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Abstract: We develop the local convergence of the six order Contraharmonic-mean Newton’s method
(CHN) to solve Banach space valued equations. Our analysis approach is two fold: The first way uses
Taylor’s series and derivatives of higher orders. The second one uses only the first derivatives. We
examine the theoretical results by solving a boundary value problem also using the examples relating
the proposed method with other’s methods such as Newton’s, Kou’s and Jarratt’s to show that the
proposed method performs better. The conjugate maps for second-degree polynomial are verified.
We also calculate the fixed points (extraneous). The article is completed with the study of basins of
attraction, which support and further validate the theoretical and numerical results.

Keywords: Newton’s method; local convergence; convergence order; fractal; basins of attraction

1. Introduction

Let F be the differentiable mapping of a convex subset D of a Banach space X to itself.
We deal with the convergence of the sixth-order Contraharmonic-mean method (CHN) [1]

yk = xk − F′(xk)
−1F(xk),

zk = yk + F′(xk)
−1F′(yk)(F′(yk)− F′(xk))(F′(xk)

2 + F′(yk)
2)−1F(xk),

xk+1 = zk − 1
2 F′(yk)

−2(F′(xk)
2 + F′(yk)

2)F′(xk)
−1F(zk),

(1)

for k = 0, 1, 2, . . . , where F′(x) is the derivative of the operator F. We are seeking to find
the solution x∗ or x∗ ∈ D by solving the equation

F(x) = 0, (2)

using method (1). Newton’s method has been used to solve Equation (2). However, the
convergence order is two [2–5]. It is given as follows:

xk+1 = xk − F′(xk)
−1F(xk), k = 0, 1, 2, · · · . (3)

Papers have appeared on the variant or modification of Newton’s method in real [5]
as well as in Banach space [2–4].

Two convergence categories of analysis are usually recognized. The first is local con-
vergence analysis, in which, firstly, we assume that a particular solution exists; around this
solution there will be a neighborhood, and starting with any vector in this neighborhood,
will lead to a sequence that converges to the solution under some suitable conditions. The
second is semilocal convergence analysis; it does not require the existence of a solution but
demands the same conditions around the initial vector [6,7]. Kantorovich [8] has provided
the semilocal convergence of (3) in Banach space. He used the technique of majorizing
sequences. Majorizing sequences have been used by many researchers for the variants of
Newton’s method [2].
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Earlier work on the six order method CHN for the solution of (2) in many dimensions
relies on derivatives of higher order, but the methods depend only on the F′. Thus, the
earlier results are limited. Here, first we have performed the local convergence analysis of
the CHN method (1) regarding the root x∗, which depends on the sixth-order derivative
of F. Next, we deal with using only F′. The second local convergence analysis is also
important, especially if F has no third or higher order Fréchet derivative. Indeed, set
X = ℜ, D = [−1/2, 3/2]. Consider H on D as

H(t) =
{

t3lnt2 + t5 − t4, f or t ̸= 0,
0, f or t = 0

We obtain H′′′(t) = 6lnt2 + 60t2 − 24t + 22. So, the conclusion of Theorem 1 (see
Section 2) may not hold since H′′′ is not continuous. But the conclusion of Theorem 2 holds
(see Section 3) with W0(t) = W(t) = 97t and W1(t) = 2.

The convergence order in the second case is found using the following formula:

µ (COC) =
ln

(
|| (xi+1 − x∗) || / || (xi − x∗) ||

)
ln

(
|| (xi − x∗) || / || (xi−1 − x∗) ||

) , (4)

or

µ1 (ACOC) =
ln

(
|| (xi+1 − xi) || / || (xi − xi−1) ||

)
ln

(
|| (xi − xi−1) || / || (xi−1 − xi−2) ||

) . (5)

These do not require the F′′′ or x∗ (in the Formula (5)).
The numerical results compare the CHN method along with the method of Jarratt [9]

and Kou et al. (see [10]) by using some test functions. One important characteristic of
this work is the comparability of the CHN method with that of Jarratt [9] and Kou et al.
(see [10]) with respect to their dynamics.

2. Analysis 1

Theorem 1. Let I ⊂ ℜi stand for a convex set and F : I → ℜi. Assume

(i) x∗ ∈ I solves Equation (2) so that F′(x∗)−1 is well defined.
(ii) F is sixth-order Fréchet differential in I at some neighborhood S of solution x∗.

Then, the method (1) reaches convergence order six.

Proof. Set ek = xk − x∗ with Ak =
(

1
k!

