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Effect of In-Plane Magnetic Field on Skyrmions in a
Centrosymmetric Triangular-Lattice System with Symmetric
Anisotropic Exchange Interaction
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Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; hayami@phys.sci.hokudai.ac.jp

Abstract: We report our numerical results on the stability of the skyrmion crystal phase in an ex-
ternal magnetic field for both in-plane and out-of-plane directions in a centrosymmetric host. We
analyze a spin model with the two-spin symmetric anisotropic exchange interaction that arises
from relativistic spin–orbit coupling on a triangular lattice. By performing simulated annealing, we
construct magnetic phase diagrams when the magnetic field is tilted from the out-of-plane field
direction to the in-plane field direction. We find a different stability tendency of the skyrmion
crystal phase according to the directions of the in-plane field, which provides a signal of the two-
spin symmetric anisotropic exchange interaction for stabilizing the skyrmion crystal phase. Our
results indicate that the mechanism of the skyrmion crystal phase triggered by the two-spin sym-
metric anisotropic exchange interaction can be experimentally tested by applying the in-plane
magnetic field.

Keywords: skyrmion crystal; multiple-Q magnetic state; triangular lattice; bond-dependent
symmetric anisotropic interaction

1. Introduction

A multiple-Q spin texture, consisting of a superposition of multiple spin-density
waves, has been extensively studied in condensed matter physics since it leads to com-
plicated noncollinear and noncoplanar magnetic orderings in materials. Noncollinear
magnetic orderings give rise to electric polarization [1–4] and antisymmetric spin polar-
ization [5,6], whereas noncoplanar magnetic orderings give rise to topological Hall and
Nernst effects [7–20] and nonreciprocal transport [21,22]. These features have been ubiqui-
tously clarified through microscopic model calculations for various lattice systems, such
as noncoplanar triple-Q states on a triangular lattice [23–27] and a distorted face-centered
cubic lattice [28].

Itinerant magnets are one of the typical systems for realizing multiple-Q states since
effective interactions mediated by itinerant electrons often induce the multiple-Q insta-
bility. For example, the emergence of a magnetic skyrmion crystal (SkX) and vortex
crystal with topologically nontrivial spin textures have been theoretically clarified as a
consequence of multiple-Q states in the Kondo lattice model [29–36], even without the
Dzyaloshinskii–Moriya (DM) interaction [37,38] and antisymmetric spin–orbit interaction
(spin-dependent hopping). Simultaneously, such multiple-Q states have been observed in
a variety of itinerant magnetic materials under centrosymmetric lattice structures, such as
Gd2PdSi3 [16,39–47], Gd3Ru4Al12 [48–51], GdRu2Si2 [52–56], and Y3Co8Sn4 [57,58], as well
as noncentrosymmetric lattice structures, such as MnSi [9,59–77], Fe1−xCoxSi [78–82], Eu-
PtSi [83–92], and EuNiGe3 [93–96]. The findings of the SkX in Gd- and Eu-based com-
pounds might be attributed to the large total angular momentum without the orbital
angular momentum.

In contrast to noncentrosymmetric itinerant magnets, where the DM interaction plays
an important role in stabilizing the SkX [97,98], effective multiple-spin interactions in the
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form of (Si · Sj)
2 and (Si · Sj)(Sk · Sl) [30,35], easy-axis single-ion anisotropy in the form of

(Sz
i )

2 [31,99], and two-spin symmetric anisotropic exchange interaction in the form of Sx
i Sx

j
with the directional dependence [49,100] become the origin of the SkX in centrosymmetric
itinerant magnets, where Si = (Sx

i , Sy
i , Sz

i ) is the localized spin at site i. Meanwhile, it is
usually difficult to directly identify which factors are essential in SkX-hosting materials.

