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Abstract: The organs of the male reproductive tract, including the testis, epididymis, prostate,
seminal vesicles, and semen, must provide an immunoregulatory environment conducive to germ
cell viability and successful fertilization. Many immune components, such as immune cells, have
been investigated regarding reproductive immunology and function; however, the investigation
of the role of complement in this system has only more recently been gaining traction in research.
This review focuses on complement in the male reproductive tract, with the goal of compiling
information currently known about complement components detected in male reproductive organs
and identifying areas in need of further research. Considering the recent and upcoming research
about the noncanonical functions of complement, this information is relevant and applicable in the
fields of reproductive immunology, fertility, and immune regulation.

Keywords: male reproduction; complement; complement regulators; testis; seminal plasma; prostate;
epididymis; infertility; immune regulation

1. Introduction

The male reproductive tract must maintain a level of immune regulation for the mat-
uration and transport of viable sperm. Male germ cells are stalled in the mitotic stages
of gametogenesis at the time of birth. Upon adolescence, these germ cells then proceed
through spermatogenesis. Spermatogenesis occurs after the development of central im-
mune tolerance, during the onset of puberty, rendering the maturing gametes immunogenic
and susceptible to autoimmune destruction. In the cases of orchitis, epididymitis, and/or
epididymo-orchitis, the immune system can create anti-sperm antibodies (ASAs) that target
meiotic germ cells for destruction and can even cause immune infertility [1]. Indeed, ASAs
were detected in over 18% of infertile men, while no ASAs were detected in fertile men [1].

Most males are fertile, demonstrating robust immune regulation within the reproductive
tract. Regulation of the immune response occurs through a variety of mechanisms in the
various organs of the male reproductive tract. These mechanisms include (1) the physical
separation of gamete-containing tracts from systemic access via the blood–testis barrier and the
blood–epididymal barrier, (2) cellular modulation by testicular macrophages and regulatory
T cells, and (3) the expression of immunomodulatory proteins such as transforming growth
factor beta (TGF-β) and complement components (extensively reviewed in [2]). The focus
of this review is to identify the current state of understanding regarding the presence and
expression of complement components in male reproductive organs, their potential roles
in immunology and reproduction, and the knowledge gaps in this context. To date, the
last review on complement in the entirety of the male reproductive tract was conducted by
Harris et al. in 2006 [3], so this paper will serve as a much-needed review for the field. As an
evolving area of study, complement in reproduction is a relevant topic that will contribute to
the better understanding of fertility, development, and immune regulation.

2. A Brief Overview of Complement

Immunologically, complement is an innate system of proteins involved in pathogen
recognition, inflammation, immune cell recruitment and activation, and cell lysis. Com-
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plement consists of over 50 proteins that participate in the immunological cascade, the
regulation of the cascade, and cell modulation (Figure 1).
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All activation pathways converge on the C3 component, which is a central point of complement 
activation. C3 is cleaved to feedback and amplify the cascade, opsonize pathogens for phagocytosis, 
initiate inflammation, and begin the terminal pathway. Activation of the terminal pathway leads to 
the creation and insertion of the membrane attack complex (MAC), leading to cell lysis. This figure 
is a guide to visually portray where complement components functionally reside in the immune 
cascade throughout the duration of this review. Acronyms and abbreviations are defined in Table 1. 
Figure was made with BioRender. 

Antibody–antigen complexes (classical pathway), bacterial lectins (lectin pathway), 
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ment cascade. Each pathway forms an enzyme (C3 convertase) that cleaves the comple-
ment component C3 into C3a and C3b—the central point of complement. C3a plays a role 
in inflammation, while C3b can participate in opsonization for phagocytosis or modify the 
C3 convertase enzyme into C5 convertase, beginning the terminal pathway. In the 

Figure 1. The complement immunological cascade. In immunity, complement is activated through
three primary pathways: the classical pathway (by antibody–antigen complexes), the lectin pathway
(by bacterial lectins), and the alternative pathway (spontaneous activation). Each pathway is char-
acterized by different pattern recognition receptors and the initial development of a C3 convertase.
All activation pathways converge on the C3 component, which is a central point of complement
activation. C3 is cleaved to feedback and amplify the cascade, opsonize pathogens for phagocytosis,
initiate inflammation, and begin the terminal pathway. Activation of the terminal pathway leads to
the creation and insertion of the membrane attack complex (MAC), leading to cell lysis. This figure
is a guide to visually portray where complement components functionally reside in the immune
cascade throughout the duration of this review. Acronyms and abbreviations are defined in Table 1.
Figure was made with BioRender.

Antibody–antigen complexes (classical pathway), bacterial lectins (lectin pathway),
and spontaneous action (alternative pathway) can activate the immunological complement
cascade. Each pathway forms an enzyme (C3 convertase) that cleaves the complement
component C3 into C3a and C3b—the central point of complement. C3a plays a role in
inflammation, while C3b can participate in opsonization for phagocytosis or modify the C3
convertase enzyme into C5 convertase, beginning the terminal pathway. In the terminal
pathway, C5 is cleaved into the anaphylatoxin C5a and the membrane attack complex
(MAC) component C5b. C5b binds C6, C7, C8, and multiple C9 proteins to form the fully
assembled MAC intermembrane pore. The formation and insertion of multiple MAC pores
allows for a massive influx of fluid into the cell, leading to cell lysis.
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The complement immunological cascade is a positive feedback look that is amplified
by the action of the alternative pathway proteins Factor D, C3, and Properdin. Due to
response amplification, complement must be tightly regulated to prevent excess collateral
damage and chronic inflammation. Complement regulation is accomplished by a variety
of inhibitory proteins and receptors (Figure 2). Complement inhibitors for nearly every
step in the cascade have been identified. Thus, complement can be shut down at various
and specific stages, allowing inhibitor-expressing cells to tailor local complement action. A
cell’s specific complement signature may in fact be used to regulate immune responses by
controlling which complement products are present in the environment, expressed by the
host cells, or bound to pathogens.
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the cascade point where they function. Acronyms and abbreviations are defined in Table 1. Figure
was made with BioRender.

