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Abstract: Pulmonary arterial hypertension (PAH) is a fatal disease that primarily affects women.
In PAH, endothelial cells become dysfunctional, reducing production of the vasodilator nitric oxide
while increasing proliferation. Other studies suggest altered glucose metabolism in PAH. Our re-
cent study showed that increased endothelial glucose metabolism in disturbed flow increased
O-GlcNAcylation of endothelial nitric oxide synthase (eNOS), the enzyme that makes nitric ox-
ide, which then reduced nitric oxide production. We therefore hypothesized that elevated endothelial
glycolytic activity in PAH endothelial cells would reduce nitric oxide production by increasing eNOS
O-GlcNAcylation. We cultured human pulmonary artery endothelial cells (HPAECs) from failed lung
transplant (“non-PAH”) and idiopathic PAH patients (“PAH”) and quantified glycolytic activity, nitric
oxide production, and eNOS O-GlcNAcylation in each cell type. Our data show that PAH HPAECs
had higher glucose uptake and glycolytic metabolites, as well as decreased nitric oxide production,
compared to non-PAH HPAECs. However, PAH HPAECs had lower eNOS O-GlcNAcylation and
UDP-GlcNAc, the substrate for O-GlcNAcylation. Interestingly, both glucose uptake and eNOS
O-GlcNAcylation were higher in female as compared to male HPAECs. These data suggest that al-
though endothelial glycolytic metabolism is altered in PAH, eNOS O-GlcNAcylation is not connected
to decreased nitric oxide. In addition, differences in glucose metabolism and protein O-GlcNAcylation
in HPAECs from male and female donors could relate to PAH sexual dimorphism.

Keywords: pulmonary hypertension; endothelial cell; nitric oxide; sex differences; glycosylation;
glycolysis; metabolism

1. Introduction

Pulmonary arterial hypertension (PAH) is a chronic, progressive disease leading to
right heart failure and death [1]. PAH has an estimated prevalence of 1% globally [2] and
predominantly affects female patients [3]. Despite treatment advances, PAH has no cure,
and the three year survival rate is only 54.5% [1]. PAH pathology includes imbalanced
vasoconstriction and vasodilation, as well as imbalanced cell proliferation and apopto-
sis [4,5]. Dysfunctional endothelial cells contribute to PAH pathology by producing less
of the vasodilator nitric oxide and by losing their contact-inhibited monolayer phenotype
and instead proliferating into the vascular lumen [6–11]. Endothelial cells in the resulting
plexiform lesions show an increased expression of proliferative markers such as Ki-67, an-
giogenic molecules such as vascular endothelial growth factor (VEGF), and survival-related
molecules such as hypoxia inducible factor (HIF)-1α [12–15].

Endothelial nitric oxide is of particular interest in PAH and has been mechanistically
linked to vascular tone and remodeling in PAH pathogenesis. PAH patients have decreased
pulmonary nitric oxide as compared to healthy controls [16]. Endothelial cells in PAH
patients show decreased nitric oxide [6] as compared to healthy controls. Mice deficient in
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endothelial nitric oxide synthase (eNOS), the enzyme that produces nitric oxide, also show
increased pulmonary arterial pressure which can be abrogated by nitric oxide [17,18].

While multiple pathogenic pathways have been linked to PAH [19], recent studies
suggest that PAH pathology includes metabolic dysregulation [20–22]. Endothelial cells
in PAH patients show increased glucose metabolism [10] as compared to healthy controls.
Pulmonary cells may shift from oxidative phosphorylation to glycolysis [23], similar to
cellular metabolic phenotypes observed in cancer [24–26]. PAH patients also showed
increased pulmonary 18F-labeled deoxyglucose uptake on PET/CT when compared to
healthy controls, indicating increased lung glucose uptake [27].

When glycolytic flux increases, metabolic flux down glycolytic side branch pathways
such as the hexosamine biosynthetic pathway (HBP) may also increase. First, the rate
limiting enzyme glutamine:fructose-6-phosphate amidotransferase converts the glycolytic
intermediate fructose-6-phosphate (F6P) to glucosamine-6-phosphate (G6P). G6P is then
used to form UDP-GlcNAc, which provides the substrate for the protein O-GlcNAcylation
of around 4000 cytoplasmic and nuclear proteins. GlcNAc is added to or removed from
protein serine and threonine residues by O-GlcNAc transferase (OGT) and O-GlcNAcase
(OGA) [28].

