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Abstract: We investigate the infinite-distance properties of families of unstable flux vacua in string
theory with broken supersymmetry. To this end, we employ a generalized notion of distance in the
moduli space and we build a holographic description for the non-perturbative regime of the tunneling
cascade in terms of a renormalization group flow. In one limit, we recover an exponentially-light
tower of Kaluza-Klein states, while in the opposite limit, we find a tower of higher-spin excitations of
D1-branes, realizing the emergent string proposal. In particular, the holographic description includes
a free sector, whose emergent superconformal symmetry resonates with supersymmetric stability,
the CFT distance conjecture and S-duality. We compute the anomalous dimensions of scalar vertex
operators and single-trace higher-spin currents, finding an exponential suppression with the distance
which is not generic from the renormalization group perspective, but appears specific to our settings.

Keywords: supersymmetry breaking; string theory; swampland program

1. Introduction

The last decade of research in string theory, and quantum gravity in general, has
witnessed a remarkable breadth of progress and novel ideas. A variety of connections
between fundamental interactions of microscopic degrees of freedom and the breakdown
of the corresponding low-energy effective field theory (EFT) dynamics have been pro-
posed and thoroughly investigated. As a result, the existing network of swampland
criteria [1]1 to determine consistent EFTs has been expanded and enriched. In particular,
numerous insights have been collected about infinite-distance asymptotic regions of mod-
uli space in EFTs coupled to gravity [5–7] in support of the distance conjecture [8] and
its extensions [9–15].

The emerging picture appears to be intimately tied to string dualities, and suggests
that quantum-gravitational consistency entails a very specific breakdown of EFT. Namely,
an infinite tower of massive states would become parametrically light at an exponential
rate in the proper distance in moduli space, and furthermore, the states would pertain
either to a Kaluza-Klein (KK) tower or higher-spin excitations of tensionless strings. These
towers of states signal, respectively, the presence of extra dimensions of space or extended
objects in the spectrum.

Despite many advances, investigations have focused on supersymmetric settings.
In order to achieve a deeper understanding, and ultimately connect these ideas with
phenomenology, it is paramount to address supersymmetry breaking, which at present,
lacks a comprehensive guiding principle. Among the wide variety of mechanisms that have
been proposed, string-scale supersymmetry breaking appears to provide a natural setting to
seek instructive lessons beyond the current “lamppost” [16–19]. To wit, naïve dimensional
arguments have been recently supplemented by additional considerations [20,21] on the
(in)consistency of light gravitini within low-energy supersymmetry breaking, and the
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gravitino mass appears to play an important role reminiscent of “brane supersymmetry
breaking” (BSB) [22], as discussed in [23].

Given the present state of affairs, we are compelled to attempt at extending the
investigation of swampland proposals to non-supersymmetric settings, and to this end, the
SO(16)× SO(16) heterotic model of [24,25], the U(32) “type 0′B” model of [26,27] and the
USp(32) model of [28] stand as promising candidates2. In particular, the latter features a
simple realization of BSB, whereby the closed-string sector remains supersymmetric while
supersymmetry is broken in the open-string sector. The appearance of a Goldstino singlet
in the perturbative spectrum hints at a spontaneous breaking, and the low-energy physics
feature the expected interactions à la Volkov–Akulov [32,33], but a satisfactory description
of the corresponding super-Higgs mechanism in ten-dimensions remains elusive [34,35].

Various swampland conjectures have been studied in these models [36,37] and in
other settings with supersymmetry breaking [38]. In particular, some hints regarding light
towers of states have been discussed in [36]. In this paper, we shall focus on infinite-
distance limits. In this respect, one expects supersymmetry breaking to dramatically affect
vacua [39,40] and destroy exact moduli spaces. A milder counterpart of this scenario would
involve potentials lifting the moduli, and their role has been discussed in [13]. In order to
circumvent these limitations, we shall investigate generalized notions of distance using
holography. A similar proposal has been put forth in [14,15] using the Zamolodchikov
metric [41]. This approach to the geometry of theory space has been extended by O’Connor
and Stephens [42] in the context of the quantum information theory, and by Anselmi [43]
in the context of renormalization group (RG) flows. The former metric has been recently
revisited by Stout [44], and in this work, we shall employ both metrics to explore infinite-
distance limits in the absence of supersymmetry.

Our findings reveal that the breakdown of EFT at an infinite distance involves either a
KK tower arising from compact extra dimensions or higher-spin excitations of a D1-brane.
The latter lies in a stringy regime that we approach holographically, and arises as the
endpoint of a cascade of flux tunneling processes in unstable brane configurations driven
by weak gravity [37,45]. Remarkably, in the Sugimoto model of [28], supersymmetry is
restored, thereby granting stability as expected from the considerations of [46].

After discussing in detail our setup from the bulk and holographic perspectives, we
compute the (generalized) distances associated to the endpoints of the tunneling cascade,
finding that they diverge. Then, we compute anomalous dimensions of scalar operators and
(single-trace) higher-spin currents in the dual field theory, and we entertain the possibility
of a novel heterotic-orientifold S-duality in the final state. While our results hold in more
general settings, the asymptotic scalings specific to the string models of interest exponentially
suppress the anomalous dimensions in a precise sense that we discuss. Furthermore, these
novel realizations of the emergent string proposal [9–11], supersymmetric protection and
heterotic-orientifold duality [47] exhibit a tantalizing interplay via Spin(8) triality.