Complement’s modulation of immune responses goes further than just opsonizing
pathogens for engulfment by phagocytes. The engagement of C3b and C4b with the
complement receptors CD21, CD35, CR3, and CR4 on immune cells acts as an activation
signal in the presence of specific cytokines such as interleukin-2 (IL-2) [4]. Moreover, C3b’s
interaction with the complement inhibitors CD35, CD46, and CD55 have been implicated
in T cell differentiation to either proinflammatory T helper 1 (Th1) cells or suppressive T
regulatory cells (Treg), again influenced by the cytokine milieu in the paracrine space [5–7].
In effect, CD46-C3b has been shown to be an additional signal in Th1 activation when
IL-2 is low and to generate highly suppressive Tregs when IL-2 is high [8]. The C3b in
these encounters is not serum-derived but produced and secreted in an autocrine fashion,
indicating an important role for C3 production by the cells in the environment [9].

In addition to C3b and C4b, the anaphylatoxins C3a and C5a have powerful im-
munomodulatory actions [10]. The most obvious mechanism is the chemotaxic and in-
flammatory properties of these molecules. Anaphylatoxins bind to their receptors on
endothelial cells to encourage vasodilation, reduce cellular adhesion molecule expression,
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and to release proinflammatory mediators like IL-1 [10,11]. On immune cells, anaphylatox-
ins recruit tissue and circulating immune cells to the site of complement activation [11] and
activate these cells for maximum pathogen clearance capacity [9]. Interestingly, activation
of Th1 cells is stunted when C3a and C5a are absent, indicating that the anaphylatoxins
are important in Th1 activation [12]. Furthermore, in a high-anaphylatoxin environment,
the suppressive capacity of Tregs is decreased, while in a low-anaphylatoxin environment,
this capacity increases [4,13]. These are just a few examples demonstrating the regulatory
potential of complement over immune responses.

Outside of its immunologic functions, complement plays important roles in other
body systems, particularly in neurological development and cellular metabolism [14–17].
Regarding the subject of this review, complement has been implicated in many important
functions in reproduction, which will be discussed here. A summary of the complement
components, their location in the male reproductive tract, and their functions is contained
in Table 1.

Table 1. Expression of complement components and their potential functions in the male reproductive
tract.

Complement Component Organ Expression (Male Reproductive) Potential Functions in Male
Reproductive Tract

C1 inhibitor (C1INH) 1,2 Testis Inhibition of female genital
tract complement

C1q 1 Testis Classical pathway

C1q-binding protein (C1QBP) 1,2 Testis Inhibition of female genital
tract complement

C1r 2 Testis Classical pathway

C1s 1,2 Testis Classical pathway

C2 1,2 Testis Classical and lectin pathways

C3 1,2,3 Testis, semen

Alternative pathway and complement
cascade, modulation of female

reproductive immunity, sperm–oocyte
interaction

C4 1,2,3 Testis, semen Classical and lectin pathways

C4-binding protein (C4BP) 1,4 Testis, epididymis, semen
Inhibition of female genital tract

complement, modulation of female
reproductive immunity

C5 1 Testis Terminal pathway, immune
cell modulation

C5a receptor 1 (C5aR1) 1 Testis Anaphylatoxin receptor, immune cell
activation, inflammation

C5a receptor 2 (C5aR2) 1 Testis Anaphylatoxin receptor, immune
cell modulation

C6 1 Testis Terminal pathway

C7 1,5 Testis, prostate Terminal pathway

C8a 1 Testis Terminal pathway

C8b 1,2 Testis Terminal pathway

C8c 1,2 Testis Terminal pathway

C9 1,3 Testis, semen Terminal pathway

CD35 1 Testis Inhibition of female genital tract
complement, immune modulation
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Table 1. Cont.

Complement Component Organ Expression (Male Reproductive) Potential Functions in Male
Reproductive Tract

CD46 1,6,7,8 Testis, semen
Inhibition of female genital tract

complement, immune modulation,
sperm–oocyte fusion

CD55 1,2,7,8 Testis, prostate, semen Inhibition of female genital tract
complement, immune modulation

CD59 1,2,3,7,8 Testis, semen Inhibition of female genital
tract complement

Complement Factor-H-related protein 3
(CFHR3)8 Testis Inhibition of female genital

tract complement

Clusterin (CLU) 1,9 Testis, epididymis, seminal vesicle

Inhibition of female genital tract
complement, sperm capacitation, sperm

viability, sperm maturation
and development

Cartilage oligomeric matrix protein
(COMP) 1 Testis Inhibition of female genital

tract complement

Carboxypeptidase B (CPB) 1 Testis Inhibition of anaphylatoxins in female
genital tract

Carboxypeptidase N (CPN) 1 Testis Inhibition of anaphylatoxins in female
genital tract

Cub and Sushi Multiple Domains 1
(CSMD1) 1 Testis Inhibition of female genital

tract complement

Factor D 1 Testis Alternative pathway

Factor H 1,10 Testis, epididymis, seminal vesicles,
semen

Inhibition of female genital
tract complement

Factor I 1 Testis Inhibition of female genital
tract complement

Ficolin 1/2 (FCN1/2) 1 Testis Lectin pathway

MBL-associated serine protease 1/2
(MASP1/2) 1,2 Testis Lectin pathway

Mannose-binding lectin 1/2 (MBL1/2) 1 Testis Lectin pathway

Plasminogen (PLG) 1 Testis Inhibition of female genital
tract complement

Properdin 1 Testis Alternative pathway

Pentraxin (PTX3) 1,11 Testis, prostate, semen Inhibition of female genital
tract complement