In the present study, we investigate different tendencies among the above mecha-
nisms by examining the stability of the SkX under in-plane and out-of-plane external
magnetic fields. Since the symmetry of the aforementioned spin interactions differs, one
can obtain different stability tendencies depending on the magnetic field directions. In
order to demonstrate this, we construct two magnetic phase diagrams for an effective spin
model with the two-spin symmetric anisotropic exchange interaction on a two-dimensional
triangular lattice: one corresponding to the field direction lying in the xz-plane and the
other corresponding to the field direction lying in the yz-plane. We show that the stability
region and behavior of the triple-Q SkX are different depending on the magnetic field
direction. We also show that the instability toward multiple-Q states, other than the SkX, is
qualitatively different for different magnetic field directions. We discuss the differences
in the phase diagrams from other mechanisms, such as multiple-spin interactions and
easy-axis single-ion anisotropy. Our results would be helpful for clarifying whether the
two-spin symmetric anisotropic exchange interaction plays a significant role in stabilizing
the SkX in centrosymmetric itinerant magnets.

The rest of this paper is organized as follows. In Section 2, we introduce an effective
spin model in centrosymmetric itinerant magnets, where the effect of the two-spin symmet-
ric anisotropic exchange interaction is incorporated. We also outline the numerical method
based on simulated annealing. In Section 3, we discuss the numerical results by focusing
on the stability of the SkX in an external magnetic field. First, we show that the SkX is
induced by the two-spin symmetric anisotropic exchange interaction in an out-of-plane
magnetic field. Then, we discuss the stability of the SkX by rotating the field direction in the
xz- and yz-planes. We compare the obtained results with those from models incorporating
multiple-spin interactions and easy-axis single-ion anisotropy in Section 4. Section 5 is
devoted to a summary of this paper.

2. Model and Method

We consider the following spin model on a two-dimensional triangular lattice, which
is given by

H = −2J ∑
ν

(
SQν · S−Qν + ∑

αβ

Iαβ
Qν

Sα
Qν

Sβ
−Qν

)
− ∑

i
H · Si. (1)

where Si = (Sx
i , Sy

i , Sz
i ) represents the classical spin at site i with a length |Si| = 1;

SQν = (Sx
Qν

, Sy
Qν

, Sz
Qν

) represents the Qν component of spin moments, which is related
to Si by Fourier transformation; and ν is the index for independent wave vectors in the
first Brillouin zone. The first term represents the interaction defined in momentum space
with the coupling constant J, which consists of the two-spin isotropic exchange interaction
and symmetric anisotropic exchange interaction. Iαβ

Qν
for α, β = x, y, z represents the Qν-

dependent anisotropic form factor, which originates from the interplay between spin–orbit
coupling and the crystalline electric field in the triangular-lattice structure, as demonstrated
in Ref. [101]. The momentum-resolved bilinear exchange interaction can be mapped into
the real-space one through Fourier transformation. The second term represents the Zeeman
coupling term through an external magnetic field H = (Hx, Hy, Hz).

The spin model with the momentum-resolved interaction in Equation (1) is derived
from the Kondo lattice model with classical spin by considering a situation where the
Kondo coupling between itinerant electron spins and localized spins (JK) is small com-
pared to the bandwidth of itinerant electrons [30,101,102]. By performing perturbative
analysis in terms of the Kondo coupling, one finds that the interaction in the first term in
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Equation (1) corresponds to the lowest-order contribution in terms of the Kondo coupling
in the expansion, i.e., J ∝ J2

K, which is known as the Ruderman–Kittel–Kasuya–Yosida
interaction [103–105], whose magnitude is determined by the bare susceptibility of itinerant
electrons depending on the band structure and Fermi level in the system. We ignore the
effect of multiple-spin interactions, which appear as higher-order contributions in the
expansion, by assuming that the higher-order effect is negligible, although a situation
where the bare susceptibility shows distinct peak structures at Qν often leads to instability
toward the SkX [30].

