivotal being the anatomical analogy in the body and
organ sizes. Notably, the female NMRI mice, with a weight range of 40–50 g, contrast
sharply with the average human body weight of 70 kg, representing a size differential of
approximately 1550 times. This analogy is further emphasized by the congruence in organs
and tissues of mice and humans, regardless of their size and morphology.

Furthermore, the proportional variations in size across organs and muscles between
mice and humans enhance the translational significance of the research outcomes. This
enhancement facilitates a more seamless extrapolation of potential findings from the study
to the human context. This strategic alignment underscores the paramount importance of
considering anatomical similarities to extrapolate insights that may have implications for
human health. It is also imperative to note that their physiological processes adhere to the
same rules, maintaining consistent ratios across species. This parallelism in physiological
mechanisms further reinforces the reliability and applicability of the study’s outcomes to
the understanding of human biological processes, although these two species generally
diverge in the following ways:

a. The greater functional rhythms of the mouse (e.g., tachycardia and tachypnea animal),
which relate to all of its functions. These heightened rhythms are probably also
connected to the limited lifespan of these tiny rodents.

b. Animals kept in captivity have a longer lifespan of between one and two years,
whereas the wild type’s lifespan (i.e., survival expectancy) is approximately 12 months.

c. The movements and neural conductivities in mice are notably swifter than those
observed in humans.

d. Mouse pregnancies exhibit a higher degree of polyembryony (e.g., >4–8 embryos per
gestation) in contrast to the infrequent occurrence of polyembryony in humans.
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4.2. Experimental Protocol

To acquire the dataset, the single-dose experiment involved 289 NMRI mice, while
the double-dose experiment involved an additional 150 subjects. The exclusive use of
female NMRI mice in this study is a strategic decision informed by their smaller body
sizes and weights. This deliberate selection aims to enhance experimental precision by
minimizing variations in chemical dosage requirements, thereby fostering a controlled
and standardized research environment. These smaller sizes will also assist in their better
handling, while the inherent reproductive characteristics, such as the polyovular nature
of female mice, might contribute to the understanding of hormonal influences on cancer
development, potentially enriching the evaluation of the impact of chemical carcinogens
within the context of this study. The trials adhere to the established protocol outlined in the
work by Kallistratos et al., which focuses on the inhibition of cancerogenesis using vitamin
C on Wistar rats [40].

The Experimental Animal Husbandry provided four pairs of NMRI mice, housed
in the dedicated Laboratory of Experimental Physiology breeding facility for small an-
imals under controlled conditions. The entire NMRI mouse population for the study
originated from these pairs through inbred crossings, resulting in a genetically uniform
population with consistent traits, which facilitated standardized responses to the chemical
carcinogen’s metabolism.

The injection of the carcinogenic agent, which was carried out surgically under anes-
thesia induced by a single intraperitoneal administration of sedative (3 milligrams of
midazolam per kilogram of body weight) and anesthetic (3 milligrams of ketamine per
kilogram of body weight), occurred sixty days after their birth. Iodine and hydrogen
peroxide were used for local disinfection after anesthesia. A small incision was made in
the skin to expose the underlying muscle mass of the right shoulder. Consequently, a
fixed amount (2.52 mg/mL) of BP dissolved in tricaprylin was then injected under the
muscular peritoneum. To stop the carcinogenic fluid from leaking out of the animal’s body,
the wound was promptly sutured and carefully closed. The same protocol was adhered to
for the mice subjected to the combined administration of BP with PA or TH, with PA or TH
being co-administered with BP only once for the duration of the study.

Experimental animals were monitored three times daily (i.e., 8:00 AM, 4:00 PM, and
8:00 PM) following carcinogen administration. General anesthesia was administered at
intervals for ultrasonic tomography scans in the scapula region to assess tumor size and
conversion to weight units (mg). Anesthesia played a crucial role in ensuring accuracy,
reliability, and ethical treatment by immobilizing the mice, preventing movement-induced
distortions, reducing stress and injury risk, along with enhancing safety. It facilitated
precise positioning, improved data accuracy, minimized artifacts, and aligned with ethical
standards for humane animal research.

A cage change occurred when the tumor size significantly increased, and the subject’s
health deteriorated. Weighing and necropsy were performed post-mortem, with internal
organs examined, weighed, and photographed after tumor removal. For histopatholog-
ical analysis, the tumor and organs were submerged in an 8% formaldehyde solution,
wrapped in absorbent paper, and prepared for microscopic examination. A pathologist
diagnosed, examined, and recorded any metastases. The carcass review and sections were
fixed to contrast the neoplastic disease’s intensity and extent. Pathological anatomical
analysis, including tumor characteristics and biological findings, was crucial in evaluating
anticancer agent effectiveness. The study considered factors such as malignant tumor
development, original tumor size, growth rate, and the correlation between carcinogen and
anti-carcinogen weights to determine inhibition levels.