Soluble MBL-associated protein 1/2
(SMAP1/2) 1 Testis Inhibition of female genital

tract complement

Sushi domain-containing protein 4
(SUSD4) 1 Testis

Inhibition of female genital tract
complement, may play a role in

immune tolerance

Vitronectin (VTN) 1,12 Testis, semen
Inhibition of female genital tract

complement, may influence acrosome
reaction but needs investigation

Von Willebrand Factor (VWF) 1 Testis Inhibition of female genital
tract complement

Chart references: 1 [18]. 2 [19]. 3 [20–23]. 4 [24]. 5 [25]. 6 [26,27]. 7 [28,29]. 8 [28]. 9 [23,30–33]. 10 [34]. 11 [35]. 12 [36].
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3. Complement in the Testis

The main reproductive organ in males is the testis, the site of testosterone production
and spermatogenesis. The core of the testis are seminiferous tubules, where spermatogene-
sis occurs. Cells important in these testicular functions include Sertoli cells, Leydig cells,
peritubular myoid cells, and testicular macrophages. Of these, complement expression has
been confirmed in Sertoli cells, Leydig cells, macrophages, and germ cells [3,18,19,23,37–39]
(Figure 3, Table 1). Germ cells will be discussed later with seminal plasma.
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3.1. Sertoli Cells

Sertoli cells are primarily responsible for establishing an immunoregulatory environ-
ment conducive for spermatogenesis. Along with peritubular myoid cells, Sertoli cells form
the blood–testis barrier, which is a physical barrier that separates the lumen of the seminifer-
ous tubules from the testis interstitium, where immune cells can operate [40]. This barrier is
the first step in sequestering the maturing germ cells from the immune system. Sertoli cells
also express and secrete various substances that have immune-modulatory properties in-
cluding transforming growth factor beta (TGF-β) and indoleamine-2,3-dioxygenase ([41,42],
reviewed in [2]). Significant research has been conducted into the importance of these
individual factors in autoimmunity, transplantation, and immunity. Work from multiple
investigators, including the Griswold [43], Korbutt [44], Chen [45], and Dufour [18,46–48]
labs, has investigated the presence of complement in Sertoli cells.

The Dufour lab has identified the most detailed milieu of complement components
expressed by Sertoli cells as of the writing of this review: 25 cascade factors, 21 inhibitors,
and 2 receptors, for a total of 48 complement-related proteins (Figure 3, Table 1) [18].
These proteins have been described in detail by Washburn et al. [18] and extensively
reviewed [37]. In brief, expression of nearly all complement cascade factors was detected in
mouse, pig, and human Sertoli cells [18,47]. The identified regulators are known to inhibit
all throughout the complement immunological cascade (Figure 2). Of interest, Sertoli cells
express all but two of the complement proteins that have been detected in the different
parts of the male genital tract (Table 1) [18,43–45,47].

The expression of such a wide repertoire of complement inhibitors by Sertoli cells is
reasonable considering that a main function of Sertoli cells is to create and maintain an
environment for spermatogenesis to thrive—one free from adverse immunological events.
During acute infections of Zika virus, germ cells were shown to undergo complement-
mediated damage, demonstrating that the complement system can be activated when
the blood–testis barrier is disrupted [49]. However, the complement inhibitors expressed
by Sertoli cells block all the major points within the immunological cascade, including
activation, opsonization, C3 convergence, anaphylatoxin inflammatory activity, and MAC-
mediated cytolysis. The presence of these complement regulatory factors may mitigate
the damage in these cases. In this manner, Sertoli cells can prevent sustained deleterious
complement cascade activation within the seminiferous tubules.

Sertoli cells also express two anaphylatoxin receptors (C5aR1 and C5aR2), both for
the highly potent C5a anaphylatoxin. C5aR1 is associated with immune activation, while
C5aR2 is associated with immune suppression under certain conditions [50]. An important
function of C5a is the induction of inflammation and activation of pro-inflammatory im-
mune cell types [11]. Along these lines, C5a has been shown to be a critical component in the
differentiation and activation of Th1 T cells, which amount strong immune responses [6,51].
Moreover, C5aR1 signaling has been shown to inhibit the immune-suppressive functions
of regulatory T cells, as blocking C5aR1 signaling increased numbers of regulatory T cell
numbers and enhanced their suppressive capacity [13,52]. By expressing both C5a recep-
tors, Sertoli cells may sequester any aberrant C5a molecules from activating inflammatory
mechanisms in the seminiferous tubules and in the testicular interstitium. Though C5a is
known to activate signaling cascades within immune and endothelial cells, its signaling
potential has not yet been investigated in the realm of Sertoli cells.

A further study conducted by the Dufour lab analyzed Sertoli cell RNA expression
after exposure to normal human serum (NHS), a model of robust complement-attack [53].
After incubation with NHS for only 90 min, 62 genes were differentially expressed [53].
Pathway analyses determined that many of these genes participate in immune suppression,
angiogenesis, tolerance, cell proliferation, and apoptotic avoidance [53]. It appears that
Sertoli cells respond to the presence of robust complement activation by expressing genes
important in immune regulation, inhibition of inflammation, and cell survival, though
functional studies need to be conducted to confirm these roles.
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Nevertheless, these observations are supported through studies investigating the
immunomodulatory functions of complement regulators. As previously discussed, im-
munomodulatory functions of CD46 have been demonstrated in T cell metabolism, dif-
ferentiation, and survival [8,54,55]. Many of these functions have been shown to occur
through metabolic reprogramming of both CD4 and CD8 T cells [14,54]. CD35 [5] and
CD55 [7,56] have also been shown to have immunomodulatory effects on lymphocytes,
and these mechanisms are currently under investigation. Indeed, complement inhibitor
production by Sertoli cells may take advantage of these modulatory mechanisms to ensure
an immune-protective environment in the seminiferous tubules, thus giving the male germ
cells their best chance to develop and mature.