Several groups have studied the adverse effects of chronically elevated O-GlcNAc in
cardiovascular disease, with a focus on hyperglycemia and diabetes [29–34]. High glucose
increases protein GlcNAcylation in the human aorta, coronary artery endothelial cells,
umbilical vein endothelial cells, cardiomyocytes, and skeletal muscle [31,35–38]. In PAH,
pulmonary artery smooth muscle cells showed increased HBP flux and enhanced OGT [20].
Elevated endothelial protein GlcNAcylation is linked to decreased angiogenesis and in-
creased inflammation [39–41]. O-GlcNAcylation also affects nitric oxide production by
decreasing eNOS activation. In hyperglycemia, eNOS glycosylation through the HBP dou-
bled while eNOS activation via serine 1177 phosphorylation decreased proportionally [42].
We also recently showed that endothelial cells in oscillating disturbed flow have increased
eNOS O-GlcNAcylation, which leads to decreased nitric oxide production [43]. Thus, eNOS
O-GlcNAcylation may contribute to cardiovascular disease, including possibly PAH.

The impact of increased glucose metabolism on endothelial O-GlcNAcylation and
nitric oxide production in PAH has not yet been investigated. We hypothesized that
elevated endothelial glycolytic activity would reduce nitric oxide production by increasing
eNOS O-GlcNAcylation. We therefore cultured human pulmonary artery endothelial cells
(HPAECs) from failed lung transplant (“non-PAH”) and idiopathic PAH patients (“PAH”).
We quantified glycolytic activity, nitric oxide production, and eNOS O-GlcNAcylation in
each cell type. This study highlights important differences in glycolytic activity and eNOS
O-GlcNAcylation in PAH endothelial cells from male and female patients, which could
contribute to PAH pathology.

2. Materials and Methods
2.1. Cell Culture

Human pulmonary artery endothelial cells (HPAECs) from non-PAH (donor lungs that
were not able to be transplanted) and idiopathic PAH (IPAH; obtained at the time of lung
transplant) patient lungs were obtained from the Pulmonary Hypertension Breakthrough
Initiative (PHBI) Research Network. We received n = 6 donors (3 female, 3 male) for both
non-PAH (H1–H6) and PAH (P1–P6) HPAECs (Table 1). Cells (passages 6–10) were cultured
in Microvascular Endothelial Growth Medium-2 (EGM-2MV; Lonza, Basel, Switzerland)
supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA), 1% penicillin–
streptomycin, and 1% L-glutamine (ThermoFisher Scientific, Waltham, MA, USA) on
gelatin-coated (ESGRO 0.1% gelatin solution, Sigma-Aldrich, St. Louis, MO, USA; #SF008)
dishes. All cells were maintained in a humidified environment at 37 ◦C and 5% CO2, with
a medium change every two days.
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Table 1. HPAEC donor demographics.

Disease Gender Age Race

H1 Donor Female 36 White

H2 Donor Female 50 White

H3 Donor Female 34 White

H4 Donor Male 47 White

H5 Donor Male 51 White

H6 Donor Male 49 White

P1 IPAH Male 40 White

P2 IPAH Male 51 White

P3 IPAH Male 16 White

P4 IPAH Female 32 White

P5 IPAH Female 16 White

P6 IPAH Female 45 Unknown

2.2. Metabolic Analysis

A YSI 2950 Bioanalyzer (Xylem, Washington, DC, USA) was used to measure changes
in glucose and lactate in the cell culture medium. Non-PAH and PAH HPAECs were seeded
at confluence and maintained in static culture for 48 h, after which a media sample from
each sample was collected. The media sample was centrifuged at 1000 RPM for 5 min to
remove any cellular debris. The supernatant was then collected and analyzed on the YSI
Bioanalyzer. Glucose uptake and lactate secretion were calculated as the difference between
the initial and final glucose and lactate concentrations. Samples were run in triplicate for
each sample (three technical replicates), and the average of the technical replicates for each
donor sample is shown in the analysis.