2. Brane Dynamics and Weak Gravity

Our starting point is to investigate the vacua of the string models that we have
introduced in the preceding section. In more familiar settings, these comprise the trivial
configuration where spacetime is flat and all fields vanish. However, in the present models,
the low-energy EFT contains the (Einstein-frame) dilaton potential [29–33]:

Veff(φ) = T eγφ , (1)

where the parameter γ = 3
2 , 5

2 for the orientifold models and the heterotic model, re-
spectively. For the former, the coefficient T = O(α′−1) can be interpreted as the residual
tension of the D9-branes and the O9-plane, while for the latter, it can be interpreted as
the one-loop vacuum energy (density). This potential, absent of a balancing act, drives
the vacuum to a runaway, where φ → −∞. Therefore, the standard string perturbation
theory is compromised by a dynamical tadpole, whose dramatic gravitational backreaction
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is yet to be understood completely. In the pioneering work of [34]3, it was found that the
most symmetric solutions appear to entail a spontaneous compactification of one spatial
dimension into an interval, which however hosts curvature and/or coupling singulari-
ties at its endpoints4. These solutions have been generalized to families [30,31,45,50,51],
strongly suggesting that geometries of these type are sourced by branes, whose presence
breaks the isometry group accordingly. On the one hand, the resulting geometries feature a
universal finite-distance “pinch-off” singularity [45], which dovetails nicely with the recent
considerations of [52,53] in the context of the swampland.

On the other hand, the backreaction of extremal charged branes is somewhat milder,
since the finite-distance “pinch-off” is accompanied by a near-horizon throat which is
weakly curved and weakly coupled when the number of branes is large. The resulting ge-
ometry is depicted in Figure 1. The string models that we have discussed in the introduction
contain a variety of such branes, whose presence can be ascertained from the consistency
of their perturbative spectra [35,54] via orientifold techniques applied to one-loop vacuum
amplitudes. In particular, the USp(32) model of Sugimoto [28] contains charged D1-branes
and D5-branes, while the U(32) type 0′B model [26,27] also contains charged D3-branes
and D7-branes. While D5-branes and D7-branes are more subtle in this respect, D3-branes
source a quasi-AdS5 × S5 near-horizon throat [55,56], while D1-branes source a bona fide
AdS3 × S7 throat [30,37,45,57]. Similarly, NS5-branes in the heterotic model source an
AdS7 × S3 throat5. All of these geometries have no scale separation, and for a large number
N of branes, where the EFT regime is expected to be reliable, the string coupling gs and the
radius R of the internal Sq scale according to [30,37,45,57]

gs ∝ N−
2

(q−1)γ−1 � 1 ,

α′
− 1

2 R ∝ N
γ

(q−1)γ−1 � 1 .
(2)

Figure 1. A heavy stack of D1-branes (in the orientifold models) or NS5-branes (in the heterotic
model) sources a spacetime geometry whose near-horizon limit is an AdS× S throat [37,45]. One
can expect branes on conical singularities to produce similar Freund–Rubin compactifications in
this limit.

The resulting geometries are unstable, both perturbatively [60] and
non-perturbatively [45]. In the former case, field fluctuations violating the Breitenlohner–
Freedman bound [61] can potentially be avoided by replacing the internal Sq with a suit-
able Einstein manifold Mq, which is expected to arise by placing branes on a conical
singularity [62], or performing a suitable orbifold projection. In the heterotic model, this
is readily achieved by an antipodal Z2 projection as shown in [60]. Other instances of
perturbatively stable vacua have been found in [63,64]. On the other hand, the orientifold
models are subtler and no explicit projection has been found. However, since the dan-
gerous mass values lie in an interval [60], any replacement of the sphere with a scalar
Laplacian gap sufficient to skip the interval would remove perturbative instabilities. At
any rate, the considerations in this paper are general and apply to any such AdS brane
construction. In the latter case, the non-perturbative instability cannot be avoided, and flux
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tunneling occurs with a probability Γ per unit volume per unit time which is schematically
of order [45,65,66]:

log Γ N�1∼ −N
(p+1)γ+1
(q−1)γ−1 (3)

for AdSp+2 ×Mq in the semiclassical limit N � 1. After nucleation branes expand,
one can determine what forces they exert on each other, computing static interaction
potentials between parallel stacks [37,45]. One finds that branes with the same charges
repel, consistently with the weak gravity [67] and repulsive force [68] conjectures. The
net repulsion is mediated by the supersymmetry-breaking dynamical tadpole, which
renormalizes the effective charge-to-tension ratio by the O(1) factor(

µp

Tp

)
eff

=

√
16γ

(p + 1)((q− 1)γ− 1)

(
µp

Tp

)
bare

, (4)

as shown in Figure 2.

Figure 2. The interaction between branes in the presence of string-scale supersymmetry breaking
is mediated by the gravitational tadpole. As as a result, the effective charge-to-tension ratio is
renormalized by a O(1) factor, and like-charge branes exert mutually repulsive forces [37,45].

3. Bubble Nucleation and Holography

According to our preceding discussion, the AdS vacua at stake undergo flux tunneling,
nucleating charged branes. Although the corresponding decay rates are parametrically
exponentially suppressed6, eventually this non-perturbative instability drives the vacua
to progressively lower values of N, at least until the low-energy EFT ceases to be reliable.
This process points to a dynamically generated trajectory in the (discrete) landscape of flux
vacua. One is thus naturally led to investigate whether the endpoints of this trajectory,
located at N → ∞ and N = 1, lie at an infinite distance in some sense, and whether towers
of light states emerge.

The former large N limit, already considered in [36], is considerably simpler, since
it lies fully within the low-energy description, where the masses of KK states can be
reliably computed. Dimensionally reducing the ten-dimensional gravitational EFT yields
an effective action for the dilaton φ and the (canonically normalized) radion ρ [30,36]. The
kinetic metric is canonical, and the masses of KK excitations around the AdSp+2 ×Mq flux
compactifications scale according to

m2
KK ∝ M2

p+2 e
4√
pq ρ (5)

in units of the dimensionally reduced Planck mass [36,45]. The vacuum values of the dilaton
and radion pertaining to a given flux number N are given by [36,45,57]
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φ
N�1∼ − 2

(q− 1)γ− 1
log N ,

ρ
N�1∼ −

√
q
p

4γ

(q− 1)γ− 1
log N

(6)

for large fluxes, so that the masses scale as the inverse radius of the internal spaceMq mea-
sured in the (p + 2)-dimensional Einstein frame [45]. In particular, the squared KK masses
scale as N−3 and N−2 for the orientifold models and the heterotic models, respectively.