3.2. Leydig Cells

Leydig cells, another major cell type in the testis, are primarily responsible for testos-
terone production. Among systemic effects, testosterone hormonally regulates many
processes in the male reproductive tract [40,57]. The gene expression of some complement
components is also regulated by testosterone. Androgen synthesis is positively correlated
with the expression of CD46, CD55, and CD59 by Leydig cells; however, a weak negative
correlation was observed in autoimmune orchitis [19]. Along these lines, androgen synthe-
sis is negatively correlated to the expression of the complement cascade factors C1r, C1s,
C2, C3, C4, C8, and MASP1 [19].

It is reasonable to conclude that since CD46, CD55, and CD59 are major complement
inhibitors, their expression indicates a regulated complement environment. Other com-
plement components detected in this study include the inhibitors C1INH, C1QBP, and
CFHR3 [19], which were not analyzed in depth. Of the Leydig cell complement repertoire,
C1r and CFHR3 have not yet been detected in Sertoli cells, which may augment some regu-
latory functions within the seminiferous tubules, but a study of the roles of complement
expressed by Leydig cells has not been conducted (Figure 3, Table 1).

3.3. Macrophages

Testicular macrophages, an important cell type in the testis, function like anti-inflammatory
M2 macrophages and are likely to control inflammation around the blood–testis barrier. Tes-
ticular macrophages suppress inflammatory and cytotoxic immune responses in the delicate
spermatogenic environment, clear cell debris, phagocytose potential pathogens, and perform
testis-specific roles in homeostasis and development [58].

Though not specifically studied in testicular macrophages, the expression and in-
fluence of complement components have been established by macrophages in general
(Table 1), so this review will draw complement-related data from studies over macrophages
collected from bone marrow or the peritoneal cavity [39,59–61]. Since they are immune
cells, their expression of complement proteins makes sense and coheres with this function.
Macrophages are an intratissue source of the complement components C1q, C1r, C1s, C2-
C9, Factor B, Factor D, and Properdin, which are important in eradicating infection [39].
They also express the complement regulators C1INH, C1QBP, CD35, CD46, CD55, CD59,
CLU, Factor H, Factor I, PTX3, SMAP1, and SMAP2 [39], which inhibit complement at
key points to prevent amplification and complement-mediated inflammation. Further-
more, macrophages express many complement receptors (CD35, CR3, CR4, CRIg, C3aR,
C5aR1, and C5aR2), which initiate specific events in the macrophage, including activation
of the macrophage, the enhancement of phagocytosis, macrophage differentiation (M1 or
M2), chemotaxis and extravasation, and the suppression of macrophage function ([59–61],
reviewed in [37]).

Overall, testicular macrophages may use complement to ensure effective pathogen
removal while preserving the integrity of the blood–testis barrier and thus allow for the
successful continuation of spermatogenesis, even during infection. Interestingly, this
complement expression pattern is like that identified in Sertoli cells [18], supporting the
notion that Sertoli cells may directly regulate complement and further immune response.
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3.4. Germ Cells

Germ cells are located in the seminiferous tubules of the testis in association with
Sertoli cells. The presence of various complement factors has been detected on male germ
cells, and these will be discussed in-depth in Section 7.3 of this paper.

4. Complement in the Epididymis

The next organ in the male reproductive tract is the epididymis—the site of spermato-
zoa maturation accumulation [62]. The duct-like structure of the epididymis consists of
four anatomically distinct segments starting at the end of the seminiferous tubules and
proceeding to the beginning of the vas deferens: (1) the initial segment, (2) the caput,
(3) the corpus, and (4) the cauda [62]. Spermatids disengage from their Sertoli cell nursery
to become spermatozoa, which enter the initial segment of the epididymis and then the
caput. Spermatozoa in the caput are non-motile cells, and as they progress through the
various environments in the epididymis, they mature into motile, more functional sperma-
tozoa [63]. Spermatozoa gain fertile functions in the female reproductive tract during the
acrosome reaction [64] involving CD46, which will be discussed later. The presence of three
complement components in the epididymis has been detected: C4BP, CLU, and Factor H
(Figure 3, Table 1).

The lumen of the epididymis is lined with epithelial cells, and it is the epithelial cells
within the distal caput, corpus, and cauda that synthesize C4-binding protein (C4BP) [24].
The epididymal C4BP transcription level, while constant in the liver, is regulated by
androgens [24]. Since the lumen of the epididymis is also protected by a barrier, the
blood–epididymal barrier, C4BP may serve complement-regulatory functions in preventing
abhorrent complement activation in the environment. Spermatozoa may acquire C4BP
secreted by epidydimal cells to prevent complement-mediated damage while in the female
reproductive tract. Nonaka et al. also postulate that, due to the very low levels of C3
and C4 mRNA expressed by epididymal cells, C4BP secretion by epididymal cells and the
subsequent uptake by spermatozoa may be more consequential in maturation, but this has
yet to be investigated [24].

