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Abstract: The total mass flux (TMF) of particulate organic matter (POM) is key for understanding the
energetic transfer within the “biological pump” (i.e., involving the carbon cycle), reflecting a critical
connection between the surface and the bottom. A fixed multi-sediment trap was installed at 30 m
depth in Callao Bay, central Peru from March to December 2020. After recovery, samples were dried
and weighed to calculate the TMF and pellet flux. The average TMF was 601.9 mg·m−2·day−1,
with 70.2 and 860 mg·m−2·day−1 as the lowest and highest values during “normal conditions”.
Zooplankton fecal pellets (ZFP) were found in ovoid (e.g., larvae) and cylindrical (e.g., adult copepods)
shapes and their flux contribution to TMF was low, ranging from 0.17 to 85.59 mg·m−2·day−1.
In contrast with ZFP, fish fecal pellets (FFP) were found in fragments with a cylindrical shape, and their
contribution to the TMF was higher than ZFP, ranging from 1 to 92.56 mg·m−2·day−1. Mean sinking
velocities were 4.63± 3.47 m·day−1 (ZFP) and 432.27± 294.26 m·day−1 (FFP). There is a considerable
difference between the ZFP and FFP contributions to TMFs. We discuss the implications of these
results regarding a still poorly understood process controlling the POM flux off the Peruvian coast.

Keywords: fecal pellets; particulate organic matter; vertical flux; sinking velocities

1. Introduction

Surface-produced organic matter and its ulterior exportation to the seabed is a crucial
metabolic process for the functioning of marine ecosystems and the survival of many
species depends on these supplies [1,2]. Carbon dioxide uptake by phytoplankton and
secondary consumption by zooplankton represent key mechanisms in the early stages of
the pelagic-benthic coupling; this vertical transfer of energy through sinking particulate
material (e.g., total mass flux; hereafter, TMF) and possible burial is a fundamental process
in marine ecosystems, particularly for different trophic levels in benthic communities
involved in the final carbon pathways [3,4].

Carbon-based supplies to the bottom exhibit variability depending on several factors
such as spatial constraints, seasonality, bathymetric setting, and even the oxygen regime
can modulate these processes [3,5–8]. However, the biological contribution to the TMF
also depends on the local occurrence of fish schools and massive zooplankton swarms.
Despite this, export rates and specific contributions of these sources remain poorly de-
scribed for coastal upwelling areas, hindering our ability to analyze the episodic influence
of these events on the TMF and its signal in the water column and the bottom [4,9,10].
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The Humboldt Current System domain extends from southern Chile (~42◦ S), where
the West Wind Drift intersects the South American continent, to northern Peru (~5◦ S),
where cool upwelled waters collide with warm tropical waters forming a transitional
front. The domain encompasses three well-defined upwelling subsystems: (1) a produc-
tive seasonal upwelling system in central-southern Chile; (2) a lower productivity and
rather large “upwelling shadow” in northern Chile and southern Peru and (3) the highly
productive year-round Peru upwelling system [11,12]. The third subsystem named the
Northern Humboldt Current System (NHCS) is characterized by high levels of production,
partially reflected in a large biomass of small pelagic fish (e.g., as occurring in the Peruvian
anchovy population). The NHCS offers the opportunity to analyze the components of
pelagic-benthic processes in depth. As wind-driven upwelling tongues along this region
positively foster the formation of large hotspots of organic conglomerates in the surface
and intermediate waters, the accumulation and ulterior decomposition of this organic
material triggers the recurrent depletion of dissolved oxygen affecting both shelf and slope
habitats [7,13,14].

The NHCS euphotic waters are characterized by large amounts of primary produc-
ers continually fixing and pumping carbon-based compounds to the water column and
beyond [15,16]. However, despite episodes of high variability in this region (e.g., dur-
ing El Niño events, EN) the sinking particles and burial mechanisms involved in this
quasi-permanent pelagic-benthic flux in shelf environments of the NHCS have rarely
been characterized.