HPAEC metabolites were measured via 13C6-glucose liquid chromatography mass spec-
trometry (LC-MS). HPAECs were grown to confluency, after which 5 mM 13C6-glucose
(Cambridge Isotope Laboratories, Tewksbury, MA, USA; CLM-1396) in glucose-, glutamine-,
and pyruvate-free DMEM (ThermoFisher Scientific, Waltham, MA, USA; A14430-01) supple-
mented with 10% dialyzed FBS, 1% penicillin–streptomycin, and 1% L-glutamine was added
to cells for 2 min. The 13C6-glucose media was removed, and ice-cold 80:20 methanol/water
was added to cells for 15 min at −80 ◦C. Cells were scraped off the surface, and cell lysates
were pipetted into Eppendorf tubes. Samples were centrifuged at 16,000× g for 10 min at 4 ◦C
to pellet cell debris. The supernatant was then desiccated under nitrogen and re-dissolved in
LC-MS-grade water. Metabolites were analyzed via reverse-phase ion-pairing chromatogra-
phy coupled to an Exactive Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham,
MA, USA) following an established protocol [44].

2.3. Protein Analysis

Protein levels were determined via Western blot. HPAECs were lysed with RIPA buffer
(ThermoFisher Scientific, Waltham, MA, USA; #89900) and then needle lysed by passing the
samples through a 25 gage needle three times. Samples were then centrifuged for 10 min at
10,000× g and 4 ◦C to remove insoluble material. Cell lysates were normalized for protein
content by BCA Assay (ThermoFisher Scientific, Waltham, MA, USA), separated by SDS-
PAGE on a 4–12% Bis-Tris gel (ThermoFisher), and transferred to a nitrocellulose membrane
(ThermoFisher Scientific, Waltham, MA, USA). After blocking in 5% bovine serum albumin
(BSA, Sigma-Aldrich, St. Louis, MO, USA), membranes were incubated with primary anti-
bodies for GlcNAc CDT110.6 (9875S), OGT (24083), and OGA (SAB4200267 Sigma-Aldrich,
St. Louis, MO, USA) at 1:1000 dilution overnight at 4 ◦C followed by the appropriate
secondary horseradish peroxidase-conjugated antibody (1:2000, Promega, Madison, WI,
USA) for 1 h at room temperature. β-actin (SC47778-C4, Santa Cruz, Dallas, TX, USA) was
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the loading control. Protein bands were detected using an enhanced chemiluminescence kit
(Western Lightning, PerkinElmer, Waltham, MA, USA) and visualized with a Fluorchem
digital imager (Alpha Innotech, San Leandro, CA, USA). Band intensity was quantified
using AlphaEase FC software V4.0.

2.4. Nitric Oxide

HPAEC nitric oxide was measured via a Griess Assay (Thermofisher Scientific, Waltham,
MA, USA; G7921). Cells were incubated for 24 h prior to media collection. Nitrate reductase
(20U, NECi Superior Enzymes, Lake Linden, MI, USA; AtNA-R-3U) was added to the collected
HPAEC media for 30 min at 37 ◦C. Media samples were combined with freshly prepared
Griess reagent in a 96-well plate as per the manufacturer’s instructions. The plate was then
incubated at room temperature for 30 min. Sample absorbance was measured at 548 nm using
a Biotek Synergy H1 Microplate Reader. Nitrite was quantified using a nitrite standard curve.

2.5. Statistical Analysis

Statistical analysis was performed with GraphPad Prism. Each experiment was re-
peated at least two times. Comparisons between two groups were analyzed by Student’s
t-test, and comparisons among multiple groups were analyzed by analysis of variance
(ANOVA) with a Bonferroni post hoc test. Statistical significance is indicated by # p < 0.05,
* p < 0.01, ** p < 0.001, *** p < 0.0001, or **** p < 0.00001.