4.3. Theoretical Approach toward Neutralization

BP is a chemical substance that is produced when some chemicals are not entirely
burnt [41]. It can be detected in food that has been grilled, car exhaust, wood smoke,
tobacco, and oil, among other sources. It belongs to the category of polycyclic aromatic
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hydrocarbons, also known as 3,4-benzopyrene [42]. The experimental approach of chemical
carcinogenesis in NMRI mice via BP was largely chemical. Specifically, we aimed to
neutralize or alter the chemical structure of BP by incubating a quantity of it with specific
amounts of various substances, which could potentially react together, particularly making
addition reactions to its double bonds. The theoretical background suggested that these
reactions could weaken the double bonds, especially those in the ‘L’ and ‘K’ regions,
allowing BP to take on a chemical structure analogous to that of chrysene, which is also
a polycyclic aromatic hydrocarbon but is substantially less carcinogenic than BP [43].
The basic idea behind these experiments was to assess the validity of the theory that
modifying specific structural points of polycyclic aromatic hydrocarbons could eliminate
their carcinogenic potential. Chemical oncogenesis, induced by 2.52 mg of BP, resulted in
tumors appearing in experimental animals within 60 days, with some developing malignant
tumors in just 20 days. The tumors progressed rapidly, leading to mortality upon reaching a
critical size. All but two animals succumbed between 120 and 190 days after birth, forming
a dataset with tumor mass estimates and examination dates. Subsequent sections will detail
drug combinations involving benzopyrene with PA or TH.

4.4. Polyamines and Thiols

The amino acids L-arginine and L-ornithine normally break down into compounds
known as PAs, which protect deoxyribonucleic acid (DNA). Specifically, they are substances
from the microcosm essential for the development of eukaryotes. They are able to bind to
anionic macromolecules like ribonucleic acid (RNA), DNA, proteins, and phospholipids
due to their flexibility and charge distribution. The contribution of PAs to physiological
cellular functions is further highlighted by their roles in chromatin structure maintenance,
ion channel regulation, membrane stability preservation, and free radical removal [44].

Under physiological circumstances, a complex network of biosynthetic, catabolic,
and unexplained transport (i.e., not all transport parameters are known) systems carefully
controls the PA levels. Although the amount of free PAs is significantly lower in reality, these
regulations serve to maintain a concentration of PA in the cell. It has been demonstrated
that an increase in the polyamine concentration inside cells is associated with an increase
in cell proliferation and, as a result, the development of tumors. Several works from the
literature have explored the correlation between intracellular polyamine concentration and
cancer progression in terms of functionality, metabolism, and overall immunity [45–47].
Therefore, the role of PA in chemopreventive and chemotherapeutic agents has been widely
documented but not fully understood.

Ethylenediamine, cadaverine, and putrescine are three compounds from the PA family
that were used in the experiments, whereas the same compounds were used in a second
series of experiments with double the anti-carcinogenic dosages. Table 2 presents data
on the efficacy of PAs concerning the occurrence of malignant tumors at both single and
twofold concentrations, demonstrating a noteworthy reduction in incidence from 17.39%
to 4.66%. The incidence of malignant tumors refers to the percentage of the population in
which tumors were observed, as outlined in the table.

THs, which are present in amino acids, are also part of the microcosm. The most
common thiol is cysteine, and its residues can be found in proteins and smaller molecules.
Glutathione, a tripeptide containing cysteine, which is widely present in cells, is an example
of such a molecule. L-cysteine serves as an example of the important distinction between
TH and PA, which are designed to protect and fight against oncogenesis. The double bonds
in benzopyrene are susceptible to addition reactions in the presence of the amino acid
L-cysteine. When using the ethyl or methyl ester of L-cysteine as an anti-carcinogenic
molecule, as opposed to L-cysteine alone, the addition of -SH to the double bonds of
benzopyrene occurs in a much more quantitative manner, indicating that this phenomenon
not only occurs but is also exacerbated by the formation of the ester bond in the carboxyl
group of the cysteine amino acid.
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Table 2. Polyamine compound distribution: total experimental subjects and tumor observation across
groups, dosages, and administered compounds.

Group Dosage Compound Tumor Obs. Total Obs. Incidence (%)

Carcinogen 2.52 mL Benzopyrene 49 49 100

Polyamines

Single

Ethylenediamine 2 19 10.52
Cadaverine 12 30 40.00
Putrescine 2 43 4.65

Total 16 92 17.39

Twofold

Ethylenediamine 1 50 2.00
Cadaverine 5 50 10.00
Putrescine 1 50 2.00

Total 7 150 4.66

Total 23 242 9.50

By examining (with a mass spectrometer) the molecules resulting from the reaction
of benzopyrene with commonly used chemicals in such investigations, the image will
become significantly more distinct. The primary distinction between PA and TH is that the
former acts as the organism’s shield by preserving DNA, RNA, proteins, and phospholipids,
whereas TH serves as the organism’s sword by attempting to neutralize the carcinogenic
agent. We also present the distribution of the TH family (Table 3), which inhibited oncoge-
nesis to a lesser extent than PA. Consequently, no additional investigation, which could
require a dose-escalation experiment, was carried out on this anticancer drug combination.

Table 3. Thiol compound distribution: total experimental subjects and tumor observation across
groups, dosages, and administered compounds.

Group Dosage Compound Tumor Obs. Total Obs. Incidence (%)

Carcinogen 2.52 mL Benzopyrene 49 49 100

Thiols Single

Bismuthiol 21 30 70.00
L-Cysteine Ethyl Ester 7 28 25.00
Mercaptosuccinic Acid 12 30 40.00

Dithiothreitol 8 30 26.66
L-Cysteine 11 30 36.66

Total 59 148 39.86

5. Methodology
5.1. Curve Fitting Computational Pipeline

Tumors can be viewed as populations, and their development can be anticipated
using complex growth models. The modeling of any population growth is a least-squares
problem that can be further classified as linear or non-linear depending on the leveraged
function. In essence, least squares problems seek to design a curve that optimally fits a set of
data points. In this work, the Levenberg–Marquardt algorithm (LMA) was applied because
it shares characteristics with gradient descent and Gauss–Newton methods; moreover, the
majority of the adopted models were non-linear. The sum of squares error (SSE) was used
as the objective function for the curve fitting technique, while the root mean square error
(RMSE) and mean absolute error (MAE) were applied as goodness-of-fit metrics.