)
F′(x∗)−1F(k)(x∗). By Taylor series of F about x∗,

we obtain
F(xk) = F′(x∗)

[
ek + A2e2

k + A3e3
k + O(e4

k)
]
, (6)

F′(xk) = F′(x∗)
[
1 + 2A2ek + 3A3e2

k + 4A4e3
k + O(e4

k)
]
. (7)

So, we can write

F′(xk)
−1F(xk) = ek − A2e2

k +
(

2A2
2 − 2A3

)
e3

k + O(e4
k).

Then, by (1) we obtain

yk = x∗ + A2e2
k +

(
2A3 − 2A2

2

)
e3

k + (4A3
2 − 7A2 A3 + 3A4)e4

k + O(e5
k). (8)

Hence, we have

F(yk) = F′(x∗)[A2e2
k − 2(A2

2 − A3)e3
k + (5A3

2 − 7A2 A3 + 3A4)e4
k + O(ek)

5]. (9)

F′(yk) = F′(x∗)[1 + 2A2
2e2

k + 4A2(A3 − A2
2)e

3
k + O(e4

k)]. (10)
Next, we obtain
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F′(xk)
2 = F′(x∗)2[1 + 4A2ek + (4A2

2 + 6A3)e2
k + (8A4 + 12A2 A3)e3

k + O(e4
k)]. (11)

F′(y(k))
2 = F′(x∗)2[1 + 4A2

2e2
k + (8A2 A3 − 8A3

2)e
3
k + O(e4

k)]. (12)

Now, by the second sub-step of the CHN method we obtain

zk = x∗ + (2A2
2 +

A3

2
)e3

k + O(e4
k). (13)

We obtain from the third sub-step of the CHN method (1)

xk+1 = x∗ + Ae6
k + O(e7

k).

ek+1 = Ae6
k + O(e7

k). (14)

Thus, the CHN method (1) has local convergence of the sixth-order to the root of F.

3. Analysis 2

The analysis uses some real functions and parameters. Set A = [0, ∞). Suppose:

(i) Equation
W0(t)− 1 = 0 (15)

has smallest root ρ0 ∈ (0, ∞), where W0 : A → A stands for a nondecreasing and continuous
function. Set A0 = [0, ρ0).

(ii) Equation
ψ1(t) = 0, (16)

where ψ1(t) = ϕ1(t) − 1, ϕ1(t) =
∫ 1

0 W((1−θ)t)dθ

1−W0(t)
, t ∈ [0, ρ0] admits a smallest root

r1 ∈ [0, ρ0), where W : A0 → A0 is continuous and nondecreasing.

(iii) Equation
P(t)− 1 = 0, (17)

where P(t) = 1
2 (v(t) + v(ϕ1(t)t)) has a smallest root ρP ∈ (0, ∞). Set ρ = min{ρ0, ρP} and

A00 = [0, ρ)

(iv) Equation
ψ2(t) = 0, (18)

has a smallest root r2 ∈ (0, ρ), where ψ2(t) = ϕ2(t)− 1 and

ϕ2(t) = ϕ1(t) +
W1(ϕ1(t)t)

(
W0(ϕ1(t)t) + W0(t)

)
a
∫ 1

0 W1(θt)dθ

2(1 − W0(t))(1 − p(t))
,

where W1 : A00 → A00 is continuous and nondecreasing.

(v) Equation
W0(ψ1(t)t)− 1 = 0 (19)

has a least solution ρ1 ∈ (0, ρ). Set A000 = (0, ρ1). Let b ≥ 0. Define functions ϕ3 and ψ3 on
A000 by

ϕ3(t) =
[
1 +

b
(
W1(t)2 + W1(ϕ1(t)t)2) ∫ 1

0 W1(θϕ2(t)t)dθ

2
(
1 − W0(ϕ1(t)t)

)2
(1 − W0(t))

]
ϕ2(t)

and ψ3(t) = ϕ3(t)− 1.
Suppose that equation ψ3(t) = 0 has the smallest root r3 ∈ (0, ρ1).
Next,

r = min{r1, r2, r3}. (20)

is shown to be convergence radius for CHN. Consequently,

0 ≤ W0(t) < 1 (21)

0 ≤ P(t) < 1 (22)
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and
0 ≤ ϕi(t) < 1, i = 1, 2, 3. (23)

hold for all t ∈ [0, r). Consider conditions (A) in our analysis with the scalars parameter
and functions as previously defined:

(a1) F : D → X has a simple solution x∗ ∈ D satisfying

|| F(x∗)−1 ||≤ a, || F′(x∗) ||≤ b.

(a2) For all x ∈ D

|| F′(x∗)−1(F′(x)− F′(x∗) ||≤ W0(|| x − x∗ ||).