In Equation (1), we further simplify the model by taking into account the momentum-
resolved interactions at particular wave vectors that provide the dominant contribution
to the ground-state energy. In other words, we consider the situation where the bare
susceptibility of itinerant electrons shows maxima at particular wave vectors Q1–Q3, which
are often attained by the nesting of the Fermi surface. Specifically, we set Q1 = (Q, 0),
Q2 = (−Q/2,

√
3Q/2), and Q3 = (−Q/2,−

√
3Q/2) with Q = π/3, where the lattice

constant of the triangular lattice is taken as unity. It is noted that Q1, Q2, and Q3 are
connected by the threefold rotational symmetry of the triangular lattice. The following
results are not qualitatively affected by a different choice of Q unless the ordering wave
vectors lie at the Brillouin zone boundary.

For these wave vectors, Iαβ
Qν

is given so as to satisfy the sixfold rotational symmetry

as follows [101]: −Ixx
Q1

= Iyy
Q1

= 2Ixx
Q2

= −2Iyy
Q2

= 2Ixy
Q2

/
√

3 = 2Iyx
Q2

/
√

3 = 2Ixx
Q3

= −2Iyy
Q3

=

−2Ixy
Q3

/
√

3 = −2Iyx
Q3

/
√

3 ≡ IA. This symmetric anisotropic form factor IA corresponds to
bond-dependent interaction, such as the compass and Kitaev interactions [106–110], which
become the origin of unconventional topological spin textures [111–114] and nonreciprocal
magnon excitations [110]. Furthermore, this type of symmetric anisotropic exchange
interaction on the triangular lattice induces the SkX even in the absence of multiple-spin
interactions or easy-axis single-ion anisotropy [49,100]. We focus on the behavior of the
SkX induced by IA against the magnetic field direction in Section 3 and compare the results
among different mechanisms in Section 4.

For the model in Equation (1), we construct two low-temperature magnetic phase
diagrams depending on the magnetic field direction: one is the phase diagram obtained
by varying the out-of-plane field Hz and the in-plane x-directional field Hx with Hy = 0,
and the other is the phase diagram obtained by varying Hz and the y-directional field
Hy with Hx = 0. We set the other model parameters as J = 1 and IA = 0.1. The
phase diagrams are calculated by performing simulated annealing based on the standard
Metropolis algorithm with local spin updates for the system size N = 242 under periodic
boundary conditions. The procedure is as follows. By taking a random spin configuration
as an initial spin state, we gradually reduce the temperature from high temperatures, T0
= 1–5, to the final temperature, T = 0.0001, using the ratio Tn+1 = 0.999999Tn, where
Tn is the temperature at the nth-step. We perform the local spin updates in real space at
each temperature up to T. At T, we further perform Monte Carlo sweeps around 105–
106 in order to optimize the spin configuration. We independently perform the above
procedure for different sets of magnetic fields. We also perform the simulations from the
spin configurations obtained at low temperatures in the vicinity of the phase boundaries in
order to avoid meta-stable spin configurations.

For the spin configurations obtained through simulated annealing, we calculate the
spin and scalar chirality quantities to identify the magnetic phase. The order parameter
corresponds to the Qν component of magnetic moments mη

Qν
with the spin component

η = x, y, z, which is given by

mη
Qν

=
1
N

√
∑
i,j

Sα
i Sα

j eiQν ·(ri−rj), (2)
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where ri is the position vector at site i. We also calculate (mxy
Qν

)2 = (mx
Qν

)2 + (my
Qν

)2 and
(mQν)

2 = (mx
Qν

)2 + (my
Qν

)2 + (mz
Qν

)2. The squared quantity (mQν)
2 corresponds to the

susceptibility in the Qν channel. The uniform magnetization is given by

Mη =
1
N ∑

i
Sη

i . (3)

The scalar chirality is given by

χsc =
1
N ∑

µ
∑

R∈µ

χsc
R , (4)

χsc
R = Si · (Sj × Sk), (5)

where R denotes the position vectors at the centers of triangles and µ = (u, d) represents
upward and downward triangles, respectively, in the triangular lattice. The site indices
i, j, k represent the vertices on the triangle at R in counterclockwise order. The magnetic
states with nonzero χsc correspond to the topologically nontrivial states since they generate
an auxiliary magnetic field and act on the itinerant electrons via the spin Berry phase
mechanism.