In non-linear least squares problems, the initial guess is the most difficult part because
there is no universal technique that works. However, for the family of growth modeling
problems, viable solutions have been established. In the proposed methodology, the
initial guess parameters were produced from the SPSS non-linear regression package in
conjunction with estimations from prior scientific work [48] and from the use of three
consecutive values to generate a 3 × 3 system of equations for the three-parameter models.
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In a similar manner, parameters of the four-parameter models were obtained. In instances
where the algorithm did not converge, the final values from the converged solution were
used and a broad range of starting points was utilized. Several additional simulations were
performed with the given range to ensure that the algorithm did not converge on a local
extremum, but rather on a global extremum.

5.2. Performance Evaluation

In addition to the goodness-of-fit and objective function values, model parameters
were also obtained after LMA convergence. Using the coefficient of variation (CV), the
reliability and central tendency of the derived parameters were further evaluated, respec-
tively. The conducted analysis may result in model simplification by reducing the number
of varying parameters, hence, facilitating reproducibility.

After the computational pipeline, each function has a unique SSE, RMSE, and MAE
value per data series. The minimum value corresponds to the optimal function for that
particular cancer cell development, as it demonstrates that the generated curve is the closest
to the ground truth. However, if we relax the rigor of the criteria initially specified to allow
a 5% deviation from the minimum value, other functions may exhibit favorable behavior.
This results in the creation of %-tolerance metrics, which permit a specified percentage of
value variation to be tolerated in the respective measurement. These analytical methods
can also be used to depict and illustrate which of the models has the most descriptive
power on the investigated phenomena under relaxed criteria, while allowing scientists to
determine when to cease breaching the rules (e.g., using the elbow method).

5.3. Model Predictability and Classification Problem

To evaluate the growth models’ ability to forecast the future based on past knowledge,
the data series were divided into two sets: the training set and the testing set. The first
set was used to generate a curve using the previously described computational workflow,
while the second set was used to calculate the mean percentage difference between the
projected and the actual values. Only data series including at least fifteen examinations
were included in this section of the study. It was assumed that the forecast would be limited
since cancer grows exponentially after a certain point. However, even if this was not the
case, some conclusions could still be drawn regarding the near-future predictions.

Using the model parameters, binary classification problems were developed to differ-
entiate carcinogenic and anticarcinogenic agents in three settings:

a. Benzopyrene against benzopyrene with both administered anticarcinogenic
agents (BPAC);

b. Benzopyrene against benzopyrene with polyamines (BPPA);
c. Benzopyrene against benzopyrene with thiols (BPTH).

The classification problem exploits the parameter space to differentiate the two groups;
thus, the variability of the parameters, which were disguised as features, plays a vital role.
Grid search and cross-validation accuracy were used to perform parameter tuning. By
employing the ReliefF method, the relevance of each feature was also determined, leading
to the contribution of growth models to the classification task. K-nearest neighbors (KNNs)
and support vector machines (SVMs) with a linear kernel were selected as the primary
classifiers. Due to overfitting and the models’ inherent simplicity, more sophisticated
kernels were omitted. Accuracy, sensitivity, and specificity were computed to evaluate the
performance of the classifiers. Nevertheless, due to class imbalance, positive predictive
value, g-mean, f2, and adjusted f2 measure were also calculated in addition.

5.4. Statistical Analysis

A statistical analysis was performed in order to examine the mortality of mice in
greater detail and compare the efficacy of the chemical compounds. After the introduction
of normality tests, distributions were compared instead of populations. These normality
tests include Anderson–Darling, Jarque–Bera, Lilliefors, and Shapiro–Wilk tests, each of
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which emphasizes a distinct aspect of normal distribution. For nonparametric tests, the
Kolmogorov–Smirnov and Mann–Whitney U tests were applied. In addition, statistical mo-
ments up to the fourth degree were employed to investigate central tendencies, variability,
symmetry, and heaviness. Lastly, graphical representations were utilized, such as QQ plots,
to illustrate the numerically driven insight.

5.5. Methodological Workflow Overview

The proposed workflow accepts numerical data series as input and delivers the growth
model that possesses the highest descriptive power as output (Figure 1). It starts with the
preparatory phase, moves on to the computational phase, then the performance evaluation
phase, and finally the progression evaluation phase.

Figure 1. The proposed methodology.

The ruleset and the growth models are both specified in the first phase of the workflow.
The non-linear least squares algorithm and the initial guess issue are both explored and exe-
cuted, respectively, during the computational phase. After the LMA algorithm has converged,
the performance evaluation will take place; this will be followed by the progression evaluation,
which occurs after certain halting conditions have been satisfied. The growth models that are
used for this study are documented in Section 2, and the ruleset is established at the very end
of the same Section. In Section 5.1, we discuss the non-linear least squares algorithm and the
initial guess issue, while Section 5.2 is where we evaluate performance and progression.