Define D0 = D ∩ B(x∗, ρ0).
(a3) For all x, y ∈ D0

|| F′(x∗)−1(F′(x)− F′(x∗)) ||≤ W(|| x − x∗ ||),

|| F′(x∗)−1F′(x) ||≤ W1(|| x − x∗ ||),

and
|| F′(x∗)−2(F′(x)2 − F′(x∗)2) ||≤ V(|| x − x∗ ||).

(a4) B(x∗, r) ⊂ D and

(a5) There exists r̄ ≥ r satisfying
∫ 1

0 W0(θr̄)dθ < 1.

Set
D1 = D ∩ B̄(x∗, r̄). (24)

Based on the conditions (A) and the developed notation, we prove the second result
for method (1).

Theorem 2. Under the conditions (A), pick x0 ∈ B(x∗, r)− {x∗}. Then, the sequence produced
by the method CHN starting at x0 is defined well, remains in B(x∗, r)− {x∗}, and is convergent
to x∗, which is an isolated solver of the region D1.

Proof. Choose u ∈ B(x∗, r). Then, by (a2) and (16) one obtains

|| F′(x∗)−1(F′(u)− F′(x∗)) ||≤ v || u − x∗ ||≤ W0(r) < 1.

By the standard Banach perturbation lemma [8] and the preceding inequality, we have

|| F′(u)−1F′(x∗) ||≤
1

1 − W0 || (u − x∗) ||
. (25)

In particular, if u = x0, F′(x0)
−1 exists. Since x0 ∈ B(x∗, r), then y0 exists, and

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0) =

F′(x0)
−1F′(x∗)

∫ 1

0
F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0)

)
(x0 − x∗)dθ.

(26)

We set || xn − x∗ || = an. So, in view of condition (a3) and (16), (20), (21), and (23)

|| y0 − x∗ || ≤
∫ 1

0 W((1 − θ)a0)dθa0

1 − W0(a0)

≤ ϕ1(a0)a0

≤ a0

< r. (27)

Hence, y0 ∈ B(x∗, ρ).



Foundations 2024, 4 51

We must show that the linear operator F′(x0)
2 + F′(y0)

2 is invertible, which will well
define x1. So, by (a3) and (16), (25), we have

|| (2F′(x∗)2)−1(F′(x0)
2 + F′(y0)

2 − 2F′(x∗)2) ||

≤ 1
2
(|| (F′(x∗)2)−1(F′(x0)

2 − F′(x∗)2) || + || (F′(x∗)2)−1(F′(y0)
2 − F′(x∗)2) ||)

≤ 1
2
[Va0 + V || y0 − x∗ ||]

≤ 1
2
[Va0 + V(ϕ1(a0))a0]

= P(a0)

< 1, (28)

so
|| (F′(x0)

2 + F′(y0)
2)−1F′(x∗)2 ||≤ 1

2(1 − P(a0))
. (29)

Then, by the second substep of the method CHN, we have

z0 − x∗
= x0 − x∗ − F′(x0)

−1F(x0) + F′(x0)
−1F′(y0)(F′(y0)− F′(x0))(F′(x0)

2 + F′(y0)
2)−1F(x0)

= y0 − x∗ + F′(x0)
−1

[
I + F′(y0)(F′(y0)− F′(x0))(F′(x0)

2 + F′(y0)
2)−1

]
F(x0)

= y0 − x∗ + F′(x0)
−1[F′(x0)

2 + F′(y0)
2 + F′(y0)(F′(y0)− F′(x0))

]
(F′(x0)

2 + F′(y0)
2)−1F(x0) (30)

We obtain by (a1), (a3), (16), (25), and (28)

|| z0 − x∗ ||
≤ || y0 − x∗ || + || F′(x0)

−1F′(x∗) |||| F′(x∗)F′(y0) ||
[
|| F′(y0)− F′(x∗) || +

|| F′(x∗)− F′(x0) ||
]
|| (F′(x0)

2 + F′(y0)
2)−1F′(x∗)2 || || F′(x∗)−1 || F′(x∗)−1F(x0) ||

≤
[
ϕ1(a0) +

W1(|| y0 − x∗ ||)
(

W0
(
|| y0 − x∗ ||

)
+ W0

(
a0
))

a
∫ 1

0 W1(θa0)dθ

2(1 − W0(a0))(1 − P(a0))

]
|| y0 − x∗ ||

≤ ϕ2(a0)a0

≤ a0, (31)

so, z0 ∈ B(x∗, r).
Notice that F′(y0)

−1 is well defined and (25) holds for u = y0. Then, by the third
sub-step of CHN:

x1 − x∗ = z0 − x∗ −
1
2

F′(y0)
−2F′(x∗)F′(x∗)

[(
F′(x∗)−1F′(x0)

)2
+

(
F′(x∗)−1F′(y0)

)2]
F′(x0)

−1F(z0), (32)