3. Results

We show the stability of the SkX and other multiple-Q states in the different magnetic
field directions. In Section 3.1, we show that the SkX appears in the ground state under the
out-of-plane magnetic field with the aid of the two-spin symmetric anisotropic exchange
interaction. Then, we show the effect of the in-plane magnetic field on the SkX. The results
under the x-directional magnetic field are shown in Section 3.2, whereas those under the
y-directional magnetic field are shown in Section 3.3.

3.1. Out-of-Plane Field

First, we investigate the instability toward the SkX in the model in Equation (1) under
the out-of-plane magnetic field, i.e., Hx = Hy = 0 and Hz ̸= 0. In the case of IA = 0,
the system exhibits the single-Q conical spiral state under Hz, whose spin configuration is
given by Si = (sin θ cos Qν · ri, sin θ sin Qν · ri, cos θ) with cos θ = Hz/2. Thus, there is no
instability toward multiple-Q states in the absence of IA.

Meanwhile, the multiple-Q states, including the SkX, appear by introducing IA [100].
Figure 1 shows the Hz dependence of the magnetic and scalar chirality quantities at
IA = 0.1. For better readability, we sort (mxy

Qν
)2 in Figure 1b and (mz

Qν
)2 in Figure 1c when

the states with different Qν are energetically degenerate. There are six phases except for the
fully polarized state stabilized for Hz ≳ 2.2; the spin configuration of the fully polarized
state is given by Si = (0, 0, 1). We describe the details of the obtained phases one by one
below. The nonzero scalar chirality and magnetic moments in each phase are summarized
in Table 1.

Phase I. This state is stabilized at zero and low fields. At zero fields, this state exhibits
an anisotropic double-Q modulation; the dominant contribution is given by (mxy

Q1
)2 and

(mz
Q1

)2, and the subdominant contribution is given by (mxy
Q2

)2, as shown in Figure 1b,c.
Specifically, the spin configuration is represented by a superposition of the proper-screw
spiral wave in the Q1 component and the sinusoidal wave in the Q2 component. Such a
feature can be seen in the real-space spin configuration, as shown in Figure 2a, where it is
noted that the dominant and subdominant components are given by (mQ3)

2 and (mQ1)
2,

respectively. Owing to the double-Q superposition, this spin configuration is noncoplanar,
and the density wave in terms of the scalar chirality occurs in the subdominant (mQν)

2

component, as shown in Figure 3a. On the other hand, there is no uniform scalar chirality
in this state, as shown in Figure 1d.



Magnetism 2024, 4 58

When Hz is applied, the magnetization Mz continuously increases, as shown in
Figure 1a. Accordingly, (mxy

Q3
)2 becomes nonzero, as shown in Figure 1b, which indicates

that Phase I is characterized by an anisotropic triple-Q state. No net scalar chirality is
induced in this triple-Q spin texture, as shown in Figure 1d.

 0.0
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 0.6

 0.8
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 0.0  0.5  1.0  1.5  2.0  2.5

(a)
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(c)

 0.00
 0.0  0.5  1.0  1.5  2.0  2.5

(d)

 0.06

 0.12

 0.18

SkX

SkX II

I II III IV FP

Figure 1. Out-of-plane magnetic field Hz dependence of (a) the magnetization Mη , (b) the Qν

component of the squared in-plane magnetic moment (mxy
Qν

)2, (c) the Qν component of the squared

out-of-plane magnetic moment (mz
Qν

)2, and (d) the squared scalar chirality (χsc)2 for IA = 0.1 and
Hx = Hy = 0. FP stands for the fully polarized state.