6. Results
6.1. Growth Model Performance

The logistic function produced the lowest SSE, RMSE, and MAE values in all experi-
ments encompassing about two-thirds of the mice population in BP. Specifically, Table 4
addresses the growth model performance, aiming to discern the most efficient model based
on a particular metric (i.e., SSE, RMSE, MAE) in the most rigorous manner.

Table 4. Performance table: count of experimental subjects with developed tumors exhibiting the
lowest metric across various models.

Growth Model
BP BPPA BPTH

SSE RMSE MAE SSE RMSE MAE SSE RMSE MAE

Exponential 0 0 0 0 0 1 0 11 13
Gompertz 2 3 3 3 4 4 6 6 4
Logistic 30 29 32 8 8 6 23 21 18
Bertalanffy 4 11 9 0 0 0 7 9 7
Gaussian 0 3 0 1 1 1 7 8 8
Power law 0 3 5 1 2 3 0 3 8
Polynomial 13 0 0 3 1 1 16 1 1

Essentially, this elucidates the number of mice within the population with the tumor
manifesting the lowest metric under the specific model, wherein a higher count signifies
commendable performance. To elaborate, the polynomial model demonstrates good per-
formance in benzopyrene, specifically for SSE. Conversely, the logistic model captures a
substantial proportion of mice with tumor development across the utilized compounds.
Specifically, for the BP category, ‘logistic’ identifies 30, 29, and 32 mice from a total of 49,
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accounting for an impressive range of 59–65%. In the case of BPPA, logistic captures 8, 8,
and 6 mice from the total of 16 mice exhibiting tumor growth, constituting a substantial
percentage within the range of 37–50%. Lastly, for the BPTH scenario, logistic identifies
23, 21, and 18 mice out of a total of 59 exhibiting tumor growth, representing a significant
proportion within the range of 30–38%.

Expanding upon this succinct table, an additional dimension is introduced through
%-tolerance measurements. These measurements afford a more lenient evaluation by
considering a percentage above the minimum value of a given metric across all models.
For illustrative purposes, if the logistic model yields an SSE value of 150 for a particular
subject, and the Gompertz model registers 165 for the same subject, the logistic model is
attributed 1 value in the growth model performance, while the Gompertz model accrues
none. Taking a less stringent stance, a 5% tolerance increment is introduced. Consequently,
the minimum value is recalibrated to 157.5. This adjustment maintains the status quo in
the performance table. Increasing the tolerance threshold to 10% sets the minimum value
at 165. Consequently, both the logistic and Gompertz models secure one value each in the
growth model performance table, assuming the metric considered is the 10%-tolerance SSE.

Polynomials, in parallel, performed well in benzopyrene-based trials that relied en-
tirely on the objective function, a pattern that was preserved for PA and TH. Bertalanffy
growth models also had important outcomes in BP and BPTH settings, but were ineffec-
tive in BPPA. Gompertz contributed a tiny but consistent amount of optimal scores. The
remaining models yielded little to no significant findings. These initial results (Table 4),
which do not strictly correspond to the required criteria, provide a glimpse of the benefits
the logistic growth model yields.

Partially studied thus far is the approximation of numerous data series and the re-
flection of comparable behavior; however, it remains uncertain how well or poorly the
models perform in the remaining data series. Are their objective function scores close to the
minimum, or do they significantly exceed it? Is the logistic model approaching the optimal
value for the remaining data series, or are the results for these data subpar?

We provide %-tolerance metrics to answer these alarming concerns and assist models
in meeting the previously defined standards. By using these metrics by up to forty percent,
we can examine the progression of the models as the rules are gradually satisfied. This
approach is not meant to advocate a departure from the most descriptive model; rather,
we aim to define the algorithmic mechanisms by which that model might be precisely
located. Using this strategy, several models were surprisingly more competitive than those
which, despite initially appearing to outperform others, did not maintain their position or
underwent a rapid increase in tumor encapsulation.

In BPPA (Figure 2), for instance, neither the exponential, Bertalanffy, nor power law
models began nor ended with good scores, showing that they cannot encompass the
PA response to benzopyrene double bonds. Again, polynomials had rapid growth, but
‘logistic’ and Gompertz functions considerably outpaced the competition. The later models
likewise imply analogous behavior, since both the logistic model and the Gompertz model
multiplied their initial population capture. Surprisingly, the 20% divergence from the
minimal scores allowed the logistic model to characterize the entire NMRI population with
the BPPA mixture.

In BPTH (Figure 3), the Gompertz growth model was initially second or third-to-last
but managed to advance at least two spots by the time 20%-tolerance measurements were
implemented. The power law, exponential, and Bertalanffy models displayed poor progression;
however, the Gaussian model preserved an overall increase. The abrupt growth in polynomials
followed by oscillations is suggested to be related to their overfitting character. Lastly, and
most interestingly, the logistic function exhibits the same behavior across all measurements. It
begins and ends first, maintaining a considerable margin above the other growth models. This
culminates in a comprehensive description of the chemically induced oncogenesis encapsulation.
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Figure 2. The 0–40%-tolerance metrics on BPPA.

Figure 3. The 0–40%-tolerance metrics on BPTH.
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Therefore, anticarcinogenic drugs belonging to the PA and TH families can be exhaus-
tively explained by adopting logistic models. By extension, the phenomena of oncogenesis
inhibition can be described through their use, thereby simplifying the current perception of
the chemical neutralization of malignant tumor development.