Now, from (23) (for i = 3), (25), (29), and (32); we obtain inturn that

|| x1 − x∗ ||

≤
[
1 +

b
2

(
W1(a0)

2 + W1(|| y0 − x∗ ||)2) ∫ 1
0 W1(θ(|| z0 − x∗ ||)dθ

(1 − W0(a0))
(
1 − W0(ϕ1(a0)a0)

)2

]
|| z0 − x∗ ||

≤ ϕ3(a0)a0

≤ a0,

so, x1 ∈ B(x∗, r).
Switching x0, y0, x1 by xj, yj, xj+1, respectively, in the previous estimations, we obtain

|| xj+1 − x∗ ||≤ c || xj − x∗ ||, (33)

where c = ϕ3(a0) ∈ [0, 1) leading to limm→∞ xm = x∗, and xj+1 ∈ B(x∗, r).
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To show uniqueness, we consider Q =
∫ 1

0 F′(x∗ + θ(u − x∗))dθ for u ∈ D1 with
F(u) = 0. By (a2) and (a5), we obtain

|| F′(x∗)−1(Q − F′(x∗)) || ≤
∫ 1

0
W0(θ || (u − x∗) ||)dθ

≤
∫ 1

0
W0(θr)dθ

< 1. (34)

Finally, the invertability of Q together with the identity

0 = F′(u)− F′(x∗) = Q(u − x∗),

gives
u = x∗.

4. Numerical Conclusions

In this section, a comparative study of the CHN (1) with fourth-order Jarratt’s (35) [9]
and sixth-order Kou’s (36) [10] is undertaken. Iterative expressions for the last two methods
are as: 

yj = xj − 2
3 F′(xj)

−1F(xj),
xj+1 = xj − JF(xj)F′(xj)

−1F(xj),
JF(xj) = [6F′(yj)− 2F′(xj)]

−1[3F′(yj) + F′(xj)]

(35)


yj = xj − 2

3 F′(xj)
−1F(xj),

zj = xj − JF(xj)F′(xj)
−1F(xj),

xj+1 = zj − [ 3
2 JF(xj)F′(yj) + (1 − 3

2 JF(xj))F′(xj)]
−1F(zj),

JF(xj) = [6F′(yj)− 2F′(xj)]
−1[3F′(yj) + F′(xj)],

(36)

MATLAB 2007 is used for the calculations with the stopping criterion |xk+1 − x∗|+
|F(xk+1)| < 10−14. We have taken Example 1, from the paper of Kou et al. [10] with the
same starting point.

Example 1. Let X = (−∞,+∞), D = (−5, 5) consider F : D → ℜ be given as

F1(x) = exp(x2 + 7x − 30)− 1, ∀x ∈ D.

We obtain
F
′
1(x) = (2x + 7)exp(x2 + 7x − 30).

The initial approximation is 3.5, and the approximate solution is 3.0. The numerical solution of
Example 1 by second-order Newton’s (3), fourth-order Jarratt’s (35) [9], sixth-order Kou’s (36) [10],
and sixth-order CHN method (1) is presented in Table 1. We can check from the Table 1 that starting
with point 3.5, the CHN method is accelerating the convergence to solution 3.0 at every iteration.

Example 2. Let X = (−∞,+∞), D = (−2, 2) consider F : D → ℜ be given as

F2(x) = x3 − 1, ∀x ∈ D.

Then, we obtain
F′

2(x) = 3x2.

The initial point is 3.5. The approximate solution is 1.0. The numerical solution of Example 2
by different methods is presented in Table 2. These results confirm the proposed method CHN (1) is
converging to solution 1.0 in a better way in comparison to the others.



Foundations 2024, 4 53

Table 1. Display of competing methods for Example 1.

n Newton Method (3) Jarratt Method (35) Kou and Li Method (36) Proposed Method (1)

1 3.4286550628300567 3.3308347060483117 3.3400539516999523 3.32315410750057

2 3.3567192343584691 3.1621047829753062 3.1804266925540472 3.14712430657336

3 3.2844198112235032 3.0286129167008315 3.0494927271058243 3.01643362598904

4 3.2124063084511238 3.0000609473820439 2.9999154731807178 3.00000019275693

5 3.1424181594780256 3.0000000000000013 3.0000000000000000 3.0000000000000000

6 3.0787259144487731 2.9999999999999996

7 3.0298667132808625 3.0000000000000000

8 3.0051821604398370

9 3.0001727640389917

10 3.0000001961589162

11 3.0000000000002531

12 3.0000000000000000

Table 2. Display of competing methods for Example 2.