The epididymis also secretes CLU, termed secretory CLU (sCLU), an important in-
hibitor of the complement cytolytic cascade’s terminal pathway that has other functions in
the reproductive tract outside of immunity. sCLU localization was detected by immunoflu-
orescence and Western blot analysis [31,32]. CLU makes up a significant portion of the
protein component of seminal plasma and will be discussed in Section 7.1.

Lastly, large amounts of Factor H transcripts were detected by PCR, but immunofluo-
rescence detected only very low levels of Factor H protein in the epididymis limited to the
caput section [34]. Thus, it is believed that protective Factor H comes from different sources
in the male reproductive tract, such as the seminal vesicles. In support of this argument,
spermatozoa extracted from the caput were significantly less resistant to MAC deposition
(29%) than ejaculated sperm (77%) [34].

5. Complement in the Prostate

The epididymis is connected to the prostate via the vas deferens. As a tubuloalveolar
gland, the prostate is responsible for producing most of the components of seminal plasma,
including essential proteins and ions important in spermatozoa maintenance [65]. Some of
these proteins include the complement factors C7, CD55, and PTX3 (Figure 3, Table 1).

C7 has been detected in prostate stromal cells, where its expression is regulated by
androgens [25]. Long pentraxin 3 (PTX3) has been detected by immunohistochemistry in
epithelial glandular cells of the prostate [35]. In prostate cancer, abnormal levels of C3, C7,
and Factor B are detected, with increased levels of C7 being associated with positive clinical
outcomes [25,29]. CD55 expression is significantly elevated in prostate cancer as compared
to the healthy prostate [29]. Although these complement factors have been identified in the
prostate, their investigation is mainly limited to malignant models [25,66]. Further research
should study the role of CD55, PTX3, and C7 in normal prostate secretion and function.
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6. Complement in the Seminal Vesicles

Another set of glands in the male reproductive system are the seminal vesicles, which
are located behind the prostate. Seminal vesicles are blind-ended tubes tightly coiled on ei-
ther side of the vas deferens that secrete most of the fluid that makes up seminal plasma [67].
Of note is the fact that fluid from the seminal vesicles is alkaline and contains fructose,
vitamins, proteins, and prostaglandins [68]. Fructose is an essential source of energy for
sperm motility, the alkalinity of seminal vesicle fluid neutralizes the normally acidic vaginal
environment, and the proteins include immunomodulatory factors [68]. Together, these
secretory products, along with those secreted by the prostate and bulbourethral glands, are
critical in the maintenance and functionality of ejaculated sperm.

In addition to other immunomodulatory factors such as prostaglandins, Factor H and
CLU have been detected in the fluid and epithelial cells of the seminal vesicles (Figure 3,
Table 1) [31,32,34]. CLU feeds into the seminal plasma of semen and will be discussed
next. Regarding Factor H, immunoblot analyses indicate that this expression is significantly
higher in the seminal vesicles than in other organs of the male reproductive tract [34].
The function of Factor H in this organ has yet to be investigated; however, complement
inhibition in the female reproductive tract is an attractive hypothesis.

7. Complement in Semen

The male reproductive tract is physiologically structured to deliver sperm through the
female reproductive tract for the fertilization of oocytes. To accomplish this, the male germ
cells must (1) progress through spermatogenesis, (2) mature into motile sperm, (3) reside in
a nutrient-rich and protective fluid (seminal plasma), and (4) be able to survive ejaculation
and transit through the hostile environment of the female reproductive tract [69]. The
organs discussed previously cultivate spermatogenesis and spermatozoa maturation and
secrete the necessary substances, including several complement components (Figure 3,
Table 1), to create the ejaculation product of semen. Semen is primarily composed of
seminal plasma and motile spermatozoa.

7.1. Whole Semen

Garcia et al. found that the sperm from infertile men had significantly decreased total
count, count per mL, motility, viability, and normal morphology from that of fertile men [1].
Semen from infertile men had a significantly increased number of white blood cells than
fertile men, which had no detectible white blood cell counts [1]. As previously discussed,
many complement factors either increase or inhibit immune cell infiltration (reviewed
in [2]). Moreover, some complement factors have been shown to affect the fertilization
ability of sperm, which will be discussed shortly.

CD59 is expressed throughout the spermatozoa surface and in seminal plasma, both
bound to prostasomes and as free proteins. Studies by Qin et al. indicate that CD59 may
play an important part in male murine fertility, since the fertilization capacity of CD59-
knockout mice dropped rapidly as the mice aged [70]. The mechanism behind this effect
has not yet been elucidated. Along these lines, PTX3 has been detected in seminal fluid and
on ejaculated sperm [35]. In motility experiments, PTX3 had no effect on sperm motility
and did not correlate with fertilization capacity. Doni et al. suggest that PTX3 may play a
role in normal sperm maturation, and this is an area in need of further research [35].

7.2. Seminal Plasma

Seminal plasma contains nutrients important for spermatozoa maintenance (metabo-
lites, proteins, fructose, cholesterol, etc. [67,71]) and prostasomes (vesicles) [72]. Seminal
plasma provides a nutrient-rich, immunoprotective environment for ejaculated sperm as
they traverse through the female genital tract. The glycosylphosphatidylinositol (GPI)-
anchored complement inhibitors CD46, CD55, and CD59 have been detected on the mem-
branes of prostasomes as well as in a stable membrane-free configuration ([73,74], reviewed
in [3]) (Table 1, Figure 3). The presence of free complement proteins may allow for easy
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transfer to cells, specifically to spermatozoa, and it is thought that through this they can
confer protection against complement-mediated killing [3,73]. Prostasome-associated com-
plement inhibitors may also serve complement-regulatory functions both in the seminal
plasma and also through the transportation of the inhibitors to other cells [3]. Sakaue et al.
determined the presence of Factor H in the seminal plasma of pigs [34]. Of particular
interest was their data indicating that this Factor H had about two times the affinity for
complement inhibition than the Factor H did in serum [34].