Central areas of the NHCS tend to exhibit large amounts of production year-round
and host one of the most severe oxygen minimum zones in the region [7,17]. Recent reports
in these areas indicate that shelf environments can be rapidly impacted by terrigenous
material during anomalous events, such as El Niño, plus the influence of local produc-
tion [18]. However, descriptions of the pathway of carbon to the benthos are unknown, and
the characteristics and rate of the TMF reaching the bottom are unclear, because there are
no previous descriptions; therefore, the impact on benthic organisms lacks enough informa-
tion [19]. This study aims to contribute to the characterization of the TMF and identify the
contribution sources of the particulate organic matter in a representative and highly pro-
ductive central area of the NHCS. This study is performed under the working hypothesis
that fish fecal pellets have a remarkable contribution to the TMF, particularly considering
the high dominance of dense anchovy (Engraulis ringens) schools in central Peru.

2. Materials and Methods
2.1. Study Area

In the framework of the Coastal Upwelling System in a Changing Ocean (CUSCO)
project, a research campaign was carried out at Callao Bay (central Peru, 12◦ S) (see Figure 1),
which is a representative upwelling-fueled area in the NHCS, characterized by a nutrient-
rich environment and supporting high levels of primary production year-round [20,21].
Primary producers in central areas of the NHCS such as Callao Bay are strongly dominated
by diatoms, sedimentological studies confirm these characteristics in the composition of
the organically-rich local surface sediments [22,23].

2.2. Automatic Sediment Trap Deployment and Recovery

A 320 mm diameter Saarso-type cylindrical sediment trap (Hydro-Bios Multi Sediment
Trap MST6 444 101) was deployed within a mooring array at 30 m depth (Figure 2). The trap
has a rotating base, controlled by a programmable system, that can hold up to six bottles
(250 mL). Before deployment, the trap was programmed to make each bottle collect POM
for 10 days, every bottle was filled with a solution of 5% formalin (buffered with sodium
tetraborate at pH 8) using pre-filtered (0.2 µm) seawater, taken at the same depth.
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Figure 1. Study area (central Peru, 12° S) indicating the deployment site for the sediment trap (black 
circle). 
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After the array deployment, the verticality of the trap was in situ checked. The exper-
iment was originally planned to last 60 days, but a mechanical issue in the fifth bottle 
produced a longer collection time until the moment of recovery, which due to restrictions 
during the COVID-19 pandemic, lasted 279 days from 14 March to 18 December 2020 (Ta-
ble 1). It allowed us to analyze the TMF over a comparatively longer period and contrast 
it with 1–4 bottles (bottle 6 did not open, therefore, it could not capture material) (Table 
1). The sediment trap was recovered by releasing the line from the ballast and then de-
taching all bottles (hereafter “samples”) to be stored in a polystyrene box with frozen gel 
packs (4 °C), and finally transported to the laboratory for processing. 
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previous setup of the sediment trap, (c) preparation and checking on board, and (d) sample recep-
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Table 1. Sampling dates of the sampling bottles attached to the multi-sediment trap. 
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Figure 2. (a) Mooring array scheme with tethered automatic sediment trap (not drawn to scale),
(b) previous setup of the sediment trap, (c) preparation and checking on board, and (d) sample reception.
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After the array deployment, the verticality of the trap was in situ checked. The ex-
periment was originally planned to last 60 days, but a mechanical issue in the fifth bottle
produced a longer collection time until the moment of recovery, which due to restrictions
during the COVID-19 pandemic, lasted 279 days from 14 March to 18 December 2020
(Table 1). It allowed us to analyze the TMF over a comparatively longer period and contrast
it with 1–4 bottles (bottle 6 did not open, therefore, it could not capture material) (Table 1).
The sediment trap was recovered by releasing the line from the ballast and then detaching
all bottles (hereafter “samples”) to be stored in a polystyrene box with frozen gel packs
(4 ◦C), and finally transported to the laboratory for processing.

Table 1. Sampling dates of the sampling bottles attached to the multi-sediment trap.