Method n x f (x)

Newton Method (3)

1 3.50000000 41.87500000000000
2 2.36054421768707 12.15335132155504
3 1.63351725484243 3.35884252127395
4 1.21393130681298 0.78888464195259
5 1.03548645503746 0.11028191827017
6 1.00120223985296 0.00361105743855
7 1.00000144306722 4.329207893061238 × 10−6

8 1.00000000000208 6.247669048775606 × 10−12

9 1.0000000000 0.00000000

Jarratt Method (35)

1 3.50000000 41.87500000000000
2 1.57229444273689 2.88688452342733
3 1.02101066173731 0.06436560404449
4 1.00000012371720 3.711516567417306 × 10−7

5 1.0000000000 0.00000000

Kou and Li Method (36)

1 3.50000000 41.87500000000000
2 1.46161830566666 2.12249621615530
3 1.00443745549946 0.01337152691029
4 1.00000000000114 3.410605131648481 × 10−12

5 1.0000000000 0.00000000

Proposed Method (1)

1 3.50000000 41.87500000000000
2 1.00463214431117 0.01396090260708
3 1.00000000000002 7.327471962526033 × 10−14

4 1.0000000000 0.00000000

Example 3. Let D = X = Y = ℜ2. Consider an operator F : ℜ2 → ℜ2 as

F3(x) = (¬s2 + 1/3,¬t2 + 1/3), ∀x = (s, t) ∈ ℜ2.

The initial point is (0.1, 0.1), whereas the approximate solution is (0.57735, 0.57735). The
numerical solution of Example 3 by methods is given in Table 3. It is clear that the proposed
method (1) along with Kou’s method (36) is converging to the solution in fewer iterations among
the methods.
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Table 3. Display of competing methods for Example 3.

Method n x y f (x, y) g(x, y)

Newton Method (3)

1 0.1000000 0.1000000 0.323333 0.323333
2 1.71667 1.71667 −2.61361 −2.61361
3 0.955421 0.955421 −0.579495 −0.579495
4 0.652154 0.652154 −0.091971 −0.091971
5 0.58164 0.58164 −0.00497212 −0.00497212
6 0.577366 0.577366 −0.000018269 −0.000018269
7 0.57735 0.57735 −2.50303 × 10−10 −2.50303 × 10−10

8 0.57735 0.57735 0.00000000 0.00000000

Jarratt Method (35)

1 0.1000000 0.1000000 0.323333 0.323333
2 0.955421 0.955421 −0.579495 −0.579495
3 0.58164 0.58164 −0.00497212 −0.00497212
4 0.57735 0.57735 −2.50303 × 10−10 −2.50303 × 10−10

5 0.57735 0.57735 0.00000000 0.00000000

Kou and Li method (36)

1 0.1000000 0.1000000 0.323333 0.323333
2 0.889224 0.889224 −0.457387 −0.457387
3 0.577802 0.577802 −0.000522292 −0.000522292
4 0.57735 0.57735 0.00000000 0.00000000

Proposed method (1)

1 0.1000000 0.1000000 0.323333 0.323333
2 0.935823 0.935823 −0.542431 −0.542431
3 0.57794 0.57794 −0.000681532 −0.000681532
4 0.57735 0.57735 0.00000000 0.00000000

Example 4. Let the following boundary problem

z′′ + 3zz′ = 0, z(0) = 0, z(2) = 1.

We take s0 = 0 < s1 < s2 < s3 < · · · ,< sn−1 < sn = 2, si+1 = si + h, h = 2
n . Here,

z0 = z(s0) = 0, z1 = z(s1), z2 = z(s2), z3 = z(s3), · · · , zn−1 = z(sn−1) and zn = z(sn) = 1.
We discretize the above problem by using the central difference schemes for the first- and

second-order derivatives, i.e.,

z′′i =
zi−1 − 2zi + zi+1

h2 , i = 1, 2, 3, · · · , n − 1,

z′i =
zi+1 − zi−1

2h
, i = 1, 2, 3, · · · , n − 1,

zi =
zi+1 + zi−1

2
, i = 1, 2, 3, · · · , n − 1.

Thus, we obtain an (n − 1)× (n − 1) nonlinear system:

F4(z) = 4(zi−1 − 2zi + zi+1) + 3h(z2
i+1 − z2

i−1) = 0, i = 1, 2, 3, · · · , n − 1. (37)

Next, we deal with the above problem for n = 3 by the developed method using the initial
approximations z0 = [0.1, 0.1]. The solution of the problem is shown in Table 4 with z = [z1, z2]
and F = [ f , g]. Nine iterations are performed to obtain the solution [0.7321436673451523,
0.9820632482087217].