Clearly, the KK tower becomes massless as N → ∞. However, our main aim is to
understand whether this limit lies at an infinite distance, and whether the decay of KK
masses is precisely exponential in the distance. Although the landscape of (metastable)
vacua at stake is discrete, the flux tunneling process is realized by solitonic bubble profiles
φ(r) , ρ(r) that continuously interpolate between the vacua. One could thus define a
discrete-landscape distance via the metric in the scalar field space defined by the effective
action along such profiles.

This procedure would a priori raise the issues of finding the relevant instanton solutions
and minimizing the total distance along the many possible interpolations between two
flux numbers N1 , N2. Actually, one can circumvent these obstacles bounding the distance
from above and from below as follows, in such a way that the result is independent on the
particular solitonic profile. From (6), along any interpolating profile, one can bound the
metric via the inequalities

|∂φ| , |∂ρ| ≤
√
(∂φ)2 + (∂ρ)2 ≤ |∂φ|+ |∂ρ| , (7)

which imply that the distance between N1 and N2 is bounded by

a log
∣∣∣∣N1

N2

∣∣∣∣ ≤ ∫ √(∂φ)2 + (∂ρ)2 dr ≤ b log
∣∣∣∣N1

N2

∣∣∣∣ , (8)

where a , b are the O(1) constants that arise from (6). Therefore, the distance scales log-
arithmically, and accordingly, the tower of KK masses decays exponentially fast in the
distance, with a rate bounded by (8) combined with (5). Let us emphasize that this result
holds independently of the specific field profile induced by the bubble. In the following, we
will argue that this is dual to an RG flow along the lines of [71]. In addition to supporting
the distance conjecture in the absence of supersymmetry, as we have discussed, this result
resonates with the absence of scale separation in AdS vacua [12,72–75]. Furthermore, since
the KK masses are proportional to a positive power of the AdS cosmological constant, the
AdS version of the distance conjecture [12] holds as well.

Let us now focus on the opposite limit where N = O(1) is small. The EFT description
is not trustworthy in this regime, since the string coupling and the curvatures are not
negligible. In order to obtain an alternative description, we appeal to holography, and in
particular to the proposal of [71]: the cascade of tunneling processes would be dual to a
RG flow in the dual field theory, as depicted in Figure 3. Importantly, the flows can only
approach a fixed point for a large N, since the AdS vacua become more stable in this limit.
As we shall find, the flow eventually reaches an endpoint for N = 1, where for the BSB
Sugimoto model, supersymmetry is actually recovered. The existence of fixed points for
the intermediate values of N can be argued for from the exponentially fast vanishing of
the bulk decay rate; the dual RG flow is (parametrically) slow, suggesting an approach to a
fixed point which becomes closer and closer as depicted in Figure 3. Since a fixed point
also exists for N = 1, as we shall discuss in detail, and the standard proposal for the dual
field theory involves open-string dynamics on D-branes, we expected these fixed points
to exist at least for N large or close to one, if not for all N. From these considerations, any
potential window of non-conformality would involve intermediate values of N where the
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theory is strongly coupled. In any case, we only need the two extrema of the flow to derive
the results of this paper on infinite-distance limits.

Figure 3. The proposed holographic dual of the cascade of flux tunneling processes in the gravitational
EFT is an RG flow in the boundary field theory [71]. Depending on the size, location and number of
nucleation events, the trajectory can vary, approaching different fixed points. As N � 1 increases,
the flows ought to approach the fixed points more closely, since the dual AdS vacua are closer to
stability [45].

In the string models that we consider, the dual conformal field theory (CFT) for each
N ought to arise from the infrared (IR) regime of the worldvolume gauge theory that lives
on a stack of N parallel branes, following the original construction of [76], and suitable
deformations encoding flux tunneling. In particular, in the remainder of this paper, we shall
focus on D1-branes in the orientifold models, since heterotic NS5-branes are considerably
more difficult to deal with in this respect. Moreover, since the resulting field theories are
two-dimensional, it is conceivable that progress can be achieved despite the absence of
supersymmetry. As a minor technicality, we shall consider D1-branes in the parametrically
controlled and flat region of the Dudas–Mourad background [30,37], since there is no
ten-dimensional Minkowski background. This holographic setup is shown in Figure 4,
where now each CFT arises from a worldvolume gauge theory in the IR, and the repulsion
between branes triggers an RG flow. The corresponding operators arise by integrating
out the brane separation modes, analogously to the more familiar case of supersymmetric
D3-branes, where Higgsing generates Born–Infeld operators [77–83].

The massless field content of the worldvolume gauge theory of N D1-branes in the
Sugimoto model comprises [28,35] a USp(2N) gauge field A, scalars Xi in the vector repre-
sentation 8v of the transverse isometry group SO(8) and the antisymmetric representation
of the gauge group and Majorana–Weyl fermions ψ+ , ψ− in the spinor representations
8s, 8c of so(8) belonging to the symmetric (ψ+) and antisymmetric (ψ−) representations
of the gauge group. Finally, bi-fundamental USp(32)×USp(2N) fermions λ− arise from
the D1−D9 open-string sector. On the other hand, in the type 0′B model, a stack of N
D1-branes carries a U(N) gauge group, and the scalars Xi are in the adjoint, while the
Weyl fermion representations are unchanged [54]. One can verify that the worldvolume
gauge anomalies cancel, since for the characteristic classes pertaining to the (anti)symmetric
representations [54],

TrS , AF2 = (N ± 2)TrfundF2 + (TrfundF)2 , (9)

and thus, one obtains a net contribution of 8×4
2 − 16 = 0 from the chiral fermions. However,

the gravitational anomaly does not cancel on the worldvolume without an inflow mechanism,
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which suggests that the theories are, in general, gapless [84]. This is indeed what we find for
the theories at stake. Two-dimensional gauge theories are amenable to a variety of methods,
including light-cone techniques, such as those pioneered in the original ′t Hooft model [85]
and (chiral) bosonization [86–88]. The presence of scalars complicates matters to some
extent, but one can expect, due to the quartic potential, for the IR dynamics to be described
by a non-linear σ model (NLσM) [89]. We shall return to this point later. For the time being,
we shall focus on the last step of the cascade of decays, N = 2 → N = 1. Since we are
interested in the asymptotic behavior of the distance, this is the only relevant step of the
RG flow. We shall begin from the endpoint N = 1 itself, the CFT dual to the final state of
the tunneling process.