Bottles Number Sampling Start Date Sampling End Date Period

1 14 March 2020 23 March 2020 10 days
2 24 March 2020 2 April 2020 10 days
3 3 April 2020 12 April 2020 10 days
4 13 April 2020 22 April 2020 10 days
5 23 April 2020 18 December 2020 239 days

2.3. Samples Splitting

All samples were transported to the Marine Geology Laboratory at the Instituto del
Mar del Perú (IMARPE), and stored at 4 ◦C to avoid their degradation. The samples were
later split into four aliquots, namely “A” (for TMF estimates), and “B” (for fecal pellet flux
and characterization). Aliquots “C” and “D” were stored for other analyses. The splitting
was performed using a Folsom Splitter. This equipment was tested using samples from the
same study area, sediment trap, and resolution of days, obtaining an acceptable coefficient
of variation (0.07%), compared to the value calculated (6%) under similar conditions [24,25].

2.3.1. Aliquot “A”
Zooplankton Picking

Since zooplankton are not considered part of the passive TMF, they were removed [26–29].
Although there is no consensus on how to remove them (whether or not to use a stereomi-
croscope in the process), it was decided to carry out a complete analysis, observing the
organisms through a stereomicroscope and removing them with acupuncture needles by
gathering them and then collecting them on one of the needles with the help of the other as
they are removed from the sample’s liquid. For this case, several aliquots were analyzed in
Petri dishes using a Nikon-SMZ18 stereomicroscope.

Filtering and Weighing of Particulate Matter

The POM was filtered and dried, using a Millipore filtration kit and Whatman GF/F
glass fiber filters (47 mm). These filters were placed in porcelain crucibles and calcined at
450◦ C in a muffle for 6 h [26]. The filters were put on aluminum foil and then cooled inside a
desiccator containing silica to avoid moisture retention. Once filters cooled down, they were
weighed on a Sartorius microbalance (precision 0.0001 g) (initial weight). The filter was
installed in the filtration kit connected to a suction pump with a pressure of 0.2 bar, to speed
up the filtration process and avoid possible ruptures of the material being filtered [30,31].
The procedure implies pouring the POM into the filtration kit. The suction pump was
turned on until all the water was filtered. Subsequently, the material was washed with
deionized water (while the suction pump was still on) to remove the rest of the salt, and
the filter with the material was uncoupled and dried in an oven at 75 ◦C for 1 h. The same
process was repeated for all the samples. The filters were removed from the oven and
placed in a desiccator to cool down for 1 h. Finally, the filters were weighed (final weight),
being able to calculate the weight of the sedimentary material using Equation (1):

POM weight (mg) = Final weight (mg) − initial weight (mg) (1)
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The TMF estimates (mg·m−2·day−1) were calculated with Equation (2):

TMF = (SF × α)/(0.080384 m2 × γ), (2)

where SF is the splitting factor used to split the sample into aliquots, α the POM weight (mg),
0.080384 m2 is the area of the mouth of the trap, and γ the days the bottle was capturing
POM.

The mean TMF was calculated using Equation (3):

Mean TMF = ∑(S × γ1)/(β), (3)

where S is the TMF of each sample (1–5), γ1 is the days each bottle was capturing POM,
and β is the total days the trap was deployed during the experiment.

2.3.2. Aliquot “B”
Collection, Measurement, and Characterization of Fecal Pellets

The aliquot was placed in a Petri dish (14 cm Ø). Brushes and acupuncture needles
were used to avoid damage to the fecal pellets. The removed pellets were placed in poly-
sulfone flasks (70 mL) filled with 10 mL of 5% formalin stored at 4 ◦C for later correct
measurement, counting, and characterization using a Nikon-SMZ18 stereomicroscope and
the NIS-Elements software. Fecal pellets (entire or fragmented) were grouped inside a Petri
dish and observed under a stereomicroscope, using the NIS-Elements software to take the
photographs. These photographs were used to count the fecal pellets and also to charac-
terize them, observing the color but mainly their shape, to identify the possible producers
following specific suggestions [32]. Subsequently, the software was also used to measure
the pellets using the photographs previously taken, one by one manually. The length and
width of the fecal pellets were measured to obtain an average of total sizes and to be able to
calculate the volume that they contribute to their respective samples. The volume of fecal
pellets was calculated using the following equations, regarding their shape, for cylindrical
pellets we used Equation (4):