Table 4. Solution of Example 4 (B V P) by proposed method.

n x1 x2 f (x1, x2) g(x1, x2)

1 0.5208651381932472 0.9863298060604199 1.7240910913420728 −0.3497788800805113
2 0.6992219563196387 0.9822804417862183 0.26509584921922036 −0.039178397410117194
3 0.728002081941415 0.9821489931797941 0.033812606796022715 −0.005157680294762157
4 0.7316443315500164 0.9820746816221972 0.0040854346553378384 −0.0006269825560529796
5 0.7320838072613625 0.9820646544298595 0.0004901305894167152 −0.00007540810200934445
6 0.7321365054143987 0.982063417353375 0.00005873750588891724 −9.042290220806493 × 10−6

7 0.7321428200798787 0.9820632682383741 7.037960539690857 × 10−6 −1.0835765131833597 × 10−6

8 0.7321435766903267 0.9820632503521937 8.432707918615279 × 10−7 −1.2983405106581358 × 10−7

9 0.7321436673451523 0.9820632482087217 1.0103819869655695 × 10−7 −1.5556382404469105 × 10−8
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5. Consistent Conjugate Maps for Second-Degree Polynomials

This section deals with the mapping R(z) appearing in numerous methods related to
a usual polynomial having simple roots.

Theorem 3 (Newton’s method). Rational mapping R(z) by Newton’s method (3) related to
P(z) = (z − α)(z − β), α ̸= β is conjugate to S(z) through the Mobius transformation presented
by M(z) = (z − α)/(z − β), i.e.,

S(z) = MoRoM−1(z) = M
(

R
( zβ − α

z − 1
))

,

S(z) = z2.

Theorem 4 (Jarratt’s method [9]). Rational mapping R(z) by Jarratt’s method (35) related to
P(z) = (z − α)(z − β), α ̸= β is conjugate to S(z) through the Mobius transformation presented
by M(z) = (z − α)/(z − β), i.e.,

S(z) = z4Q(z),

where Q(z) = 1.

Theorem 5 (Proposed method CHN). The rational mapping R(z) by the Contraharmonic-mean
Newton method (CHN) (1) related to P(z) = (z − α)(z − β), α ̸= β is conjugate to S(z) through
the Mobius transformation presented by M(z) = (z − α)/(z − β), i.e.,

S(z) = z6Q(z),

where Q(z) = (2 + z + z2)2)/(1 + z + 2z2)2.

Theorem 6 (Newton-like method). The rational mapping R(z) by the Newton-like method
related to P(z) = (z − α)(z − β), α ̸= β is conjugate to S(z) through the Mobius transformation
presented by M(z) = (z − α)/(z − β), i.e.,

S(z) = zpQ(z),

where Q(z) is either a unity or a rational function and p is the order of the Newton-like method.

6. Fixed Points (Extraneous)

The Newton type described previously may be viewed as a fixed-point iteration:

xk+1 = xk − EF(xk)
F(xk)

F′(xk)
, k = 0, 1, 2, · · · . (38)

Thus, the root x∗ of F(x) = 0 is a fixed point of the method. If the right side of (38)
also vanishes at some points ξ ̸= x∗ for EF(ξ) = 0, then ξ is also fixed points of the method.
These fixed points are known as fixed points (extraneous) (see [11] ). Now, we describe the
fixed points (extraneous) of some Newton-like methods for z3 − 1.

Remark 1. Newton’s method does not have any fixed points (extraneous) because for Newton’s
method, EF(xk) = 1.

Theorem 7. Jarratt’s method [9] given by Equation (35) has six extraneous fixed points.

Proof. For Jarratt’s method (35), EF(xk) is (1 + 7z3 + 19z6)/(2 + 14z3 + 11z6). Here, the
numerator is of degree 6; hence, Jarratt’s method has six extraneous fixed points.

z = −0.5983578868038158646404450602561 − 0.1293213674687494778306860664455i,
z = −0.5983578868038158646404450602561 + 0.1293213674687494778306860664455i,
z = 0.1871833539218283973810430511561 + 0.5828538142612528060331642836771i,
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z = 0.1871833539218283973810430511561 − 0.5828538142612528060331642836771i,
z = 0.4111745328819874672594020091000 − 0.4535324467925033282024782172316i,
z = 0.4111745328819874672594020091000 + 0.4535324467925033282024782172316i.

Since the magnitude of the derivative at these points is > 1, these fixed points are
repulsive.

Theorem 8. The contraharmonic-mean Newton method (CHN) given by Equation (1) has 36
extraneous fixed points.