In kind, CLU is detected at increased levels in seminal fluid as compared to blood
plasma, particularly sCLU [23,30–32]. Besides inhibiting MAC in the immunological com-
plement cascade, levels of clusterin in seminal fluid correlate with spermatozoa viability
and fertility [75]. The function of CLU outside of complement regulation has been exten-
sively reviewed by Janiszewska and Kratz 2019 [33]. Indeed, CLU’s complement-associated
function was discovered after its roles in reproduction were discovered [33]. CLU is essen-
tial in sperm capacitation, when the sperm within the female reproductive tract undergo
the final physiologic changes critical for oocyte penetration and successful fertilization [76].
Additionally, CLU has been shown to assist in establishing a temporary immune toler-
ance of sperm in the female genital tract during ejaculation and subsequent fertilization
events [33,76,77]. Though much has been uncovered regarding CLU in reproduction, inves-
tigation into potential non-canonical CLU functions in seminal plasma, sperm motility, and
fertilization is worthy of continued study.

Complement cascade components (C3, C4, and C9) have been detected in human
seminal plasma [20–23] and have been used in various studies to measure the efficacy
of complement inhibition [23]. In healthy semen samples, concentrations of C3 and C9
are very low, at less than 5% and 0.3% of blood plasma levels [23]. Even with these
cascade components present, high levels of complement inhibition are detected in seminal
plasma, contributing to its immunosuppressive aspect [78,79]. In some infertile males [38],
decreased complement-inhibitory activity is correlated with infertility and abnormal sperm.
Interestingly, these complement components can become activated in the presence of HIV-1,
which is opsonized by C3b, even in the presence of so many inhibitors [80], indicating that
an immune response could potentially be executed when necessary.

Ultimately, two other functions of complement components in seminal fluid have been
proposed. The first is the contribution to the clearance of apoptotic and dead cells, which
could potentially inhibit sperm motility and health [81]. The second is as a mechanism to
ensure that the strongest sperm reach the oocyte for fertilization by attacking and clearing
the weak sperm.

7.3. Sperm/Germ Cells

Factor H, C4BP, CD46, CD55, CD59, and CLU have been detected on human sperm
and germ cells (Figure 3, Table 1) [23,31,34]. Factor H was detected by immunofluorescence
on the sperm outer acrosome [34], and hyperglycosylated isoforms of CD59 and CD55
are present throughout the spermatozoa plasma membrane [28,82]. The inner plasma
membrane of spermatozoa contains testicular-derived naïve CLU, which is similar in form
to the sCLU found in the seminal fluid [31,83,84].

The presence of C4BP was also only detected on the outer acrosome of spermatozoa
via indirect immunofluorescence [24]. As discussed previously, C4BP is secreted from
epididymal epithelial cells, where it is taken up by the maturing spermatozoa [24]. C4BP
is structurally similar to the acrosomal protein sp56, which is thought to participate in
sperm recognition of the oocyte [24]. C4BP is also expressed on the spermatozoa plasma
membrane [3], but its role in the male reproductive tract aside from complement inhibition
is unclear.

Complement activity within the female genital tract is strong [34,85] and has been
shown to cause immobilization of sperm moving through ovarian fluid [3]. Along these
lines, it is reasonable to conclude that the presence of so many complement regulators in
semen (in the seminal plasma and on the sperm) assures redundant levels of inhibition to
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protect sperm from complement-mediated lysis. Though C3b, created through complement
activation, is present in the female genital tract [26,86], it can be readily shut down due
to the presence of these inhibitors. In addition to its role in fertilization, CD46 acts as a
complement inhibitor in this context, serving as a cofactor of female-derived Factor I [26].

Another function for complement expression in semen is under study—the role of
complement activation and binding in the acrosome reaction during sperm–egg fusion.
The acrosome reaction allows the sperm to penetrate the oocyte [87] and is so critical to
reproduction that sperm without this ability are not able to fertilize oocytes [88]. CD46 and
vitronectin are present on the inner acrosome of sperm, but their expression on the rest of
the sperm surface is absent or minimal, indicating a potential role in this reaction [36,89].
As of now, a role for vitronectin on the acrosome has not been investigated. CD46 has been
most studied in its role in fertilization, which will be discussed next.

8. Clinical Applications for Complement

Complement’s presence in the reproductive tract and on the sperm indicates potential
direct action in reproduction. The main complement components studied in sperm health
and fertilization outside of immunological protection are CD59, CSDM1, C3, and CD46.
Current investigations of complement have led to various clinical applications, particularly
in autoimmune research and drug development, but these have not yet been looked at
in reproduction.

8.1. Complement Action in Sperm Health and Fertilization

As touched upon previously, complement components may contribute to sperm health
and fertilization. CD59, a strong inhibitor of the terminal pathway, has been studied with
regards to fertility. Sperm from male CD59b−/− mice had two significant phenotypic
differences from wild-type ones: (1) immobile sperm and (2) a decreased number of
sperm [70]. These issues made the CD59b−/− mice increasingly infertile over the five-
month study [90]. CSMD1 is detected strongly in regions where germ cells and somatic cells
interact, particularly near Sertoli cells, so knockout mice were generated for the complement
inhibitor CSMD1. Infertility in CSMD1−/− males was significantly increased as compared
to wild-type mice [90]. A histological examination of testicular tissue displayed increased
deposition of C3, consistent with the degradation of testicular tissue, indicating that CSDM1
is an important guardian protein in the blood–testis barrier [90]. However, fertility was still
significantly decreased in CSMD1−/− and C3−/− double-knockout mice, implying that
complement may have a further function in reproductive success [90]. Taking these studies
into account, CD59 and CSMD1 have the potential to be used diagnostically for infertility.