(a) (b) (c)

(d) (e) (f)

0 1-1

Figure 2. Real-space spin configurations of (a) Phase I at Hz = 0, (b) Phase II at Hz = 0.4, (c) SkX II
at Hz = 0.5, (d) SkX at Hz = 0.8, (e) Phase III at Hz = 1.35, and (f) Phase IV at Hz = 1.9. The contour
shows the z component of the spin moment, and the arrows represent the xy components.
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(a) (b) (c)

(d) (e) (f)

0 1-1

Figure 3. Real-space scalar chirality configuration corresponding to Figure 2.

Table 1. Scalar chirality χsc and Qν components of the magnetic moments mQν
for ν = 1–3 in

each phase.

Phase χsc mxy
Q1

mz
Q1

mxy
Q2

mz
Q2

mxy
Q3

mz
Q3

Remark

Phase I – ✓ ✓ ✓ – ✓ – (mxy
Q2

)2 ̸= (mxy
Q3

)2

Phase II – ✓ ✓ ✓ – ✓ – (mxy
Q2

)2 = (mxy
Q3

)2

SkX II ✓ ✓ ✓ ✓ ✓ ✓ ✓ (mQ1 )
2 = (mQ2 )

2 ̸= (mQ3 )
2

SkX ✓ ✓ ✓ ✓ ✓ ✓ ✓ (mQ1 )
2 = (mQ2 )

2 = (mQ3 )
2

Phase III – ✓ – ✓ – – – (mxy
Q1

)2 = (mxy
Q2

)2

Phase IV – ✓ – ✓ – ✓ – (mxy
Q1

)2 = (mxy
Q2

)2 = (mxy
Q3

)2

Phase II. This phase appears next to Phase I by increasing Hz, as shown in Figure 1a.
The phase transition is of second order, where the magnetization smoothly changes,
as shown in Figure 1a. The spin configuration in this phase is similar to that in Phase I,
as shown in Figure 2a,b. Meanwhile, there is a small difference in (mxy

Qν
)2 for ν = 2, 3; in con-

trast to Phase I, the subdominant intensity in (mxy
Q2

)2 is equal to that in (mxy
Q3

)2. Reflecting
this difference, the scalar chirality in real space exhibits a checkerboard-type modulation,
as shown in Figure 3b, which indicates that the scalar chirality is characterized by the
double-Q modulation. Similar to Phase I, this state does not exhibit a net scalar chirality.

SkX II. When the magnetic field is increased in Phase II, the SkX II appears with a jump
in the magnetization, as shown in Figure 1a, which indicates a first-order phase transition.
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This state is described by a superposition of the triple-Q spiral waves in the Q1, Q2, and Q3
components. As shown in Figure 1b,c, the triple-Q superposition is anisotropic; (mQ1)

2

is equal to (mQ2)
2, but neither is equal to (mQ3)

2. This feature appears in the real-space
spin configuration in Figure 2c, where the shape of the skyrmion core, denoted as Sz

i = −1,
seems elliptic rather than circular; the skyrmion core is located on the interstitial site owing
to the discrete lattice structure without easy-axis single-ion anisotropy. The deviation from
the circular shape of the skyrmion core is caused by the breaking of the threefold rotational
symmetry, which is found in the relation (mQ1)

2 = (mQ2)
2 ̸= (mQ3)

2. The scalar chirality
in real space is also characterized by an anisotropic triple-Q structure, as shown in Figure 3c.
In contrast to Phase I and Phase II, this state exhibits a nonzero scalar chirality in Figure 1d,
which signals the topologically nontrivial spin texture leading to the topological Hall effect.

SkX. With a further increase in Hz, the SkX II turns into the SkX, as shown in Figure 1a.
This state is also characterized by the triple-Q spiral states, although the intensities in
the triple-Q components are equivalent to each other, i.e., (mxy

Q1
)2 = (mxy

Q2
)2 = (mxy

Q3
)2

and (mz
Q1

)2 = (mz
Q2

)2 = (mz
Q3

)2 in contrast to the situation in the SkX II (see Figure 1b,c).
Owing to the isotropic triple-Q structure, the real-space spin configuration keeps the
threefold rotational symmetry of the triangular lattice, as shown in Figure 2d. Accordingly,
the scalar chirality is also distributed in a threefold-symmetric way, as shown in Figure 3d.
The net scalar chirality becomes nonzero in Figure 1d.