Volume = πhr2, (4)

where h and r are the height and radius of the cylindrical fecal pellet, respectively.
For ovoid fecal pellets, we used Equation (5):

Volume = (4/3)πar2, (5)

where a and r are the length and radius of the ovoid fecal pellets, respectively.
The count and volume of fecal pellets were multiplied by the splitting factor to

estimate the results. To obtain the dry weights and flux of all fecal pellets from each sample
aliquot, we employed the same procedure used to obtain POM weight and flux, using
Equations (1)–(3), just replacing the POM for fecal pellets.

2.4. Sinking Velocity

Using the pool of pellets previously measured (fish and zooplankton), the sinking
velocity was calculated [33]. To calculate the sinking velocity of all the ovoid as well
as cylindrical fecal pellets from each sample aliquot, we employ Equation (6) and the
suggestions indicated there.

Ws = 1/8 × 1/µ (ps − p) g × Dn
2 × E0.380, (6)

where Ws is the sinking velocity, µ is the seawater viscosity (0.001139 Ns·m−2), ps is the par-
ticle density (1.19 g·cm−3) [34,35], p is the water density in situ estimated (1.0258747 g·cm−3)
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in a surface profile (<1.34 m depth), g is the acceleration of gravity (981 cm·s−2), Dn is the
nominal diameter of the particle, E is a measure of shape [36] as expressed in Equation (7).

E = Ds (Ds
2 + Di

2 + D1
2)−1/2, (7)

where Ds, Di, and D1 are the smallest, intermediate, and longest axial diameters of the
ovoid. In the case of cylinders, D1 = L and Ds = Di = cylinder diameter.

3. Results
3.1. Fecal Pellets Count, Sources, and Contribution to TMF

ZFP total count was 4396, and the highest number of pellets was in sample 5 (3360).
The sorted fecal pellets exhibited two shapes: ovoid and cylindrical (Figure 3), indicating
they were possibly produced by larvae and adult copepods, respectively. The predominant
shape in all the samples was the ovoid (Table 2). The apparent colors of the pellets were
brown and light brown. The only shape found for FFP was cylindrical and unlike ZFP,
which were found complete, they were found mostly in fragments (Figure 3).
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Table 2. Fecal pellet shapes, count, types, and volume from samples 1–5.

Parameter
Sample

Type of Pellet
1 2 3 4 5

Count 384 112 208 332 3360

ZooplanktonCylindrical shape (%) 36.5 17.9 13.5 33.7 16.2
Ovoid shape (%) 63.5 82.1 86.5 66.3 83.8
Volume (mm3) 0.3 0.1 0.1 0.4 3.2

Count 148 8 216 116 1472
FishVolume (mm3) 205.6 27.2 406.2 76.1 3392.6

Total count 532 120 424 448 4832
Total volume (mm3) 206.1 27.4 406.4 76.9 3398.1

The total count for FFP was lower than the one found for ZFP (1960 vs. 4396). The vol-
ume of FFP was 28 272 times greater than the volume of ZFP, the latter representing <1% of
the total fecal pellet volume per sample, having 0.12 mm3 as the lowest value (sample 2)
and 5.44 mm3 as the highest (sample 5).

Remarkable differences were found between ZFP and FFP sizes (Figure 4, Table A1).
ZFP presented a wide length range of 0.068–0.611 mm, the average length of all the samples
analyzed was 0.19 ± 0.08 mm. The width range from all samples was 0.038–0.279 mm
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and the mean width was 0.08 ± 0.03 mm. FFP had a length and width greater than ZFP
values, with a length and width size range of 1.71–6.07 mm and 0.26–2.80 mm, respec-
tively (Table A1).
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Figure 4. Length and width of (a,b) ZFP, and (c,d) FFP.

Regarding weight contribution per sample, FFP accounted for an average dry weight
of 26.72 ± 26.42 mg, and only sample 2 presented a very low dry weight of 0.8 mg.
ZFP dry weight mean was 15.6 ± 26.61 mg with all values <4 mg except for sample 1,
whose result was 68.8 mg (Table A2).