Remarkably, exponential-based models failed to account for the occurrence of chemi-
cally driven oncogenesis (Figure 4). It is probable that the adaptability offered by sigmoid
functions, such as ‘logistic’, might better suit the needs of such growth. Sigmoid functions
can be segmented further into linear, exponential, and plateau phases.

Figure 4. The 0–40%-tolerance metrics on BP.

The first phase describes the lag period, during which the tumor does not develop
rapidly; the second phase describes the exponential growth of cancer cells; and the third
phase defines the transition between the exponential and plateau phases, where the tumor
has reached an advanced stage where death is inevitable. No other growth model demon-
strated significant potential to comprehend chemical oncogenesis. With their greatest
possible outcome, no more than fifty percent of the NMRI population can be captured.

Moving on to the statistics of the model parameters following the computational
pipeline of the LMA, the vast majority of parameters have CV values larger than 30%,
indicating a high degree of parameter dispersion around the mean (Table 5). In particular,
it reveals that there is no substantial central tendency, allowing for the potential that the
numbers behave arbitrarily, and further supporting the notion that models with great
complexity produce flexible curves. Specifically, only the Bertalanffy b2 parameter has an
acceptable CV score, indicating the parameter’s centrality, range, and dispersion may be
reliably replicated.
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Table 5. Statistics of the developed model parameters.

Growth Model Parameter Mean ± St. Deviation CV (%)

Bertalanffy
β1 2398.9 ± 13971 582.3
β2 1.3569 ± 0.3655 26.9
β3 0.0083 ± 0.0077 93.4

Exponential V0 265.9979 ± 306.3857 115.1
λ 0.0495 ± 0.0837 169.2

Gaussian
a 3.90 × 1086± 4.34 × 1087 1113.6
b 366.5 ± 1.364 × 103 372.0
c 80.13 ± 111.45 139.0

Gompertz
V0 34.7636 ± 79.4489 228.5
A 0.3009 ± 0.2809 93.3
B 0.0204 ± 0.0098 71.8

Logistic
A 0.0658 ± 0.0473 71.8
B 1.161 × 105 ± 9.797 × 106 84.3
V0 51.7463 ± 80.5408 155.6

Polynomial

p1 0.0153 ± 0.0184 120.1
p2 1.9384 ± 1.6870 87.0
p3 153.73 ± 169.18 110.0
p4 1.73 × 103 ± 1.44 × 104 83.7

Power law a 1.4280 ± 7.3663 515.8
b 5.6291 ± 9.5748 170.0

Despite scoring high in the statistical norm and considering the arbitrariness posed,
it was further studied whether the associated parameters could be constrained in specific
regions to facilitate faster reproducible results, permitting easier validation and assisting in
locating the optimal values in the more variable parameters. Except for the Gaussian-based
model, all models featured such a parameter. As a result, the parameter space of growth
models is reduced by one dimension, simplifying the initial guessing procedure (Table 6).

Table 6. Less varying parameter intervals.

ParameterGrowth Model Interval

β2Bertalan f f y [0.9877, 2.2907]
λExponential [0, 0.5169]
BGompertz [0, 0.0432]
ALogistic [0, 0.3412]
p1Polynomial [0, 0.0841]
aPowerlaw [0, 2.9033]

6.2. Model Predictability

Concerning model predictability, only the growth models demonstrating strong per-
formance in the %-tolerance measurements, namely the logistic, Gaussian, and Gompertz
models, were taken into account. Others are deemed incapable of adequately representing
the data; hence, there is no purpose in investigating their prediction capability. From
beginning to end, the employed models exhibited poor ability in predicting tumor size for
the carcinogen group, as measured by a high mean difference from the ground truth. Specif-
ically, the majority of scores were larger than 35% for the first two values (i.e., short- and
medium-terms) and grew to larger than 45% for the last two (i.e., long- and extended-terms)
despite the adopted model (Table 7). This behavior results from the LMA, which received
the initial data points in time as input; hence, the created curve does not yet account for the
exponential growth phase, resulting in a diverging curve.
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Table 7. Comparison of the growth model’s ability to predict different levels of the future.

Group Growth Mean Difference (%)
Model Short-Term Medium-Term Long-Term Extended-Term

Carcinogen
Logistic 37.50 56.24 54.44 62.25

Gaussian 39.65 24.04 43.71 35.47
Gompertz 19.03 66.35 66.39 75.07

Polyamines
Logistic 0.61 11.38 29.87 53.81

Gaussian 2.82 10.81 21.83 32.94
Gompertz 5.76 7.72 25.39 44.89

Thiols
Logistic 3.59 13.95 18.82 23.96

Gaussian 14.46 17.38 17.13 9.54
Gompertz 3.76 10.22 12.96 15.71

In contrast, the models produced significant results when predicting the formation of
tumors in anticarcinogenic substances, particularly for starting values. In both chemical
combinations, the logistic model produced the smallest difference in the short-term (0.61%
and 3.59%) and maintained a close relationship with the subsequent two values (PA: 11.38%
and 29.87%, TH: 13.95% and 18.82%). The Gompertz and Gaussian models displayed
comparable behavior, with Gompertz exhibiting marginally superior performance in both
cases. All applied functions failed to accurately predict the extended term (i.e., fourth value),
indicating that we can only estimate tumor growth in the near future. Consequently, the
estimates are within a respectable range (about 15%) initially, but then diverge significantly.
This is primarily due to the adaptability of the models and their capacity to capture changes
in cancer cell growth rates, and secondarily due to the small number of recordings made
during the disease’s exponential phase. Considering that the latter four values correspond
to the 20- to 40-day mice tumor inspection intervals, it is plausible to conclude that human
tumor growth can be precisely predicted for two years using logistic-based models (0.61%).