Figure 4. The fixed points approached by the holographic RG flow can arise from the IR dynamics
of the worldvolume gauge theory living on D1-brane stacks. The final state corresponds to the IR
dynamics of a single D1-brane, which features a free sector with conserved single-trace higher-spin
currents dual to massless single-particle higher-spin states. Furthermore, the Sugimoto model of [28]
features emergent supersymmetry on account of Spin(8) triality.

Emergent Supersymmetry and WZW Cosets

Among the various simplifications, crucially for N = 1, the scalars decouple, as we
shall now explain. This is expected, since they describe transverse fluctuations of a single
D1-brane in spacetime. As we shall see shortly, the remaining degrees of freedom in
the worldvolume theories ought to flow to WZW coset models [84,90], which can be
constructed by means of non-Abelian bosonization.

In detail, in the Sugimoto model, the scalars and the fermions in the antisymmetric
representation decouple because they belong to a singlet. Furthermore, the scalar potential
and the Yukawa term vanish identically. Therefore, a free sector comprised of eight pairs of
a real scalar and a chiral fermion appears. These fields rearrange into a N = (0, 1) Wess–
Zumino multiplet, displaying emergent supersymmetry at the endpoint of the tunneling
cascade. This resonates with the considerations of [46,71] and shows that the N = 1 config-
uration is the stable final state of this process, protected by the restored supersymmetry.
Let us observe that this remarkable phenomenon occurs due to Spin(8) triality, by virtue
of the isomorphism 8v ' 8s ' 8c. This remarkable occurrence in turn requires eight trans-
verse dimensions. In the present setting, this is only possible for (D-)strings, realizing the
proposal of [9–11] in a novel and peculiar fashion. Indeed, as we shall see, emergent strings
are also the only case in which the (generalized) distance to the N = 1 configuration is
infinite. On the other hand, the antisymmetric fermions in the type 0′B model disappear for
N = 1, and thus only a non-supersymmetric free-boson CFT decouples. This is compatible
with the non-supersymmetric origin of the theory. We now turn to the sectors that remain
coupled to the gauge field.
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For the Sugimoto model, the remaining degrees of freedom rearrange into the chiral
WZW coset:

SO(8× 3)1

SU(2)8×2
× SO(16× 2)1

SU(2)16×1
, (10)

whose central charges read,(
cIR

L , cIR
R

)
=
(

cUV
L , cUV

R

)
−
(

8
3

,
8
3

)
=

(
12− 8

3
, 16− 8

3

)
,

(11)

is compatible with the same gravitational anomaly cR − cL = 4. Interestingly, the total
central charges of this model, including the free N = (0, 1) SCFT sector, can be recast in
the form

(12 , 24) +
(

16
3

,
4
3

)
, (12)

which is tempting to identify with the central charges of (the transverse degrees of freedom
of) a dual ten-dimensional heterotic string, plus a “correction” due to supersymmetry
breaking. While this is at best an amusing hint, the prospect of a strong-weak duality in
the absence of supersymmetry remains tantalizing [91–94], and we shall elaborate on this
point shortly. Furthermore, the correction to the left-moving supersymmetric sector is
compatible with a Gepner model built by two copies of the k = 16, N = 2 minimal models.
The deviation

(8 , 12) +
(

28
3

,
40
3

)
(13)

from the free N = (0, 1) SCFT is also compatible with Gepner models of this type. The
relation between this WZW coset model and the N = 2→ N = 1 transition is depicted in
Figure 5.

These considerations on the worldsheet theory of a D-string in the Sugimoto model,
which answer the question originally posed in [28], can be complemented by arguments
based on the low-energy effective action, in the spirit of the supersymmetric heterotic-type
I duality [47]. Performing a naïve S-duality transformation on the spacetime metric and
dilaton fields, the tadpole potential of (1) translates into the string-frame contribution
e−4φ = e−2φ × e−2φ. Intriguingly, this structure mirrors the presence of two decoupled
sectors of the worldsheet theory; quantizing it on disjoint unions of two Riemann surfaces,
with the free geometric sector on one connected component and the non-geometric WZW
coset on the other, would seem to reproduce this effect while being consistent with a single
heterotic-like string in physical spacetime. In particular, the leading contribution to the
string perturbation theory would stem from a surface with topology S2 t S2, and a scale
precisely as g−2

s × g−2
s . Notably, only one sector is geometric, preserving the standard

interpretation of a connected worldsheet in physical spacetime, while the other sector is
non-geometric. Let us emphasize that disconnected worldsheets have already appeared in
the literature, in the context of D-instantons and non-perturbative effects [95–97]. All in
all, the emergent superconformal free heterotic-like sector, together with a non-geometric
sector and the corresponding leading contribution to an S-dual EFT, seem to point to a
novel heterotic-orientifold duality, although the arguments that we have presented are but
compelling indications for the time being. As we shall discuss in the following section,
this configuration arises from an infinite-distance emergent-string limit, which is also a
smoking gun of dualities of this type [8]. It would be interesting to attempt to construct a
Polyakov quantization of such a heterotic string.

For the type 0′B model, the N = 1 worldvolume gauge theory is Abelian, and bosoniza-
tion simplifies accordingly [87,98] in a slight generalization of the (chiral) Schwinger
model [99]. The upshot is that a single linear combination of the bosonized chiral scalars
becomes gapped in the IR, resulting in one less massless fermion for both chiralities [98].
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Since the photon acquires a dynamical mass, the resulting CFT is free. It would be in-
teresting to assess whether emergent supersymmetry can arise in this model in terms of
two-dimensional N = (0, 1) Fermi supermultiplets.