3.2. TMFs, Fecal Pellets Flux, and Sinking Velocities

The mean TMF during the study was 601.9 mg·m−2·day−1 with a maximum of
860 mg·m−2·day−1. The most striking TMF difference was for sample 2, (Figure 5), which had
a very low result (70.2 mg·m−2·day−1) (Table A3). The mean ZFP and FFP flux was
3.89 mg·m−2·day−1 and 5.95 mg·m−2·day−1, respectively. The contributions of fecal
pellets from each sample to the TMF was <27%, ranging from 0.03% to 26.95% (Table A4).

The estimated sinking velocities presented a variation depending on the type of fecal
pellets, showing a directly proportional relation with their volume (Figure 6). For ZFP, the
velocity range of all samples was 0.92 to 37.7 m·day−1, having a mean of 4.66± 3.47 m·day−1.
FFP values were directly proportional to a higher volume, and presented a higher sinking
velocity, with a range of 23.08 to 2104.43 m·day−1. The mean FFP among samples was
432.27 ± 294.36 m·day−1, showing comparatively faster carbon transport to the seabed.
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4. Discussion
4.1. Contrasting TMF Estimates

A study carried out in 2013 from January to March (austral summer) off the Peruvian
central coast (12◦ S) at the same depth (34 m) and with a sampling resolution of 7 days,
showed not distant results from this study (427 mg·m−2·day−1 vs. 601.9 mg·m−2·day−1,
respectively) [37]. They resumed the sampling from June to November (austral winter-
spring) with a sampling resolution of 11 days, where they obtained a higher mean flux
(986 ± 1422 mg·m−2·day−1). The system presented a La Niña (LN) event, but the similari-
ties in results from the austral summer period might be given because LN conditions in 2013
started in March, which was the last month when the trap sampled sediments, suggesting
that LN conditions led to a higher result in the austral winter-spring period (Table 3).

Table 3. TMF and fecal pellets contribution from other studies.

Study Area Depth
(m) Sampling Date El Niño Event TMF

(mg·m−2·day−1)
Fecal Pellets

Contribution (%) Study

Callao Bay—Peru 30 March–December 2020 601.9 0.03–26.95% This study
Callao Bay—Peru 30 January–April 2017 2017 coastal El

Niño 4502 ± 1892 [18]
Mejillones Bay—Chile 30 January–February 2004 1100 ± 400 [38]

Concepcion Bay—Chile 30 January 1993 4600 ± 300 [39]
Punta Santa Ana—Peru 50 1978 0–17% [40]
~50 km off Lima, Peru 34 January–March 2013 427 ± 217 60–70% [37]

June–November 2013 986 ± 1422
Callao Bay—Peru 30 1976–1978 16,800 [41]

Central Pacific, Ecuador 105 September–October
1994 El Niño 973 ± 72 [42]

125 277 ± 81
155 639 ± 264
175 297 ± 77

Northern Bahamas—USA
(Atlantic Ocean) 500 February–June 1985 59 3% [43]

Ocean Station Papa—USA
(Alaska)

96 August 2018 89 ± 3.8 [44]97 83.5 ± 14.8

Coastal marine areas along the margins tend to be more productive in terms of POM
in the surface and water column [1,45]. Overall, oceanographically similar areas such as
northern (Mejillones, ~26◦ S) and central (Concepción, ~36◦ S) Chile are similar in terms of
production and vertical flux within an order of magnitude but can exhibit particularly high
variability during the impact of anomalous events like EN, or even cold periods [38,46].
The TMF results of this study are lower compared to other studies carried out under a
similar setting in the Humboldt Current but are higher compared to oligotrophic areas
such as the Northern Bahamas or Alaska (Table 3), where both the distance of the coast and
depth of the moored trap likely play a crucial effect. Previous observations in central Peru
are coherent with the results presented here; however, they differ in terms of depth setting
and study period.