The appearance of both the SkX and SkX II is owing to the two-spin symmetric
anisotropic exchange interaction IA. Since IA > 0 (IA < 0) favors the proper-screw (out-of-
plane cycloidal) spiral wave, the resultant triple-Q SkX favors the Bloch (Néel) SkX. The
Bloch helicity means that the spins surrounding the skyrmion core rotate in the xy-plane
with a helicity of ±π/2, whereas the Néel helicity means that the spins are radially directed
in an inward or outward way with a helicity of 0 or π. Indeed, we obtain the Bloch-type
helicity in both the SkX and SkX II phases for IA = 0.1 > 0, as shown in Figure 2c,d. It
is noted that the introduction of IA lifts the degeneracy with the anti-type SkX with the
opposite sign of the scalar chirality. A similar situation also occurs in the square SkX in the
tetragonal lattice system [115].

Phase III. This phase appears upon increasing Hz in the SkX with a jump in the
magnetization, as shown in Figure 1a. The phase transition between Phase III and SkX
is of first order. The spin configuration in this state is characterized by the sinusoidal
waves in two out of three (mxy

Qν
)2, as shown in Figure 1b, which means the appearance

of the double-Q fan state. On the other hand, there are no z-spin modulations in the Qν

component, as shown in Figure 1c. The in-plane double-Q spin texture leads to the periodic
alignment of the vortex and anti-vortex, as shown by the real-space spin configuration
in Figure 2e. The distribution of the scalar chirality is described by a superposition of
the Q1 − Q2 and Q3 components when the magnetic modulations are represented by the
Q1 and Q2 components, as shown in Figure 3e. Owing to the equivalence of the vortex
and anti-vortex, the net scalar chirality becomes zero in the whole system, as shown in
Figure 1d. One finds that the scalar chirality shows a jump from the finite values to zero in
the transition from the SkX, as shown in Figure 1d.

Phase IV. This phase is stabilized in the high-field region close to the saturation field,
as shown in Figure 1a. As shown in Figure 1b,c, the spin configuration in this state is
described by an in-plane triple-Q fan structure with nonzero (mxy

Q1
)2 = (mxy

Q2
)2 = (mxy

Q3
)2

but without (mz
Qν

)2. The real-space spin and scalar chirality configurations are shown
in Figures 2f and 3f, respectively, where the threefold symmetric distributions are seen
in both configurations. In the real-space picture, one finds two types of vortices: one is
the vortex with a winding number of −2, whereas the other is the vortex with a winding
number of +1. Since the number of the vortex with the winding number of +1 is twice
that of the one with the winding number of −2, the net scalar chirality becomes zero in
the whole system. A similar spin texture is also found in the frustrated triangular-lattice
magnets [116,117]. This phase continuously turns into a fully polarized state with the
increase in the magnetic field.
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3.2. In-Plane Field along the x-Direction

We investigated the effect of the in-plane magnetic field on the SkX and other multiple-
Q states obtained in Section 3.1. In this section, we examine the effect of the x-directional
magnetic field Hx while keeping Hy = 0. Figure 4 shows the low-temperature phase
diagram when Hx and Hz are varied. The contours in Figure 4a–d represent (χsc)2 in
Figure 4a, (mQ1)

2 in Figure 4b, (mQ2)
2 in Figure 4c, and (mQ3)

2 in Figure 4d.

0 1 2
0

1

2

0.0

0.1

(a)

0 1 2
0

1

2

0.0

0.2

0.4

(b)

0 1 2
0

1

2

0.0

0.1

(c)

0.2

0 1 2
0

1

2

0.0

0.1

(d)

0.2

SkX

fully polarized state

other magnetic
states

SkX II

Figure 4. Low-temperature phase diagram under the magnetic field in the xz-plane. The contour
shows (a) (χsc)2, (b) (mQ1 )

2, (c) (mQ2 )
2, and (d) (mQ3 )

2.