Proof. For the Contraharmonic-mean Newton method (1), EF(xk) is given by the follow-
ing equation. (1 + 24z3 + 273z6 + 1913z9 + 9432z12 + 35820z15 + 109518z18 + 267480z21 +
520299z24 + 836888z27 + 1075845z30 + 835755z33 + 558280z36)/(2(1+ 2z3)4(1+ 8z3 + 24z6 +
32z9 + 97z12)2). Clearly, numerator is of degree 36; hence, Contraharmonic-mean Newton
method (1) has 36 fixed points (extraneous).

z = −0.85891341548817634254031202979 − 0.38462281576563556340872698886i,
z = −0.85891341548817634254031202979 + 0.38462281576563556340872698886i,
z = −0.65582552364097941592393852099 − 0.42976024375144991085585715396i,
z = −0.65582552364097941592393852099 + 0.42976024375144991085585715396i,
z = −0.623420868575676112057973683 − 0.062578441419550715087380264i,
z = −0.623420868575676112057973683 + 0.062578441419550715087380264i,
z = −0.622713425569435944663548608 − 0.120604325095179444176721230i,
z = −0.622713425569435944663548608 + 0.120604325095179444176721230i,
z = −0.5928981111597760786762419411 − 0.3446909573828356296489746908i,
z = −0.5928981111597760786762419411 + 0.3446909573828356296489746908i,
z = −0.5351471982451658364293066070 − 0.1177518720014271165112211218i,
z = −0.5351471982451658364293066070 + 0.1177518720014271165112211218i,
z = −0.04427052680485847696252369081 − 0.78284168579904506769620208348i,
z = −0.04427052680485847696252369081 + 0.78284168579904506769620208348i,
z = −0.0020620699684269202724748405 − 0.6858103048115938827367817412i,
z = −0.0020620699684269202724748405 + 0.6858103048115938827367817412i,
z = 0.09636357841594587780433319956 − 0.93615224534683701782065582000i,
z = 0.09636357841594587780433319956 + 0.93615224534683701782065582000i,
z = 0.1655974866261734639362004471 − 0.5223270044450943385619686761i,
z = 0.1655974866261734639362004471 + 0.5223270044450943385619686761i,
z = 0.206910303446015487259798596 − 0.599587808368351467423586781i,
z = 0.206910303446015487259798596 + 0.599587808368351467423586781i,
z = 0.257515914289270808012764881 − 0.571187530145670720995938230i,
z = 0.257515914289270808012764881 + 0.571187530145670720995938230i,
z = 0.365904954286405304045208801 − 0.508609088726120005908557966i,
z = 0.365904954286405304045208801 + 0.508609088726120005908557966i,
z = 0.3695497116189923724931061599 − 0.4045751324436672220507475543i,
z = 0.3695497116189923724931061599 + 0.4045751324436672220507475543i,
z = 0.415803122123420457403750013 − 0.478983483273172023246865551i,
z = 0.415803122123420457403750013 + 0.478983483273172023246865551i,
z = 0.5949601811282029989487167816 − 0.3411193474287582530878070504i,
z = 0.5949601811282029989487167816 + 0.3411193474287582530878070504i,
z = 0.70009605044583789288646221180 − 0.35308144204759515684034492952i,
z = 0.70009605044583789288646221180 + 0.35308144204759515684034492952i,
z = 0.76254983707223046473597883023 − 0.55152942958120145441192883114i,
z = 0.76254983707223046473597883023 + 0.55152942958120145441192883114i.

Since the magnitude of the derivative at these points is > 1, these fixed points are
repulsive.
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Remark 2. For the other Newton-like method, we may calculate the fixed points (extraneous) in a
similar way since the magnitude of the derivative at these points is > 1. Therefore, these fixed points
are repulsive. These fixed points can be located in the basins graph for Example 3 (z3 − 1), Figure 1
(also notice the dynamics in Section 2 for these methods).
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Figure 1. Basin of attraction for F2(z) = z3 − 1 by different methods. (a) Second-order Newton’s
method; (b) fourth-order Jarratt’s method; (c) sixth-order Kou et al. method; and (d) sixth-order
CHN method.

7. Dynamical Study

Now, we will define the following definitions but in the extended complex plane.

Definition 1 (see [12–14]). Let us consider that g : I → C is a rational map on the Riemann
sphere, where I is a subset of the complex numbers C. Then, a point z0 is said to be a fixed point of
g if

g(z0) = z0.

Again for any point z ∈ C, the orbit of the point z can be defined as the set

Orb(z) = {z, g(z), g2(z), · · · , gn(z), · · · }.

Definition 2 (see [12,14]). A periodic point z0 is said to be of period k if there a smallest positive
integer k exists, i.e. gk(z0) = z0 .

Remark 3. If z0 is a periodic point of period k, then clearly it is a fixed point for gk.
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Definition 3 (see [12–14]). Let z∗ be a zero of the function F. Then, the basin of attraction of the
zero z∗ is defined as the set of all initial approximations z0 such that any numerical iterative method
starting with z0 converges to z∗. It can be written as

B(z∗) = {z0 : zn+1 = gn(z0) converges → z∗}. (39)

Here, gn is any fixed-point iterative method.