Utilizing the parameters derived from the LMA convergence, a classification problem
was devised not only to assess their categorization properties and, by extension, the models
themselves, but also to evaluate their importance in the classification task. SVM and
KNN were used as the main classifiers and were fine-tuned with cross-validation accuracy
serving as the objective function.

Both classifiers provide quantifiable findings and illustrate that active compounds
may be distinguished, depending on model parameters exhibiting accuracy metrics above
80% across all settings (Figure 5). Specifically, all measures have satisfactory values, with
the exception of the specificity metric, whose value of 54% indicates a class imbalance.
Indeed, BPPA comprises 59 data points of one class compared to 16 observations of the
other class; hence, additional performance metrics were utilized, such as geometric mean,
F2-measure metric, and adjusted F-measure. However, the other metrics support the
excellent performance of the classifier in this particular instance. It was determined not to
apply more complex classifiers, such as kernel-based algorithms, because the employed
approaches were effective despite their simplicity and because advanced approaches tend
to overfit in small datasets, resulting in incorrect conclusions.

The ReliefF algorithm was employed to estimate the feature contribution to the clas-
sification, and the top five features are listed in Table 8. The contribution of the model
parameters was computed based on the output of the relief algorithm, representing the
significance of each feature (i.e., parameter) to the classification task. High values indicate
a high importance, whereas low values indicate the opposite. By utilizing the importance
value of each to the sum of all, it is possible to calculate a relative value that corresponds
to the parameter contribution. It was unexpected that two parameters of the logistic
model offer more than any other parameter from the set of development models, and
their contribution is four times (44.47%) larger than the next closest in the BPAC classi-
fication task, which contains the most observations. It is particularly significant that the
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accounting model also ranks high for both its performance on %-tolerance metrics and its
discriminant abilities.

Figure 5. Performance comparison of classifiers across multiple settings.

Table 8. Comparison of the growth model parameters to predict the substance group.

Classification Problem Growth Model Parameter Rank Contribution (%)

BPPA

Bertalanffy β2 1 20.51
Gaussian c 2 18.53
Gaussian b 3 18.09
Gaussian a 4 15.37

Bertalanffy β3 5 4.98

BPAC

Logistic A 1 34.32
Logistic V0 2 10.17

Exponential V0 3 8.91
Gompertz V0 4 8.65
Gaussian A 5 6.20

BPTH

Logistic A 1 27.64
Bertalanffy β1 2 25.78
Power law a 3 7.10
Gompertz V0 4 6.01
Bertalanffy β2 5 5.60

Bertalanffy and Gaussian models dominate the contribution values above 5% in BPPA
settings, with the former accumulating 25.49% and the latter 51.99%. However, the lack of
data prevents us from providing reliable conclusions for this case. In comparison, logistic
and Bertalanffy contribute 27.64% and 25.78%, respectively, to BPTH, whilst the remaining
parameters have values of less than 7%, indicating that these models contribute significantly
more to the relevant classification problem.

In addition, ANOVA was employed to determine the relative importance of the
features. The contribution of each parameter and model to the BPAC classification task
is depicted in Figure 6. Power law generates the largest contribution (27.34%), which is
to be expected for a simple model, given that the technique harnesses the variance of the
experimental populations by separating it into systematic and random variables. With
values ranging from 10.23% to 15.17%, the remaining growth models contribute almost the
same, indicating that they are of equal importance.
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Figure 6. Feature Ranking.

6.3. Statistical Analysis

The lifespan distribution analysis, presented in Table 9, demonstrates that single and
half of the double polyamine data do not adhere to normal distributions, preventing a
direct distribution comparison. This same pattern was observed in studies involving TH. To
better comprehend these results, a QQ plot (Figure 7a) was generated to graphically depict
the deviation of the compound mixtures from normality and to facilitate their comparison.

Table 9. Assessing normality through p-values and test outcomes.

Normality Test p-Value Single Dose Outcome p-Value Single Dose Outcome

Anderson–Darling 0.0294 0 0.0133 0
Jarque–Bera 0.2254 0 0.2152 1
Lilliefors 0.1602 0 0.0237 1
Shapiro–Wilk 0.0108 0 0.0072 0

The straight lines represent the normal distributions of the analyzed populations with
respect to the mean and standard deviations. When lines and markers are in close proximity,
this indicates normality, suggesting that the compound’s behavior can be predicted and
replicated with high confidence. The behavior of the blue benzopyrene line corresponds to
a 95% certainty of mortality within 200 days after administrating the carcinogenic agent.
There are also outliers, with one subject dying 70 days after the injection and another
surviving up to 320 days.
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Figure 7. (a) QQ plot of the compound mixtures (left); (b) QQ plot comparing the single and
double-polyamine doses (right).

The most major impacts are those of PA and TH. Specifically, 45% of TH markers
tend to follow the benzopyrene line with a minor delay of 10 days in the lifespan axis.
Within 220 days of administering the thiol-based chemical mixture, approximately 55% of
the population has perished, indicating that the behavior of TH seems to match that of
benzopyrene in at least half of the population, while the other half appears to be unaffected
by the disease. In contrast, PA diverges from benzopyrene from the beginning to the
end, exhibiting a consistent trend toward oncogenesis inhibition. Approximately 17%
of the polyamine-induced mice did not make it to 220 days, which is near the expected
percentage for the species. The entire population closely matches the red line of the expected
distribution of PA, demonstrating that the effect of PA may be predicted more precisely.