Since (χsc)2 becomes nonzero only for the SkX and SkX II, this quantity signals the
appearance of the skyrmion spin texture. As shown in Figure 4a, both SkX phases remain
stable when the magnetic field is tilted from the out-of-plane direction to the in-plane
x-direction up to around 54◦ measured from the z-axis. Then, both SkX phases vanish
when Hx is further increased, which indicates that IA does not favor the SkX in an in-plane
magnetic field along the x-direction. This is consistent with the results that the easy-plane
single-ion anisotropy in the form of A(Sz

i )
2 for A > 0 is required in order to stabilize the

SkX in the in-plane magnetic field [118].
Since the magnetic field is tilted from the z-direction, the threefold rotational sym-

metry of the SkX is broken; the Q1 component is no longer equivalent to the Q2 and Q3
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components. Accordingly, the skyrmion core is elongated along the y-direction, as shown
by the real-space spin configuration in Figure 5a. The scalar chirality distribution is also
modulated so as to break the threefold rotational symmetry, although such a change is
small, as shown in Figure 5b. Indeed, (χsc)2 takes similar values in the entire region
where the SkX and SkX II phases appear, as shown in Figure 4a. Meanwhile, the skyrmion
size under the in-plane field is almost the same as that under the out-of-plane field since
the present SkX consists of a superposition of spin-density waves at the same ordering
wave vectors.

(a) (b)

0 1-1 0 1-1

Figure 5. (a) Real-space spin configurations of the SkX at Hx = 0.75 and Hz = 0.8. (b) Real-space
scalar chirality configurations corresponding to (a).

We discuss the effect of the x-directional magnetic field on the other phases by examin-
ing the data at Hx = 0.4 in Figure 6a–d and Hx = 0.8 in Figure 6e–h. In the low-field region
for Hz ≲ 0.4 at Hx = 0.4, the behavior of (mxy

Qν
)2 is similar to that at Hx = 0, as shown in

Figures 1b and 6b. Meanwhile, (mz
Q2

)2 and (mz
Q3

)2 become nonzero for 0.1 ≲ Hz ≲ 0.4 in
Figure 6c, which is different from the result in Figure 1c. Thus, we denote this phase as
Phase II’ instead of Phase II. By increasing Hx, (mQ2)

2 and (mQ3)
2 vanish while keeping

nonzero (mQ1)
2 for 0 ≲ Hz ≲ 0.6, as shown in Figure 6f,g, which indicates that the mag-

netic structure is characterized by the single-Q spiral state; we denote it as Phase I’. The
choice of the spiral waves in the Q1 component is attributed to the energy gain by both IA

and Hx since the spiral plane lies on the yz-plane for the Q1 component.
In the high-field region for 1.3 ≲ Hz ≲ 2.2 at Hx = 0.4, the magnitudes of the triple-Q

ordering wave vectors become nonzero with different intensities in both the xy and z
components, as shown in Figure 6b,c. We denote this phase as Phase III’. Such a feature
holds for larger Hx, as shown in the case of Hx = 0.8 in Figure 6f,g. This anisotropic
triple-Q phase is replaced with the single-Q state stabilized in the low-field region by
further increasing Hx, as shown in Figure 4b–d. The net scalar chirality remains zero in the
regions of Phase I’, Phase II’, and Phase III’, as shown in Figure 6d,h.