A special case in this study was sample 5, which collected POM for a longer period
(239 days) compared to the other four samples (10 days). However, its TMF per day
(634.5 mg·m−2·day−1) did not present a considerable variation, even being inferior to the
one found for sample 1 (860.9 mg·m−2·day−1). This has to be studied with more detail as
2020 was a year with normal conditions, not presenting LN or EN events [47]. These events
have the opposite impact on physico-biogeochemical variables in the ocean, being EN about
twice as strong as LN impact (either positive or negative anomalies) [48]. Hence, an EN
event, which represents a decrease in upwelling terms, should present a lower sediment
flux than during normal or LN conditions; however, comparing observations during the
2017 coastal EN in the same bay, the estimated flux was ~7 times higher than calculated in
this study, due to the indirect impact of massive terrigenous discharges received from the
Rimac river in that period of heavy rainfalls [18]. This suggests that the Rimac River was a
remarkable factor influencing the flux in the first sample during summer–fall, which may
have had a stronger impact on the studied area regarding particulate matter input.
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Studies off the Chilean coast (Concepcion Bay) [39] at the same depth (30 m) showed
the average downward flux was 4600 ± 300 mg·m−2·day−1, being similar to mass flux
results reported in central Peru [18]. Nevertheless, these observations on the Chilean coast
were not executed under EN conditions, these similar results may have occurred due to
factors such as the south-western wind seasonal variability and discharges from different
spatially near places (Rocuant Salt Marsh and Andalien River).

Investigations in the oligotrophic system of the northern Bahamas at 500 m depth
found an average TMF of 59 mg·m−2·day−1, which is considerably lower than our esti-
mates [43]. The disparity in outcomes can be likely attributed to variations in the sampling
depth when compared with the findings of this study, suggesting that the depth of the
sediment trap plays a pivotal role in the observed diminished fluxes. Deeper installations
exhibit progressively lower flux rates, indicating an inverse relationship between sediment
flux and trap depth.

4.2. TMF Rates and Fecal Pellets Contribution

According to one study off the Peruvian coast (12◦ S) [37], during austral summer sam-
pling (January–March) and the first half of austral winter-spring sampling (June–September),
the contribution of fecal pellets to TMF was 60–70%. These values are much higher than
ours (0.16–26.95%) (Table A4). This might be given because, unlike this study, theirs was
carried out under the LN event, resulting in a nutrient-rich system that could contribute to
the growth of the zooplankton and fish communities, enhancing fecal pellet production.

Several factors can influence particle dynamics and fluxes, such as the pelagic ecosys-
tems and environmental conditions, including seasonal changes, geographical location,
and temperature. The influence of these factors becomes apparent when examining other
studies conducted in different regions and at varying depths. For instance, in the California
Current at 100 m depth [49] a ZFP contribution of up to 94% to the TMF has been reported.
Similarly, in the Sargasso Sea at 150 m depth, approximately 89% corresponds to ZFP [50].
In contrast, at the same location but at a 3200 m depth, a much lower contribution of only
8% has been observed [51], while in the Bahamas (Atlantic Ocean) fecal pellets accounted
for 3% of the TMF [43]. These findings align with the general trend of decreasing TMF as
the sampling depth increases.

Zooplankton contributions to the fecal pellets are varied [52]. In some instances, it was
found to be ≤10% (at the Iberian Shelf (50–200 m depth), i.e., at the Sargasso Sea (500 m),
at the Bay of Calvi (36 m), and Central Artic Ocean (30–200 m) a fecal pellet contribution
of 0.3–6.7%, 0.4–10%, <6% and <2%, respectively) was found [51,53–55]. These findings
demonstrate a certain similarity with the results obtained in the present study, where the
range of ZFP contribution within the TMF was also below 5%.

In the context of the present study, FFP emerged as the most significant contributor
in terms of volume and percentage within the TMF. This observation aligns with the
general trend observed in upwelling areas [52]. However, it should be noted that limited
research exists on this particular topic. The relative contribution of fecal pellets to the
TMF is influenced by various factors, including productivity variations, biomass levels,
sedimentation rates, zooplankton size responsible for pellet production, pellet composition,
EN events, zooplankton vertical migrations, among others [52]. Overall, these findings
emphasize the complexity and multifaceted nature of fecal pellet dynamics in marine
ecosystems. Further investigation is warranted to explore the specific mechanisms and
ecological drivers that govern the contribution of fecal pellets to the TMF, particularly in
upwelling regions like the NHCS.