Figure 5. The IR dynamics of the worldvolume gauge theories living on N = 2 and N = 1 D1-branes
can be described via NLσM and WZW coset constructions. The RG flow connecting the corresponding
CFTs is triggered by the target-space metric, which is marginally irrelevant in the IR and yields an
infinite distance along the flow.

4. Infinite Distances and Emergent Strings

Having described the endpoint of the tunneling process holographically, we can now
turn to the RG flow. In both orientifold models, the CFT dual to the final state contains
a free sector, and thus single-trace higher-spin currents that are conserved. On general
grounds, one expects that the higher-spin symmetry be broken along the flow, and that the
anomalous dimensions vanish continuously at the endpoint. Similarly to our analysis of
KK masses, one is thus led to seek a suitable generalization of the Zamolodchikov metric,
since there is no exact conformal manifold. Such a notion was introduced by O’Connor
and Stephens on information-theoretic grounds [42], explored by Dolan [100,101] and
subsequently revisited in numerous settings, most recently by Stout in the context of the
distance conjecture [44].

Parametrizing the theory space by operatorsOa(x) with couplings λa, the metric reads

gab(λ) =
∫

ddx 〈Oa(x)Ob(0)〉λ (14)

up to a volume factor, in a special coordinate system in which the action is linear in the
couplings, so that g is also the negative Hessian of the vacuum energy density [42]. While
this metric was developed by applying the tools of quantum information theory to RG
flows, a similar metric was defined by Anselmi in the context of Lorentz-breaking field
theories [43]. This metric trades the integral over spacetime in (14) for an energy scale µ,
which appears in a timelike position argument xt ≡ µ−1(1, 0). The metric reads

gab(λ) = |xt|2d〈Oa(xt)Ob(0)〉λ , (15)

and in both metrics, the correlators are connected. In the following, we shall compute
distances along the RG flow using both metrics. While the results coincide up to a con-
stant in this case, the metrics differ in general. Before moving on to the computation, let
us comment on the connection with the bulk description. To begin with, as discussed
in [44], the field-space metric that we employed in the bulk computation is the quantum
information metric of the bulk EFT in the perturbative limit in which the field space is
weakly curved, and thus we are using the same underlying notion of the metric in different
guises. Furthermore, the following holographic computation is dual to the bulk (according
to the proposal of [71]) in a variation of the well-understood correspondence between
bulk domain walls and certain types of boundary RG flows. In the conformal limit, the
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field-space metric of the bulk EFT also matches the information metric of the holographic
dual, which reduces to the Zamolodchikov metric for marginal couplings.

As we have anticipated, it is natural to expect that the IR regime of the RG flow be
dominated by a NLσM deformation of the free (S)CFT, as shown in Figure 5. Indeed, in
two dimensions, these are the only (classically) marginal ones, since the IR fixed point is
Gaussian and classical power counting applies. On the one hand, from the point of view
of the renormalization group, these deformations are present during a generic flow. On
the other hand, as we shall discuss, they arise from the repulsion of branes in the specific
models that we consider. In fact, such deformations are marginally irrelevant, and the
distance along the flow can diverge only in this case. This stems from the exponential
decay ∼ e−∆ t of strictly irrelevant deformations as the RG time t→ +∞ in the IR, so that
the integral

∫ ∞ dt computing the total distance converges. Once again, this peculiar fact
dovetails nicely with the emergent string proposal of [9–11], namely the infinite distance
limit at stake only exists when the extended object that becomes tensionless is a (D-)string.
Indeed, in contrast, one can verify that, were an analogous Gaussian fixed point present
for NS5-branes, there would not be any marginally irrelevant deformations preserving the
symmetries, and hence, no corresponding infinite-distance limit.

Here, we shall focus on the bosonic sector, defined by the action

SCFT =
1

2πα

∫
d2z δij ∂Xi∂X j (16)

for a suitable constant α7, although by power counting, one does not expect that the
fermionic sector yield different results. The deformation of the NLσM effectively turns on
the tension of the D-string, and takes the general form

V =
1

2πα

∫
d2z : hij(X) ∂Xi∂X j :

≡ 1
2πα

∫
d2z V(z) ,

(17)

where we shall take

hij(X) =
∫ dDk

(2π)D fij(k) eik·X (18)

with D = 8 transverse target-space dimensions. In the string perturbation theory, (17)
would be (part of) a graviton vertex operator. While this terminology is useful, one ought to
keep in mind that in this holographic CFT, its meaning is different, and in particular, there
is no on-shell constraint. Although (17) is quite general, we shall derive a more concrete
expression for the string models that we consider.

The corresponding one-loop Ricci flow for transverse-traceless hij � 1 is

d
dt

hij = − α Rij ∼
α

2
�hij , (19)

so that the Fourier modes of ht run according to fij(k) e−
αk2

2 t. Thus, the perturbation of (17)
is indeed marginally irrelevant in the IR. In the ensuing discussions, we shall consider
modes of this type, in order to simplify the computations. However, the qualitative results
should be unaffected in the general case.

The “Stout-O’Connor-Stephens” (SOS) quantum information distance along the RG
flow in the deep IR is then asymptotically given by

d`2 IR∼ 1
(2πα)2

∫
d2z 〈∂tV(z)∂tV(0)〉0 dt2 , (20)
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where the subscript indicates free correlators, since the theory is free in the IR. In the
following, all asymptotic signs refer to the IR limit t → +∞. To compute the correlator
in (20), we shall employ the general Gaussian formula

〈∏
n

eipn ·X(zn ,zn)ei
∫

S·X〉0 = δ

(
∑
n

pn

)
∏

n<m
|zn − zm|α pn ·pm

× e
α
2
∫

S·G·S+α ∑n pn(
∫

G·S)(zn ,zn)

(21)

for free correlators, where normal ordering is understood and G(z, w) ≡ log |z− w|. Func-
tionally differentiating with respect to the auxiliary source S(z, z) and differentiating with
respect to the worldsheet position, one can obtain normal-ordered correlators subtract-
ing the contact terms and setting the insertion points equal at the end of the calculation.
Applying this technique to (20), taking into account the connected contributions and the
transverse-traceless “graviton”, one finds