3. Results
3.1. PAH HPAECs Had Higher Glucose Uptake with Reduced Lactate Secretion

We previously observed increased endothelial glycolytic activity in cells exposed to dis-
turbed flow, which led to decreased nitric oxide via increased eNOS O-GlcNAcylation [43].
We therefore examined glucose metabolism in HPAECs from non-PAH and PAH patients to
determine if endothelial cells from people with PAH also had increased glycolytic activity.
PAH HPAECs showed more than three times higher glucose uptake (p < 0.001) compared
to non-PAH HPAECs (Figure 1A), as measured via a YSI Bioanalyzer. PAH HPAEC lac-
tate secretion also trended lower, although this change was not statistically significant
(Figure 1B). The lactate/glucose ratio was significantly lower in PAH HPAECs (p < 0.01;
Figure 1C) when two patients were excluded as outliers, as determined by Grubb’s test
(p < 0.05). These data show that PAH HPAECs consume more glucose yet produce less
lactate compared to non-PAH HPAECs.
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Figure 1. PAH HPAECs consumed more glucose and produced less lactate compared to non-PAH
HPAECs. (A) Glucose uptake and (B) lactate secretion in non-PAH (black circles) and PAH HPAECs
(gray triangles) measured via YSI Bioanalyzer. n = 6 human donors per condition. (C) Lactate/glucose
ratio for non-PAH and PAH HPAECs. n = 5 human donors per condition, with one outlier for each
condition omitted. ns: not significant; ** p < 0.001.

Since overall glycolytic flux increased in PAH HPAECs, we then used 13C6 glucose
mass spectrometry to quantify total glycolytic metabolite pools (unlabeled and labeled) as
well as the labeled fraction (relative flux). All glycolytic metabolite total pools increased
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in PAH HPAECs as compared to non-PAH HPAECs (Figure 2A), although these changes
were not statistically significant due to high variability. The glycolytic metabolite labeled
fraction, which indicates the percent of the glycolytic metabolite labeled with the heavy
isotope, did not differ between non-PAH and PAH HPAECs (Figure 2B). These data suggest
that relative glucose flux in glycolysis did not change in PAH HPAECs, but rather that
increased glucose uptake contributed to higher glycolytic intermediates in PAH HPAECs.
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Figure 2. Total glycolytic metabolite abundances were higher in PAH HPAECs than non-PAH HPAECs
but the labeled fraction did not change. (A) Total metabolite abundances (labeled and unlabeled) and
(B) labeled fraction (labeled/total) for glucose-6-phosphate (G6P), fructose-1-6-bisphosphate (FBP),
3-phosphoglycerate (3PG), and lactate measured by 13C6 glucose mass spectrometry in non-PAH and
PAH HPAECs. n = 6 human donors per condition.

3.2. PAH HPAECs Had Lower Nitric Oxide Production Yet Lower eNOS O-GlcNAcylation

Since patients with PAH have reduced nitric oxide levels [6,7,16], we measured en-
dothelial nitric oxide production in non-PAH and PAH HPAECs. Nitrite decreased by
about 7.5% in PAH HPAECs (p < 0.01) as compared to non-PAH HPAECs (Figure 3A).
However, PAH HPAECs showed ~65% lower total O-GlcNAcylated proteins and more
than 80% lower eNOS O-GlcNAcylation (p < 0.0001; Figure 3B,C). This occurred without a
change in OGT or OGA protein (Figure 3D).
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(B) Western blot for all O-GlcNAcylated proteins (eNOS is indicated by the arrow), eNOS, OGT, and OGA.
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Since protein O-GlcNAcylation also depends on UDP-GlcNAc substrate availability,
we next examined UDP-GlcNAc quantity via mass spectrometry. The UDP-GlcNAc total
metabolite abundance was approximately 30% lower in PAH HPAECs (Figure 4A) as
compared to non-PAH HPAECs, although this change was not statistically significant due
to high variability. Indeed, when we plotted GlycNAcylated eNOS vs. UDP-GlcNAc for
each donor, UDP-GlcNAc did not correlate with O-GlcNAcylated eNOS (Figure 4B) for
non-PAH (R2 = 0.12) or PAH HPAECs (R2 = 0.19). These results suggest that the UDP-
GlcNAc substrate may decrease in PAH patients, but there are other factors contributing to
the overall lower eNOS O-GlcNAcylation.

3.3. HPAEC High Donor Variability Could Be Linked to Sex Differences

Since we observed high donor variability in this study, we separated the data by
donor sex to determine how sex may affect endothelial glycolytic metabolism and protein
O-GlcNAcylation. HPAECs from female donors had higher glucose uptake (Figure 5A).
In contrast, lactate secretion was similar between sexes (Figure 5B). Both total protein and
eNOS O-GlcNAcylation were higher in female as compared to male donors (Figure 5C,D).
Total GlcNAcylated protein was statistically significantly higher in non-PAH female as com-
pared to PAH female donors (p < 0.01). GlcNAcylated eNOS was statistically significantly
higher for both non-PAH female (p < 0.00001) and male (p < 0.001) donors as compared to
HPAEC donors. Thus, there are likely important sex differences in glucose metabolism and
eNOS O-GlcNacylation, which may contribute to sexual dimorphisms in PAH.
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glycolytic side branch pathways, such as the pentose phosphate pathway.  