3.3. In-Plane Field along the y-Direction

Next, we discuss the results obtained by rotating the magnetic field on the yz-plane,
i.e., Hx = 0. Figure 7a–d show the phase diagram in the plane of Hy and Hz. Similar to
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the results in Figure 4, we show the contours of (χsc)2 in Figure 7a, (mQ1)
2 in Figure 7b,

(mQ2)
2 in Figure 7c, and (mQ3)

2 in Figure 7d.
The SkX remains stable up to Hy ∼ 0.9, as shown in Figure 7a. The stability region of

the SkX under Hy is similar to that under Hx, although one can observe a slight difference
between them; the SkX region for the former case is wider than that for the latter. The
real-space spin and scalar chirality configurations in the presence of Hy are shown in
Figures 8a and 8b, respectively. Owing to the y-directional magnetic field, the spins tend to
align the positive y-direction, which breaks the threefold rotational symmetry. In contrast
to the result under Hx, the SkX and SkX II are not distinguished from each other when
Hy is introduced, which means that they smoothly merge into a single phase, as shown in
Figure 9b,c.

In the low- and high-field regions, the instabilities toward the magnetic states are
qualitatively different from those in Section 3.2. In the low-field region, the dominant
intensity of (mQν)

2 is found in the Q2 (or Q3) component in order to gain the Zeeman
energy with Hy, as shown in Figure 9b,c,f,g. We denote this phase as Phase I”. In addition,
the magnetic state with dominant double-Q intensities (mQ2)

2 = (mQ3)
2 appears in the

high-field region, where we denote it as Phase III”, as shown in Figure 9b,c,f,g. It is
noted that (mQ1)

2 is slightly induced in this state. This phase remains stable with the
increase in Hy; the double-Q feature can be seen in the vicinity of Hz = 0 and Hy = 2,
as shown in Figure 7c,d. Thus, one can find that the importance of IA can be tested by
examining the magnetic phases against Hx and Hy for Hz = 0. When IA plays an important
role, the magnetic phase corresponds to the single-Q spiral state for Hx ̸= 0, whereas it
corresponds to the triple-Q state with strong double-Q spin modulations for Hy ̸= 0.
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Figure 8. (a) Real-space spin configurations of the SkX at Hy = 0.8 and Hz = 0.8. (b) Real-space
scalar chirality configurations corresponding to (a).
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4. Comparison with Other Mechanisms

Finally, let us briefly compare the present results with other results obtained under
different interactions and magnetic anisotropy. In the present model, we consider the
situation where the SkX is induced by the two-spin symmetric anisotropic exchange inter-
action IA. Meanwhile, there are other mechanisms to induce the SkX in centrosymmetric
itinerant magnets, such as the positive biquadratic interaction in the form of (Sq · S−q)2 [30]
and the easy-axis single-ion anisotropy in the form of −A(Sz

i )
2 [31,100]. Although the

phase diagrams under the out-of-plane magnetic field are similar to each other, those
under the in-plane field are expected to be different, which is easily understood from the
symmetry aspect.

In the case of the positive biquadratic interaction, the effect of the x-directional field is
the same as that of the y-directional field since this isotropic interaction is invariant under
spin rotation. Similarly, the easy-axis single-ion anisotropy also does not bring about a
difference in terms of Hx and Hy owing to the spin rotational symmetry around the z-axis.
Thus, the mechanism based on the two-spin symmetric anisotropic exchange interaction
can be distinguished from the other two mechanisms by investigating the magnetic states
under the in-plane magnetic fields along the two directions.
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5. Summary

We have numerically investigated the effect of the in-plane magnetic field on the SkX
in centrosymmetric itinerant magnets with the two-spin symmetric anisotropic exchange
interaction. By performing simulated annealing for the effective spin model with the
momentum-resolved interaction on the triangular lattice and constructing two magnetic
phase diagrams in the in-plane x- and y-directional magnetic fields, we show the similarity
and difference of the SkX stability according to the field direction. Furthermore, we show
that the different instabilities toward the magnetic phases are caused by the different in-
plane field directions, which enable us to distinguish the microscopic mechanism of the
SkX induced by the two-spin symmetric anisotropic exchange interaction from the others
by the multiple-spin interaction and single-ion anisotropy. One of the candidate materials
is the breathing kagome compound Gd3Ru4Al12 [50,51,119–121], where the SkX has been
identified in experiments [48], and its emergence has been accounted for by the two-spin
symmetric anisotropic exchange interaction [49].
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