4.3. Fecal Pellets Quantification and Attributes

FFPs were consistently detected as fragments in all samples analyzed, indicating
their presence throughout the study area. The maximum number of pellet fragments
observed was 61, which contrasts with the findings in Ica (Southern Peru, 15◦ S), where
a higher maximum value of 2569 fragments was reported [40]. However, it should be
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noted that in their study, no fragments were found in certain stations, which was attributed
to lower primary productivity conditions deemed atypical. These findings suggest that
the number and distribution of FFP can vary spatially and may be influenced by local
productivity dynamics.

ZFP exhibited two distinct shapes: cylindrical and ovoid. In the North Pacific Ocean,
four forms of fecal pellets were reported: spherical, ovoid, cylindrical, and amorphous [56].
Different colors were reported as well: brown, light brown, transparent, red, and white.
The present study found only brown, light brown, and somewhat whitish ZFP. The last
two types can be attributed to bacterial decomposition, the addition of formaldehyde to the
sample, and feeding on detritus or transparent flagellates [57,58]. Among the possible pro-
ducers of ZFP, both in mesotrophic and oligotrophic systems, they could be large copepods
or euphausiids, depending on their shape [56]. Studies on zooplankton communities in the
same period and area of this work, suggest a potential connection between pellets produced
locally and species occurring in the area [59]. The study found specimens from copepod
groups such as Acartia, Hemicyclops, Harpacticoida, Oithona, Oncaea, and Paracalanus, as
well as specimens from the Polychaeta group (not species defined). These findings propose
that these would be the producers of the ZFP.

The estimated particle sinking velocities were relatively similar if compared with outer
shelf estimations (based on large Euphausiids) (50–150 m·day−1), under comparatively re-
duced organic matter concentrations in the water column [60]. Macrozooplankton analysis
(copepods and euphausiids > 500 µm) indicates 116.1 ± 55.9 m·day−1 for oligotrophic and
mesotrophic waters [30]. The morphologic characteristics of pellets in these studies seem
to better explain differences in sinking velocities, especially in cases such as rectangular
pellets of salps and large copepods that tend to sink rapidly while smaller less-dense parti-
cles of copepods descend more slowly. Fish-produced pellets are particularly important
in coastal areas where small engraulid schools generate massive dense pellets (most of
them cylindrical) descending rapidly (e.g., 787 m·day−1) to the bottom [61]. Our findings
indicate that FFP largely surpasses ZFP sinking velocities and has implications for the
primary source of food reaching the seabed. A likely reason why FFP sinking velocity is
lower than estimations in other study areas could be the seasonal occurrence of juvenile
anchovy schools in the bay and along the entire Peruvian coast [13], partially explaining
the size of pellets. However, the actual sinking velocity depends on particle properties, the
study area and its circulation patterns, the amount of locally-produced organic material,
and the activity of mobile consumers (e.g., plankters), among other factors [60,61].

The results of this study contribute to the understanding of FFP (better explained
likely by E. ringens schools) and ZFP in the study area, highlighting the variability in pellet
characteristics and potential sources. However, further investigations (e.g., including long-
term observations addressing the EN and LN influence) are needed to elucidate the specific
species-level contributions and ecological implications of these pellets within the local
marine ecosystem. Such research can provide valuable insights into the dynamics of pellet
production, their role in nutrient cycling, and their interactions with other components of
the food web.

5. Conclusions

As discussed, high variability when contrasting TMF values in the same geographical
area suggests the influence of the environmental scenario and the complexity of the ecolog-
ical process. The 2017 coastal EN has been identified as a significant triggering factor of
this variability. Indirect impacts on the vertical fluxes during these anomalous events seem
to significantly increase TMFs; for instance, ten times greater than those observed under
non-EN conditions in the present study. Furthermore, the presence of external sediment
sources, such as rivers or marshes, can introduce sediments into the marine environment,
potentially altering the characteristics of the water column and affecting the sinking and
transport of fecal pellets. The interaction between these external sediment sources and the
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prevailing oceanographic conditions in the study area may contribute to the considerable
variability in flux measurements.