Figure 5. HPAECs from female donors had higher protein and eNOS O-GlcNAcylation. (A) Glucose
uptake and (B) lactate secretion in HPAECs from female and male non-PAH and PAH donors
measured via YSI Bioanalyzer. (C) Quantification of total GlcNAcylated protein and (D) GlcNAcylated
eNOS from female and male non-PAH and PAH donors. n = 6 human donors per condition. * p < 0.01,
** p < 0.001, **** p < 0.00001.
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4. Discussion

PAH is linked to increased glucose metabolism, yet little is known about endothelial
glucose metabolism and eNOS O-GlcNAcylation in this disease [20–22]. We hypothesized
that elevated endothelial glucose metabolism would increase eNOS O-GlcNAcylation,
contributing to reduced endothelial nitric oxide production in PAH. While HPAECs from
PAH patients did show elevated glucose uptake and glycolytic activity, as well as decreased
nitric oxide production as expected, UDP-GlcNAc and eNOS O-GlcNAcylation decreased
in PAH HPAECs. It is therefore likely that different mechanisms drive decreased nitric
oxide in PAH. We also found sex differences in glucose uptake and eNOS O-GlcNAcylation,
which could relate to different PAH mechanisms in women vs. men.

In our study, PAH HPAECs increased glucose metabolism in vitro, which largely
agrees with human studies showing higher pulmonary 18F-labeled deoxyglucose uptake
in PAH patients when compared to non-PAH controls, indicating increased lung glucose
uptake [27]. Although PAH HPAECs increased glucose uptake, they produced less lactate
in our studies in vitro. This is in contrast to elevated lactate in lung tissues of a fetal lamb
pulmonary hypertension model [45]. The difference could lie in the fact that this study
measured lactate changes in the entire lung, whereas we measured lactate in pulmonary
artery endothelial cells specifically. Therefore, the increased lactate in their study may be
from lung epithelial or smooth muscle cells rather than endothelial cells. PAH HPAECs may
shuttle pyruvate into the mitochondria for oxidative respiration, as we have previously
shown can occur in metabolically altered endothelial cells, rather than converting pyruvate
to lactate [46,47]. Alternatively, PAH HPAECs may increase glucose flux down glycolytic
side branch pathways, such as the pentose phosphate pathway.

Surprisingly, total protein and eNOS O-GlcNAcylation were lower in PAH HPAECs
compared to non-PAH HPAECs, despite elevated glucose uptake and glycolytic activity.
This is the opposite of what we what we observed in our prior study of endothelial cells
in steady laminar and oscillating disturbed flow [43,48]. A previous study found elevated
HBP flux, total O-GlcNAcylation, and OGT in pulmonary arterial smooth muscle cells and
human IPAH patient lung tissues [20]. Our data suggest that the overall change in human
lung lysate O-GlcNAcylation was related to smooth muscle cells and perhaps epithelial
cells rather than the endothelium. Additionally, higher eNOS O-GlcNAcylation in non-PAH
compared to PAH HPAECs did not relate to OGT or OGA, similar to what we observed in
our prior study [43]. Since the amount of UDP-GlcNAc substrate did not correlate with
lower O-GlcNAcylation, additional factors must play a role in PAH.