〈∂tV(z)∂tV(0)〉0 ∼
α4

16

∫ dDk
(2π)D |z|

−αk2−4k4 ‖ ft(k)‖2 (22)

in the IR, where ‖ ft(k)‖2 ≡ fij(k) f
ij
(k) e−αk2t. Therefore, as t → +∞, the relevant contri-

butions arise from the k→ 0 region of integration. The integrated correlator thus has the
IR behavior ∫

d2z 〈∂tV(z)∂tV(0)〉0 ∼
πα4

48a2

∫ dDk
(2π)D k4 ‖ ft(k)‖2 , (23)

where we have evaluated the integral at k = 0 using a lattice regulator8, which here
amounts to the replacement 1

z →
z

|z|2+a2 . The resulting asymptotic SOS distance is

d`2 IR∼ α2

192πa2

∫ dDk
(2π)D k4 ‖ f (k)‖2 e−αk2t dt2 , (24)

where the dependence on the RG time t has been factored out for clarity. Taking into account
the volume factor in (14), this differs by a factor of a−2 from the “intensive” metric of [44],
which is thus finite. At this point, the k → 0 asymptotics of the Fourier modes of h are
needed in order to evaluate the IR distance. As we shall see, it seems reasonable to assume
that, schematically, f (k) ∼ |k|−m as k→ 0, for some, m > 0. Indeed, we shall shortly verify
this assumption in the string models that we consider. Then, up to an irrelevant constant,

d`2 ∼
∫ ∞

0
dk kD+3−2m e−αk2t dt2 ∼ dt2

t
D
2 +2−m

, (25)

so that the distance is infinite insofar as m ≥ D
2 = 4.

As one can see from (22), the metric of (15) actually coincides with the SOS metric up

to a constant, since multiplying by |z|4 leaves |zt|−αk2
= a−αk2

e−αk2t when evaluated at the
RG-scale insertion zt. This reconstructs the RG flow of the “graviton vertex” operator, as
expected from the Callan–Symanzik equation.

4.1. Graviton Vertex from Brane Separation

From the preceding discussion, one can expect that the IR regime of the N = 2
configuration be encoded, at least partly, in the NLσM described by the minima of the
scalar potential, i.e., mutually commuting matrices. In order to describe the geometry of
the resulting manifold, let us begin from the simpler case of the type 0′B model, where
the scalars belong to the adjoint representation of U(2). Mutually commuting Hermitian
matrices Xi can be parametrized in terms of their eigenvalues Λi = diag(xi

1 . . . xi
N) and of
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a unitary matrix U that simultaneously diagonalizes them according to Xi = U Λi U†. The
canonical kinetic-term metric Tr(dXidXi) is thus pulled back to

ds2
U(N) = ∑

k
dx2

k + 2 ∑
p<q

∥∥xp − xq
∥∥2 Tr θθ† , (26)

where xk = (xi
k) can be interpreted as the transverse position vector of the kth brane and

θ = U†dU is the Maurer–Cartan form. For N = 2, one can express (26) in terms of the
center-of-mass and relative positions xc =

x1+x2√
2

, r = x1−x2√
2

, which yields

ds2
U(2) = dx2

c + dr2 + 4 r2 Tr θθ† . (27)

Integrating out the center-of-mass position does not affect the relative dynamics, while
integrating out U, which encodes the interaction between the branes in this sector, generates
an effective action for r that describes fluctuations of the remaining brane. We are interested
in the target-space metric, encoded in the kinetic term, at the large brane separation ‖r‖,
which translates into the k→ 0 asymptotics of (25). Parametrizing U with local coordinates
ua and writing the kinetic term corresponding to the last term of (27) as

e2 log ‖r‖ Gab(u) ∂ua · ∂ub , (28)

up to a constant, one recognizes a NLσM coupled to a “dilaton” Φ = − log ‖r‖ in the sense
of [102]. Large separations intuitively correspond to the semiclassical limit, since the branes
interact weakly, and thus a one-loop analysis is expected to be reliable. In order to see this
more clearly, one can choose normal coordinates to perform a covariant background-field
expansion about a point,

Gab(u) = δab −
1
3

Racbd(0) uc ud + . . . (29)

which we take as the origin of the coordinates. One can then canonically redefine ua =
e− log ‖r‖ ũa to absorb the “dilaton” in the quadratic term in the fluctuations, while all the
other terms are suppressed in the large ‖r‖ limit. As a result, one can indeed perform a
one-loop computation along the lines of [102]. Integrating by parts, one can recast the
quadratic term as

ũa
(
−�− �Φ + (∂Φ)2

)
δab ũb , (30)

so that the heat-kernel expansion [102,103] yields a single local two-derivative term that
corrects the field-space metric. This term is proportional to the first heat-kernel coefficient
a2, and the corrected metric reads(

δij −
ri rj

π r4 log
L
a

)
dridrj (31)

with IR and UV cutoffs L , a.
For the Sugimoto model, the scalars belong to the antisymmetric representation of

USp(4) ' Spin(5), and mutually commuting matrices of this type can be parametrized by

a rotation R ∈ SO(4) and block-diagonal matrices built as linear combinations Λj = i xj
k

2 Ωk,
where k = 1 , 2 and

Ω1 =

(
1 0
0 0

)
⊗
(

0 1
−1 0

)
,

Ω2 =

(
0 0
0 1

)
⊗
(

0 1
−1 0

)
.