It is important to note that factors not explicitly addressed in this study, such as
variations in primary productivity, nutrient availability, zooplankton composition, and
hydrodynamic conditions, can also influence the production and sinking of fecal pellets.
Future research should strive to incorporate these additional factors to better understand
the complex interplay of processes governing fecal pellet fluxes in the marine ecosystem.
The variability in TMF results highlights the need for a comprehensive approach to studying
fecal pellet dynamics, to produce an accurate diagnosis of the ecological significance of
these processes in marine ecosystems. Most fecal pellets observed, likely originating from
E. ringens, emerged as the primary contributors to the pellet flux input to the TMF in
the study area; this is coherent with the role of anchovy schools in contributing to the
downward transfer of nutrients in shallow waters as previously hypothesized. However,
while FFPs were the primary contributors to the TMF, further investigations are necessary
to fully understand the precise contribution of fecal pellets to the overall mass flux and its
changes over time.
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Appendix A

Table A1. Range and mean ± standard deviation of fecal pellets measurements.

Sample Length Range (mm) Length Mean (mm) Width Range (mm) Width Mean (mm)

Zooplankton fecal pellets
1 0.068–0.530 0.17 ± 0.08 0.038–0.207 0.08 ± 0.03
2 0.080–0.366 0.16 ± 0.07 0.039–0.143 0.08 ± 0.03
3 0.088–0.440 0.17 ± 0.07 0.045–0.150 0.08 ± 0.02

https://portal.geomar.de/kdmi#_48_INSTANCE_5P8d_=metadata%2F
https://portal.geomar.de/kdmi#_48_INSTANCE_5P8d_=metadata%2F
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Table A1. Cont.

Sample Length Range (mm) Length Mean (mm) Width Range (mm) Width Mean (mm)

4 0.112–0.611 0.24 ± 0.09 0.045–0.189 0.09 ± 0.03
5 0.090–0.569 0.19 ± 0.08 0.042–0.279 0.09 ± 0.03

Fish fecal pellets
1 0.628–2.799 1.54 ± 0.61 0.43–1.795 0.93 ± 0.42
2 1.170–3.498 2.33 ± 1.65 0.544–1.543 1.04 ± 0.71
3 0.738–6.070 1.76 ± 0.85 0.345–1.836 1.04 ± 0.37
4 0.814–5.227 1.63 ± 0.85 0.260–1.601 0.64 ± 0.38
5 0.808–4.099 1.51 ± 0.49 0.643–2.796 1.32 ± 0.33

Table A2. Weight of fecal pellets from fish and zooplankton.

Sample Producer Weight (Aliquot)
(mg)

Weight (Sample)
(mg)

1
Zooplankton 68.8

83.2Fish 14.4

2
Zooplankton 0.8

1.6Fish 0.8

3
Zooplankton 2.4

76.8Fish 74.4

4
Zooplankton 2.8

11.6Fish 8.8

5
Zooplankton 3.2

38.4Fish 35.2

Table A3. Total mass flux (TMF) of the five samples with corresponding mean flux.

Samples Total Mass Flux (mg·m−2·day−1)

1 860.9
2 70.2
3 343.4
4 354.8
5 634.5

Mean flux 601.9

Table A4. Fecal pellet flux and their contribution (%) to the total mass flux (TMF).

Sample Source Pellets Mass Flux (mg·m−2·day−1) Contribution to TMF (%)

1 Zooplankton 85.59 9.94
1 Fish 17.91 2.08
2 Zooplankton 1 1.42
2 Fish 1 1.42
3 Zooplankton 2.99 0.87
3 Fish 92.56 26.95
4 Zooplankton 3.48 0.98
4 Fish 10.95 3.09
5 Zooplankton 0.17 0.03
5 Fish 1.83 0.29
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