In examining the distribution lines, benzopyrene exhibits a steep slope (70 degrees),
suggesting a high incidence, leading to species endangerment. TH and PA, with angles of
23 and 25 degrees, respectively, demonstrate effectiveness against oncogenesis, differing
significantly from benzopyrene. The starting points of their lines (0.025% for PA, 0.18%
for TH) contrast with the 0.003% benzopyrene, indicating a greater impact. Despite TH’s
asymptotic advantage, their inconsistent behavior and higher cancer prevalence raise
concerns. Both PA and TH contribute to longevity; over 20% of the population exceeds the
average NMRI lifespan (700 days). Therefore, these compounds not only combat cancer
uniquely but also contribute to overall health.

Figure 7b illustrates a QQ plot, comparing a single dose of PA to a twofold concentra-
tion. The parallel lines signify consistent influence but with different starting points. PA
exhibits a broader impact, prompting a faster response in eradicating oncogenesis. The
double dose begins at a 0.02% population impact, while the single dose starts at 0.12%,
suggesting a one-sixth reduction in mortality rate. Despite minor angle differences (18 and
17 degrees), deviations from the scaled population line occur consistently in both mixtures.

This suggests two key findings: firstly, the consistent population state across initial points
and degrees in both experiments; and secondly, a marginal increase in outliers, indicating
extended longevity due to PA. Assuming no diminishing returns, this introduces a potential
avenue for inhibiting oncogenesis and promoting longevity. The Mann–Whitney U test
supports the improvement claim as the double-dose PA outperforms a single-dose (p-value:
3.8 × 105), suggesting increased efficacy with higher concentrations. To explain these results
and better capture the data tendencies, a statistical moment analysis was conducted. Mean,
standard deviation, skewness, and kurtosis, also known as the first to fourth statistical
moments, were adopted to assess the mortality rate or insufficient reactions of the compound
mixtures (Table 10).
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Table 10. Statistical analysis of polyamine’s performance.

Compound Mixture Statistical Moments Mortality
1st 2nd 3rd 4th Rate (%)

Benzopyrene 148.5800 1162 2.4475 13.5911 100.0
Polyamines Single Dose 475.8093 44456 −0.0697 2.1479 18.47

Difference (%) 320.23 3825 18.47
Polyamines Double Dose 593.7181 30732 0.0230 2.2980 1.34

Difference (%) 399.5 2644 1.34

Significantly, the average longevity improves with the increasing dosage, showing
that the chemicals are more effective at higher concentrations. The standard deviation rep-
resents the degree of value dispersion around the mean, which initially varies substantially
and diminishes as dosage increases. The skewness of symmetrical distributions, such as
mortality distributions, should be near zero. Benzopyrene does not adhere to this criteria
because of its asymmetry. PAs have a tendency to approach zero on both sides. Regarding
the mortality rate, it is evident that a single dose of PA reduced the mortality rate by at
least 80%; however, a double dose of PA outperformed the other mixes by producing an
astounding performance in which just 1.34% of the population perished.

7. Discussion

The analysis presented herein aims to explain the process of chemical oncogenesis
and inhibition using mathematical functions that, when applied to data, become models.
Surgical administration of benzopyrene, a chemical carcinogen capable of causing tumors
with certainty, was employed to trigger chemical oncogenesis. In an effort to neutralize the
carcinogenic agent, PA and TH were supplied in addition to benzopyrene to strengthen the
immune system or fight cancer, respectively. These compounds, which are abundant in
nature, can modify the structure of an oncogenic agent to resemble that of a less cancerous
agent. In 1978, the Laboratory of Physiology at the University of Ioannina in Greece began
conducting research with more than 400 NMRI subjects. These experiments led to the
establishment of a dataset based on tuples consisting of tumor sizes and examination
dates. The examinations were performed at specific intervals using ultrasonic tomography.
Utilizing this dataset, an attempt was made to formalize an explanation workflow for the
phenomena of oncogenesis and inhibition was developed (Figure 1).

However, this approach might be used in other applications that utilize past knowl-
edge to deliver valuable insights. Initially, a rule set was designed to outline the conditions
that growth models must satisfy. In this instance, three criteria were devised to evaluate
the produced models and identify the one with the most descriptive power. The primary
criteria synthesized involved adequately approximating various data series, reflecting com-
parable behavior, and avoiding fluctuations between optimal and poor outcomes. After
establishing these rules, a multitude of mathematical functions were utilized to evaluate
how these phenomena may be interpreted and anticipated. Sigmoid functions, which
mimic homeostasis because they include linear, exponential, and plateau phases, were also
used. A curve-fitting pipeline was orchestrated based on the collected data, with a focus on
addressing the initial guess problem.