(32)
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Then, writing Xi = R Λi R−1, the canonical metric Tr(dXidXi) pulls back to

ds2
USp(4) = ∑

k
dx2

k −
1
4 ∑

p,q
xp · xq Tr[Ωp, θ][Ωq, θ] , (33)

and one can check that the dependence on the center-of-mass and relative coordinates
separate, with no mixed terms. The resulting expression for the trace in (33),

x2
0

(
(θ14 + θ23)

2 + (θ13 − θ24)
2
)

+ r2
(
(θ14 − θ23)

2 + (θ13 + θ24)
2
)

,
(34)

encodes two pull-backs on the hyperplanes

θ12 = θ34 = 0 , θ14 = ± θ23 , θ13 = ∓ θ24 (35)

in the space of the antisymmetric matrices, since these combinations do not appear in (35).
Hence, introducing local coordinates ua, one arrives at kinetic terms of the type(

x2
0 G(0)

ab (u) + r2 G(r)
ab (u)

)
∂ua · ∂ub . (36)

Once again, one can reabsorb the “dilaton” with a field redefinition ua = e− log ‖r‖ ũa,
and integrating out x0 yields terms that are subleading at a large ‖r‖. Repeating the above
argument for the type 0′B model yields a corrected metric of the form of (31), albeit with a
halved prefactor dim SO(4)−4

4π = 1
2π in front of the logarithm due to the constraints of (35).

The scaling r−2 of (31) can be compared with a bulk calculation. In Poincaré coordi-
nates, the near-horizon AdS throat warp factor for D1-branes scales as L2

z2 , and according
to our setup, one expects that the background metric be fixed by the D8-branes in the
controlled region. As a result, when all of the branes have repelled each other, one expects
the correction to the transverse-space metric of the remaining brane located at x to be
well-approximated by a linear superposition of the form

hij(r) ∼
∫

S7

dΩ7(n)

‖x− r n‖2 δij ∼
δij

r2 (37)

for large separation r, which reproduces the overall scaling r−2 of the correction in (31).
All in all, comparing with (25), one finds

m = D− 2 = 6 , (38)

from which the asymptotic distance is proportional to the RG time,

d`2 ∼ λ2 dt2

t
8
2+2−6

= λ2dt2 , (39)

where the (regularization-dependent, but calculable) proportionality constant λ has been
reinstated. As a result, exponential decay in t in the IR is tantamount to exponential decay
in the distance ` at large distances. This asymptotic scaling is crucial in order to establish
such a behavior of anomalous dimensions as the distance diverges. We would like to stress
that the result of (39) is not generic in the space of marginally irrelevant deformations;
rather, it appears to be specific to our settings arising from string theory.

4.2. Anomalous Dimensions of Scalar Operators

We are now ready to compute anomalous dimensions along the RG flow, using the
scheme in (23). One can then translate the dependence on the RG time t, which appears
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consistently with the Callan–Symanzik equation, into a dependence on the distance `. The
resulting behavior turns out to be precisely consistent with the distance conjecture, as we
shall see below. Since our approach is holographic, we mostly refer to the CFT counterpart
of the distance conjecture [14,15], according to which, in two dimensions, the quantity of
interest is the gap in the spectrum of scalar primaries Op ≡ 2

α : eip·X :. In order to find
a non-trivial scalar gap, one can compactify the target space in a D-torus with quantized
“momenta” p , q. Then, we shall turn to single-trace higher-spin currents, which ought to
describe higher-spin single-particle states in the bulk.

For scalar operators, the first-order conformal perturbation theory suffices to obtain
the leading-order asymptotics. The first-order contribution to the correlator of the scalar
primaries is

〈Op(z)Oq(0)〉1 =
∫ d2x pi pj f ij(p + q) |z|αp·q+2

|z− x|α(p2+p·q)+2|x|α(q2+p·q)+2
, (40)

and extracting the divergent part, which is logarithmic for the small p , q, which have
the least decreasing anomalous dimensions, entails separating the contributions of the
integration regions x → 0 and x → z, according to

〈Op(z)Oq(0)〉div
1 =

∫
z

d2x pi pj f ij(p + q) |z|−αq2

|z− x|α(p2+p·q)+2

+
∫

0

d2x pi pj f ij(p + q) |z|−αp2

|x|α(q2+p·q)+2
.

(41)

Evaluating the integrals with a lattice regulator, for the small p, q, one finds the
logarithmic divergence

|z|−α(p+q)2

((
|z|
a

)α(p2+p·q)
+

(
|z|
a

)α(q2+p·q)
)

∼ 2 |z|−α(p+q)2
(

1 +
α(p + q)2

2
log
|z|
a

)
∼ |z|−α

(p+q)2
2

(42)

up to a scheme-dependent positive multiplicative constant and a factor of pi pj f ij(p +

q)|z|αp·q. The prefactor reflects the tree-level correlator

〈Op(z)Oq(0)〉0 =
4
α2 δ(p + q) |z|αp·q , (43)

while the exponent in (42) reconstructs the one-loop Ricci flow evaluated at the RG time
t = log |z|a , as expected from the Callan–Symanzik equation

〈Op(sz)Oq(0)〉h = Z−1
pp′ Z−1

qq′ sαp′ ·q′ 〈Op′(z)Oq′(0)〉h(s) . (44)

Therefore the (“matrix” of) anomalous dimensions γpq, obtained by differentiating the
anomalous contribution with respect to −t, scales according to

γpq ∼ α
(p + q)2

2
pi pj f ij(p + q) e−α

(p+q)2
2 t

∼ pi pj Rij(p + q) e−α
(p+q)2

2 λ`

(45)

up to a (scheme-dependent) constant, where Rij(k) ∼ k2

2 fij(k) denotes the Fourier modes
of the (linearized) Ricci tensor. This expression shows that “graviton” zero-modes do not
result in anomalous dimensions, which is indeed the case since they are exactly marginal
deformations leaving the theory free.
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All in all, (45) highlights an exponential decay of the scalar gap with the distance, on
account of (39). As anticipated, this result supports the distance conjecture, and its various
refinements, in the absence of (linear) supersymmetry. In particular, the emergent string
scenario is realized in a novel fashion, since the N = 1 configuration lies at an infinite
distance only in two dimensions.