Anderson et al. suggest that CD46 bound to dimerized C3b physically connects the
sperm acrosome to a C3b receptor on oocytes [26]. This has been shown in hamsters,
as C3b increased the adherence of sperm to oocytes [26]. Further evidence includes an
investigation of acrosome CD46 in mouse models and clinical sampling. When antibodies
were used to disrupt the first short consensus repeat (SCR) segment of the entire CD46
structure, the binding of sperm to oocytes was significantly reduced [27]. Sperm from 11%
of infertile men participating in a Japanese study had significantly decreased interaction
with SCR1-specific antibodies [91]. This defect was not detected in leukocytes, so it was
limited to the sperm itself.

However, in subsequent mouse studies, CD46-knockout (CD46−/−) mice were hyper-
fertile [92]. The CD46−/− sperm underwent the acrosome reaction spontaneously, implying
that CD46 may serve more of a regulatory role than a direct role by stabilizing the acrosome
reaction, ensuring that the fittest sperm would fertilize the oocyte. A point to consider is
that, in rodents, CD46 is only expressed on germ cells [93], whereas in humans, CD46 is
expressed nearly ubiquitously [94]. Thus, knocking out CD46 in mice would not account
for any potential effects in other parts of the murine male reproductive tract. Until further
research is conducted on the mechanism behind the ability of CD46−/− sperm to sponta-
neously undergo the acrosome reaction, particularly in non-rodent models, the role of C3b
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and CD46 in fertilization is still debatable. Either way, CD46 and C3b seem to influence
sperm reproductive success in some manner, thus these complement proteins may also be
worthy of analysis as future diagnostics for male infertility.

8.2. Complement Therapeutics in Brief

Twelve complement-inhibitor drugs have been approved by the FDA to date, most
with the express purpose of treating various autoimmune and inflammatory disorders
where complement-mediated inflammation causes pathology (Figure 4, Table 2) [95,96].
These drugs target C1r, C1s, MASPs, Factor B, C3, C5, and C5aR1. Twenty-seven other
complement inhibitory drugs are in clinical trials. These drugs target the above-listed
complement components along with C1q, C2, Factor D, Factor H, and Properdin.
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Table 2. Complement therapeutics.

Drug Complement Target Disease Status

ACH-5548 Factor D Immune-related disease Phase I
ALXN1720 C5/C5a/C5aR1 Myasthenia gravis Phase I
ALXN1820 Properdin Sickle cell disease Phase I
AMY-101 C3 Periodontal inflammation Phase II
ANX005 C1/C1q Huntington’s disease Phase II
ANX007 C1/C1q Geographic atrophy Phase II
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Table 2. Cont.

Drug Complement Target Disease Status

ARGX-117 C2 Multifocal motor neuropathy,
kidney interactions Phase I

Avacincaptad pegol C5 Geographic atrophy FDA-approved
Avacopan C5aR1 Autoantibody vasculitis FDA-approved
Avdoralimab C5/C5a/C5aR1 Bullous pemphigoid Phase II
BCX-9930 Factor D Paroxysmal nocturnal hemoglobinuria Phase I
BDB-001 C5/C5a/C5aR1 COVID-19, hidradenitis suppurativa Phase II/III
Berinert C1r/s, MASP Hereditary angioedema FDA-approved

Cemdisiran C5/C5a/C5aR1 Hemolytic uremic syndrome, IgA
nephropathy, myasthenia gravis Phase II

Cinryze C1r/s, MASP Hereditary angioedema FDA-approved
CLG561 Properdin Geographic atrophy Phase II
Crovalimab C5/C5a/C5aR1 Paroxysmal nocturnal hemoglobinuria Phase III
Danicopan Factor D Paroxysmal nocturnal hemoglobinuria Phase III

Eclulizumab C5
Paroxysmal nocturnal hemoglobinuria,
myasthenia gravis, neuromyelitis optica
spectrum disorder

FDA-approved

GT103 Factor H Non-small-cell lung cancer Phase I
IONIS-FB-liuc Factor B IgA nephropathy Phase II
Iptacopan Factor B Paroxysmal nocturnal hemoglobinuria FDA-approved

Iptacopan Factor B Paroxysmal nocturnal hemoglobinuria, C3
glomerulopathy, IgA nephropathy Phase III

MOR210 C5/C5a/C5aR1 Advanced solid tumors Phase I
Narsoplimab MASP2 Thrombotic microangiopathy Phase III
Nomacopan C5/C5a/C5aR1 Thrombotic microangiopathy Phase III
OCTA-C1-INH C1s/C1r/MASP Hereditary angioedema Phase II
Pegcetacoplan C3 Paroxysmal nocturnal hemoglobinuria FDA-approved
Pegcetacoplan
injection C3 Geographic atrophy FDA-approved

Pozelimab C5 Protein-losing enteropathy FDA-approved
Pozelimab C5/C5a/C5aR1 Paroxysmal nocturnal hemoglobinuria Phase III

Ravulizumab C5 Paroxysmal nocturnal hemoglobinuria,
atypical hemolytic uremic syndrome FDA-approved

Ruconest C1r/s, MASP Hereditary angioedema FDA-approved
Sutimlimab C1s Cold agglutinin disease FDA-approved
Tesidolumab C5/C5a/C5aR1 Paroxysmal nocturnal hemoglobinuria Phase II
Vemircopan Factor D Paroxysmal nocturnal hemoglobinuria Phase II
Vilobelimab C5/C5a/C5aR1 COVID-19, hidradenitis suppurativa Phase III
Zilucoplan C5 Myasthenia gravis FDA-approved
Zilucoplan C5/C5a/C5aR1 Myasthenia gravis Phase III
Zimura C5/C5a/C5aR1 Geographic atrophy Phase III

Table references [95–97].