Nitric oxide production was lower in PAH HPAECs despite lower eNOS O-GlcNAcylation.
Our data agree with a study in which isolated endothelial cells from a hypoxia-induced pul-
monary hypertension rat artery decreased nitric oxide production, measured via DAF-2T fluo-
rescence, as well as reduced eNOS phosphorylation at Ser1177, measured via SDS-PAGE [49].
Thus, a mechanism other than O-GlcNAcylation may reduce eNOS phosphorylation during
Ser1177 and NO production. In vitro, eNOS activity in endothelial cells isolated from PAH
lungs was inhibited via the PKC-induced phosphorylation of eNOS-T495, an inhibition site.
Plexiform legions in PAH patient lungs confirmed increased pT495-eNOS compared to controls.
The pharmacological blockade of PKC activity restored nitric oxide formation in PAH EC [50].
eNOS also couples with caveolin-1 and dissociates from heat shock protein 90 (HSP90) in the
hypoxic pulmonary artery, leading to eNOS inactivity [49]. In pulmonary arterial endothelial
cells cultured from fetal lambs, mitochondrial uncoupling decreased cellular ATP and reduced
both eNOS–HSP90 interactions and nitric oxide signaling [45]. Also, eNOS activity in endothe-
lial cells in PAH lungs was inhibited due to T495 phosphorylation via protein kinase C (PKC).
Several in vitro studies identified that PKC phosphorylates T495 and hinders eNOS activity
and nitric oxide release [51–53]. Thus, eNOS localization and coupling, as well as eNOS T495
phosphorylation, may regulate decreased nitric oxide production in PAH HPAECs, as opposed
to increased eNOS O-GlcNAcylation.

This study shows similarities to our previous study on endothelial cells exposed to
steady laminar and oscillating disturbed flow [43]. In both studies, endothelial cells in the
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diseased state (PAH, disturbed flow) showed increased glucose uptake as well as higher
glycolytic metabolite abundance. Both PAH HPAECs and endothelial cells in disturbed
flow have increased proliferation. Since endothelial cell proliferation is driven by glycoly-
sis [54,55], increased metabolic activity in both types of diseased cells may relate to increased
proliferation. These two cases are also similar in that eNOS O-GlcNAcylation was not regu-
lated by OGT or OGA in endothelial cells, unlike studies in other cell types [20,38,56,57].
Alternative processes such as overall glycolytic flux or GFAT activity [58] may regulate
eNOS O-GlcNAcylation instead.

There are also key differences between this study and our prior work [43]. In PAH
HPAECs, elevated glycolytic activity did not increase UDP-GlcNAc as it did in human
umbilical vein endothelial cells exposed to oscillating disturbed flow. Thus, in PAH, glucose
metabolism may progress down different glycolytic side branch pathways. In diabetes, an-
other disease state of increased glucose metabolism, 30% of glucose goes through the polyol
pathway [46,59]. The polyol pathway reduces NAPDH [60] while increasing NADH [61].
An increase in the NADH/NAD+ ratio depletes reduced glutathione, an antioxidant, and
leads to oxidative stress in diabetic mice [62]. NADH can also increase the formation of
the advanced glycation end product (AGE)-forming compound methylglyoxal [63]. In-
creased ROS and AGE will result in oxidative stress. In chronic hypoxia-induced PAH
animal models, pulmonary arteries showed increased ROS production, leading to oxidative
stress [64–66]. Therefore, the increased glucose uptake in PAH HPAECs could be metabo-
lized via the polyol pathway and contribute to oxidative stress, or it could be metabolized
via the pentose phosphate pathway to counteract oxidative stress.

One of the most important findings in our study is that female HPAECs, especially
in PAH donors, showed higher glucose consumption and eNOS O-GlcNAcylation. PAH
predominantly affects women [3]; therefore, these differences in female versus male HPAECs
could contribute to the sexual dimorphism associated with this disease. In mammals, the
single gene encoding OGT is located on the X-chromosome [67], which could explain potential
sex differences in O-GlcNAcylation. We and others have shown differences in female and male
endothelial cells in culture, specifically in the stress response [68,69]. While these preliminary
data highlight interesting sex differences, future studies are needed to examine mechanisms.

While our study shows that PAH HPAECs have elevated glycolytic activity, decreased
nitric oxide production, and reduced eNOS O-GlcNAcylation in vitro, this is not without
limitations. The biggest limitations are the limited donor number and high donor variability
in both non-PAH and PAH HPAECs. This should be considered as a pilot investigation,
and more donors should be included in future studies. The average donor age was also
different for the non-PAH and PAH donors (44.5 vs. 33.3 years old). We were unable to
obtain cells from patients who were any closer in age, and it is therefore possible that the
differences we observed could be due to the age difference between the non-PAH and
PAH cells. Additionally, these studies were conducted in vitro using HPAECs in static
culture on tissue culture polystyrene plates. In the future, pulmonary endothelial cells
could be examined in physiological flow conditions, on substrates of different stiffness, and
in animal PAH models or intact pulmonary arteries.
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