4.3. Anomalous Dimensions of Higher-Spin Currents

The free-boson CFT defined by the action of (16) also possesses single-trace
(anti-)holomorphic higher-spin currents of the form [104,105]

Jij
s =

s−1

∑
n=1

(−1)n As
n : ∂nXi∂s−nX j : (46)

with suitable coefficients As
k, such that they generate a W∞ algebra. We shall focus on the

O(D) singlets Js ≡ δij Jij
s for simplicity, which only exist for even s [105], retracing the com-

putation for scalar operators. The leading-order correction to the correlator 〈Js(z)Js′(w)〉
now arises at second order in h. Taking into account normal ordering, for transverse-
traceless h, one finds

〈Js(z)Js′(0)〉2 =
∫ dDk d2x d2y

|x− y|4+αk2 ‖R(k)‖
2 Is(z)Is′(0) (47)

at second order in h, where we have defined

Is(z) ≡
α3√

32(2π)D

s−1

∑
n=1

(−1)n (s− n− 1)!(n− 1)! As
n

×
(

1
(z− x)s−n −

1
(z− y)s−n

)(
1

(z− x)n −
1

(z− y)n

)
.

(48)

Once agai,n a lattice regulator is understood, and in order to extract the anomalous
dimensions, one ought to extract the (quasi-)logarithmic divergences at the small k. In

order to do so, one can rescale x = z u, y = z v, so that the overall dependence is |z|
−αk2

zs+s′ .
The holomorphic denominator reflects the tree-level result

〈Js(z)Js′(0)〉0 =
δss′

zs+s′ , (49)

while the numerator carries the leading quasi-logarithmic divergence9 and, indeed, recon-
structs the one-loop Ricci flow evaluated at the RG time t = log |z|a as in the preceding case.
The remainder of (47) contains, in general, at most, power-like divergences. When the dust
settles, the (matrix of) anomalous dimensions γss′ scales, in the IR, according to

γss′ ∼ Γss′

∫ dDk
(2π)D k2 ‖R(k)‖2 e−αk2t

∼ Γss′

∫ dDk
(2π)D k2 ‖R(k)‖2 e−αk2λ`

(50)

up to a (scheme-dependent) constant Γss′ , where once again, we have factored out the
dependence on the RG time for clarity.

As for (45), the result in (50) highlights a decay of the anomalous dimensions, and
thus of the masses of higher-spin particles, which is precisely exponential in the distance
`, rather than power-like or exponential in a power of `. Strictly speaking, this is the case
for quantized “momenta” k, as for the case of scalar operators. However, even without
compactifying each Fourier mode of the “graviton vertex”, deformation contributes an
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exponential decay, albeit the full integral in (50) will, in general, scale as a negative power
of ` in this case. This result lends further support to the various incarnations of the distance
conjecture and to the (S-)duality arguments that we have presented in Section 3, remarkably
with broken supersymmetry.

5. Conclusions

The results that we have discussed point to an intriguing mechanism for the consis-
tency of string-scale supersymmetry breaking, as well as a novel realization of a number of
swampland proposals. The tunneling cascade that we have discussed in Section 2 is closely
connected to the weak gravity conjecture [37,45], and leads to two infinite-distance limits
controlled by the flux number N. As we have discussed in Section 3, in the regime where
ten-dimensional EFT is expected to be reliable N � 1, the absence of scale separation is
reflected by the emergence of a KK tower whose mass scale is exponentially suppressed
in the “discrete-landscape” distance defined by bubble profiles. The opposite regime,
where N & 1, appears strongly coupled within the EFT description, while the holographic
description that we have developed features a decoupled free sector at an infinite distance
along the dual RG flow.

The free sector restores (super)conformal symmetry, thereby granting stability for the
Sugimoto model, and describes a tensionless D-string via conserved single-trace higher-
spin currents, whose anomalous dimensions decay in the IR with individual contributions
that are exponentially suppressed in the generalized distance, which we have introduced
in Section 4. Tantalizingly, emergent supersymmetry appears deeply tied to the proposal
of [9–11] via Spin(8) triality, and points to a peculiar instance of S-duality. As a result, we
are led to speculate that string theory with broken supersymmetry contains the ingredients
to remain in the landscape, despite numerous instabilities plaguing its EFT counterpart.
Although the present work constitutes but a first step in this direction, and more potential
obstacles lurk around the corner, we find the results that we have presented encouraging
in this respect. The approach that we have undertaken can, in principle, be applied to
milder supersymmetric settings, in order to provide further evidence in a controlled setup.
The simplest example that comes to mind involves computing distances between type IIB
AdS5 × S5 vacua for different values of N, using the known backreacted geometry sourced
by separated D3-branes. This should match the quantum information distance along the
dual RG flow driven by the brane separation mode. This computation is underway, but
it would also be interesting to further ground the framework that we have proposed in
this paper in the absence of supersymmetry, in order to sharpen the quantitative grasp
of the pressing issues that we have discussed. Ultimately, the endgoal of this endeavor
is to understand whether string theory can be consistent in the absence of (spacetime)
supersymmetry. If the elusive S-duality hinted at in this paper does emerge for the Sugimoto
model but not for the 0’B model, and if the latter turned out to have some inconsistency at
the non-perturbative level, it would mean that perhaps supersymmetry, even if nonlinearly
realized, is needed to some extent. However, no evidence to this effect besides the line of
reasoning that we have presented in this paper is available at present. Another promising
avenue to explore the consistency of non-supersymmetric string theory is the study of
anomalies, of which many new aspects have come to light in the recent years.
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Notes
1 See [2–4] for reviews.
2 See also [29–31] for reviews.
3 See also [48] for a T-dual version of this construction.
4 The role of fermions in geometries of this type has been studied in [49].
5 Non-supersymmetric AdS compactifications can also be found in supersymmetric models [58,59].
6 In order to conclude that the vacua are parametrically long-lived, one would need to exclude charged bubbles of nothing along

the lines of [69,70].
7 Normally, α has dimensions of squared length. In order to keep (21) free of unnecessary clutter, we work in string units for the Xi,

so that α is dimensionless.
8 The same results can be obtained with other regularizations.
9 Let us remark that the UV “lattice” cutoff a is always implied in these expressions, since the base of general exponentials is to be

dimensionless.
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