Another option besides inhibiting complement action by pharmaceutical intervention
is to knock-in complement genes. Regarding xenotransplantation, transgenic pigs are
used as donors. These pigs have ten genetic modifications intended to prolong graft
viability [98]. Among these are the knock-ins of human CD46 and CD55. With the aid of
novel immunosuppressive treatments, the first xenotransplant of a pig heart occurred in
January of 2022 and survived for two months—a major feat in xenotransplantation [98].
This clinical application demonstrates that the knock-in of complement components could
be an effective therapeutic, and its application should be investigated in the realm of
infertility—particularly of CSMD1 and CD46.

Considering these current developments, an investigation of complement therapeutics on
sperm health has not yet occurred. Since many of these complement inhibitors and complement
genetic knock-ins work to control deleterious inflammation, these therapeutics have the potential



BioMed 2024, 4 33

to address this issue in infertility. With the wealth of complement-related therapeutics being
developed, there is much opportunity to investigate their application in reproduction.

9. Discussion

The presence of complement has been detected in the testis, epididymis, prostate, and
semen of the male reproductive tract (Figure 3, Table 1). Of these, complement expression
has been most robustly investigated in the testis, particularly regarding Sertoli cells, and
semen. Studies indicate that complement may play a role in the establishment and/or
maintenance of the immune privilege awarded to the seminiferous tubules of the testis,
both by directly inhibiting cascade activation and through potential modulation of immune
cells [18,45–47,53]. The presence of complement inhibitors in the epididymis and prostate
support the inhibition of complement’s inflammatory functions [62,63,83,84].

Complement inhibitors are detected in semen, both on the spermatozoa and in the
seminal plasma as free proteins or bound to prostasome membranes. Clusterin makes up the
largest protein component of semen, and it is critical in maintaining spermatozoa health [76].
CD55 and CD59 are also detected on spermatozoa, but aside from inhibiting complement-
mediated lysis and inflammation, their further function is unknown [3,28,73,89]. Considering
the current research on the immune-modulatory functions of complement regulators such as
CD46 and CD55, these factors may serve to encourage and maintain an immune-protective
milieu conducive to sperm success. The prostasome-associated complement inhibitors, most
studied regarding Factor H, have been found to interact with spermatozoa, allowing for the
transfer of Factor H to the spermatozoa [34]. This brings up an interesting notion—utilizing
vesicle-bound complement regulators, or even other proteins, in the development of new
fertility therapies. Surely, in cases of infertile males, supplementing receptor deficiency with
exogenous prostasome-bound proteins may be worth investigating.

Pharmacological intervention regarding the complement system may be a potential
treatment for male infertility (Figure 4, Table 2). Additionally, in men with aberrant
testicular inflammation, the utilization of complement inhibitors may aid in maintaining the
blood–testis barrier, thus protecting spermatogenesis. Furthermore, as some complement
components seem to be important in sperm health, such as CD59 [70,90] and CSMD1,
it could be beneficial to analyze sperm from men with fertility issues to assess if these
components are missing. In this manner, new therapeutics could be developed to replace
these important proteins and increase sperm motility.

Along the lines of fertilization capacity, sperm from CD46−/− mice demonstrated
spontaneous acrosome reaction activity [92], though the mechanism behind the phenotype
is not currently known. Still, this knowledge may lead to the development of CD46-deficent
fertility treatments, as increasing the likelihood of a spontaneous acrosome reaction in the
case of disrupted sperm activity may be beneficial. CD46 may not play the most critical
role in ensuring fertilization; its place in this reaction seems redundant to that of other
acrosome proteins [99]. This redundancy of function is appropriate since the acrosome
reaction is essential to fertilization and needs every opportunity to succeed in ensuring the
reproductive success of the species.

A significant limitation in the study of complement in the male reproductive tract, and
in general, is that mouse models do not translate well to humans, particularly regarding
CD46 [100,101]. In rodents, CD46 is only expressed on the acrosome of sperm and in Sertoli
cells [37]. In humans, CD46 is expressed ubiquitously, and it is particularly important in
T cell metabolism, clonal expansion, and survival [101]. As rodent T cells do not express
CD46, it is then understood that CD46 does not play the same role, or at least does not have
the same importance, as it does in human T cells. At this time, humanized mouse models
with human CD46 knock-ins are available [102] and are being integrated into complement
studies to account for this limitation.

Overall, there is still much to be discovered regarding complement in the male repro-
ductive tract, including:

1. The roles of anaphylatoxin signaling in the gonads;
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2. Functional investigation into genes affected by robust complement exposure;
3. Complement expressed by testicular macrophages;
4. The effects of C4BP secreted by epididymal cells on sperm maturation;
5. Complement in the healthy prostate;
6. The specific function of seminal vesicle-derived Factor H;
7. A role for PTX3 in sperm maturation;
8. Noncanonical CLU functions in seminal plasma, sperm motility, and fertilization;
9. The effects of C4BP on sperm in fertilization and sperm health;
10. The function of vitronectin on the acrosome.

10. Conclusions

Though much information has been uncovered regarding the presence and function
of complement in male reproduction, many areas warrant further study, including com-
plement’s role regarding the prostate and other glands, its function in fertilization, and its
importance in testis immune regulation. Garnering a solid understanding of immunological
responses and functions in reproduction has many applications in fertility assessment and
treatment in humans, agriculture-related reproduction, autoimmune disease pathology,
and cancer response.
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