Remark 4. For example in case of Newton’s method

zn+1 = g(zn),

g(zn) = zn −
F(zn)

F′(zn)
, n = 0, 1, 2, · · · .

We can write the basin of attraction of the zero z∗ for the Newton’s method as follows:

B(z∗) = {z0 : zn+1 = gn(z0) converges → z∗}.

Definition 4 (see [12–14]). The Julia set of a nonlinear map g(z) is denoted as J(g) and is defined
as a set consisting of the closure of its repulsive periodic points [15]. The complement of the Julia set
J(g) is called the Fatou set f (g).

Remark 5.

(i) Some times the Fatou set of a nonlinear map may also be defined as the solution space, and the
Julia set of a nonlinear map may also be defined as the error space.

(ii) Fractals are a very complicated phenomenon that may be defined as a self-similar surprising
geometric object, which repeats at every small scale [16].

The dynamics of the rational map on the Riemann sphere split into two parts [13].

1. The dynamics of the Fatou set.
2. The dynamics of the Julia set.

The dynamics of the Fatou set of the rational map may be defined as the solution space
that contains the basin of attraction. The dynamics of Julia set of the rational map may be
defined as the error space having the chaotic part of the dynamics.

We studied the fractal patterns and dynamics for Example 2 (F(z) = z3 − 1 ) and a
new Example 5 (F(z) = z6 + (2 − 4i)z5 − z + (2 − 4i)) by using different iterative methods.
The dynamical analysis helps us in understanding the convergence, divergence, and
stability of the methods (see [12,13]).

7.1. For Example 2

Let us choose the square R × R = [−5.0, 5.0]× [−5.0, 5.0] of 500 × 500 points with
tolerance |F(zk)| < 5 × 10−2, taking a maximum of 21 iterations and a different color for
each complex root, to study the dynamics of Example 2 (F2(z) = z3 − 1 ) (Figure 1).

1. Clearly, the proposed sixth-order CHN method has a Fatou set with bigger orbits in
comparison to the other methods.

2. Newton’s method has no fixed points (extraneous). Further, there are 6 fixed points
(extraneous) for Jarratt’s method and 36 fixed points (extraneous) for the proposed
CHN method.

3. As we know that the magnitude of the derivative at these points is > 1, these fixed
points are repelling and are not the part of solution space. Thus, larger the number of
fixed points poor the method will be.

7.2. For Example 5

The dynamics for Example 5 (F5(z) = z6 + (2 − 4i)z5 − z + (2 − 4i)) are plotted
by the methods with the earlier conditions having different color for each complex root.
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We described the basins of attraction for second-order Newton’s (3), fourth-order Jarratt’s
(35), sixth-order Kou et al. (36), and present sixth-order CHN method (1) (Figure 2).

1. The dynamics for all the methods contain a Fatou set with similar basins and a fractal
Julia set with some chaotic behavior.

2. The black part is the Julia set, which exhibits chaotic behavior, which means the method
fails or diverges. Clearly, Newton’s method obtained the biggest Julia set (Figure 2a).

3. The colored part with six different colors to each root is the Fatou set, which contains
the basins of the methods. From Figure 2, we see that the proposed method (CHN)
has a Fatou set with bigger orbits and thus basins, but it also has a Julia set with
chaotic behavior at the border of the basins.
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Figure 2. Basin of attraction for F5(z) = z6 +(2− 4i)z5 − z+(2− 4i) by different methods. (a) Second-
order Newton’s method; (b) fourth-order Jarratt’s method; (c) sixth-order Kou et al. method; and
(d) sixth-order CHN method.

8. Conclusions

We studied a sixth-order Newton-like method (CHN) based on a contraharmonic-
mean. Two local convergence analyses were performed for the method. Local convergence
analysis I demands the sixth-order derivative, but the second version needs only the first-
order derivative. We checked the theoretical results by the numerical experiments, and the
numerical results were examined with the basins of attraction for some selected examples.
The supremacy of the CHN method is shown over the compared methods through the
numerical and dynamical results, except for the numerical example 3, where there is a tie
with Kou’s method. We obtained consistent conjugate maps for second-degree polynomial
P(z) = (z − α)(z − β), α ̸= β, which is useful in the further study of dynamics. We
calculated the extraneous fixed points for z3 − 1. These fixed points are repulsive; hence,
they are not the part of solution space [11]. The integrated approach of study (dynamical,
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numerical, and theoretical) is generative for the further study of Newton-like methods.
Future work shall deal with furthering the applicability of other methods in a similar
fashion [9,17–19].
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