After LMA convergence, SSE, RMSE, and MAE served as primary performance indi-
cators. To provide insight into model performance on the remaining data series, tolerance
metrics were introduced. These metrics allowed for incremental encapsulation of model pro-
gression without sacrificing descriptiveness. In most cases, the logistic model outperformed
competitors, demonstrating consistent behavior and capturing the entire population before
30%-tolerance metrics (Table 4, Figures 2–4). Exploring oscillations, surprises, and abrupt
growth, logistic models proved effective in explaining anticarcinogenic drugs and carcinogenic
chemicals, simplifying the understanding of tumor inhibition and oncogenesis. Growth model
parameters were evaluated for central tendency and parameter intervals with less variation,
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facilitating future reproduction and validation (Tables 5 and 6). Logistic models excelled in
forecasting tumor growth, particularly in the case of PA (Table 7). Classification problems
with growth parameters as features demonstrated SVM’s superiority in distinguishing be-
tween compound combinations (Figure 5). Logistic function parameters exhibited the highest
contributions in ReliefF and ANOVA in specific settings (Table 8, Figure 6). Normality tests
of NMRI mortality, regardless of cancer presence, yielded inconclusive results. The factors
contributing to this nature may include a relatively modest sample size, with the potential
deviation of the underlying data distribution from normality, and the inherent complexity of
the phenomenon under investigation, rendering it challenging to derive definitive conclusions
(Table 9). For this reason, QQ plots were employed, which illustrated distinct compound
combination responses and suggested the potential for a triple dosage. PA, as an alternative
cancer combatant, exhibited a longer average lifespan, lower mortality rate, and stability that
was positively influenced by concentration increases (Figure 7a,b).

The transition from bench-side to bedside research is illustrated by the pragmatic
implications of scientific findings in oncology. Mathematical models, integrating data from
surgical experiments and ultrasonic examinations, establish an algorithmic framework
to understand and predict tumor behavior over time. This paradigm shift facilitates the
translation of scientific insights into actionable clinical strategies, which was revealed by
the experimental inclusion of PA and TH as chemopreventive measures. The developed
mathematical models not only elucidate oncogenic mechanisms but also provide clinicians
with practical tools for anticipating and managing tumor growth, enhancing the efficacy
of cancer treatments. These models, based on tumor size and examination dates, coupled
with ultrasonic tomography, are invaluable for tailoring treatment strategies, forecasting
growth patterns, and optimizing therapeutic interventions. The consistent performance of
the logistic model, especially in forecasting tumor growth in response to PA, signifies its
transformative potential, enabling personalized treatment plans based on individual tumor
dynamics and addressing complex clinical scenarios with a classification framework for
compound combinations.

In contrast to previous chemoprevention-related work that either prioritized the the-
oretical background of compound discovery without numerical evidence or provided
substantial evidence without the physiological basis for delaying or preventing cancer
development, this study proposes an algorithmic pipeline of mechanisms. This pipeline
uses a ruleset as a foundation to investigate the best descriptive power among a plethora of
mathematical functions capable of explaining the phenomena of oncogenesis and chemical
inhibition, while supporting it with chemical reaction theory. By pursuing this path, the
potential to explain chemoprevention and other significant occurrences increases substan-
tially, necessitating the selection of the most appropriate descriptive model among others.
Mechanisms such as those presented can circumvent this barrier, allowing the scientific
community to establish a baseline and construct more complex and seasoned schemes on
top of it.

The resulting analysis is not without shortcomings and limitations. The inclusion
of a modest number of ultrasonic examinations in the data collection may impact the
reliability of chemoprevention outcomes. Sparse examinations, separated by over 40 days,
limit insight into the precise onset of oncogenesis and its progression rate. Ethical con-
cerns surrounding frequent exams, linked to potential cancer development from computed
tomography scans, further constrain data acquisition. Additionally, the study raises con-
cerns about heightened side effects and increased toxicity due to the novel approach of
escalating compound concentrations for cancer chemical inhibition. While no subjects in
this study experienced such issues, it is noteworthy that previous research reported two
NMRI mice deaths attributed to probable putrescine toxicity [49]. This underscores the
need for vigilant consideration of potential risks, ensuring safety and ethical integrity in
experimental protocols.

In conclusion, this comprehensive discussion highlights the noteworthy contributions
and limitations of the study in advancing our understanding of chemopreventive strategies



BioMedInformatics 2024, 4 382

and personalized cancer therapy. The developed mathematical models, incorporating PA
and TH, bridge the gap between experimental and clinical realms, opening up promising
avenues for cancer prevention. The logistic model’s consistent performance suggests its
potential application in tailoring personalized treatment plans. Despite the challenges
posed, including a modest sample size, sparse examinations, inconclusive statistical tests,
and the potential toxicity produced by the chemicals, the study’s classification framework
and algorithmic pipeline provide a versatile foundation for addressing complex clinical
scenarios. The contextual specificity of the research design and subject characteristics must
be acknowledged, as generalization challenges may restrict findings to specific populations
or experimental settings. Therefore, this research not only propels the field forward but
also underscores the complexities and variations inherent in studying cancer dynamics and
therapeutic interventions. As we navigate these difficulties, the study lays a foundation
for future investigations, emphasizing the importance of robust methodologies, ethical
considerations, and a continual commitment to refining our understanding of cancer
biology and treatment.

8. Conclusions

In this research article, a novel modeling methodology for chemically induced phe-
nomena was proposed. If the study is expanded and validated in in vitro trials, it could lead
to the invention of nutritional supplements that totally suppress the growth of malignant
tumors, despite the adoption of healthy lifestyle choices. Synergies could also be explored
in terms of their potential multiplicative benefits in the fight against malignancies. For
instance, TH and PA may interact to produce an effect bigger than the total of their indi-
vidual effects. However, more chemical compounds should be evaluated in this manner,
producing a diverse arsenal against cancer.
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