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Abstract: Order distribution and routing optimization of takeout delivery is a challenging research
topic in the field of e-commerce. In this paper, we propose a drone–rider joint delivery mode
with multi-distribution center collaboration for the problems of limited-service range, unreasonable
distribution, high delivery cost, and tight time windows in the takeout delivery process. The model
is constructed with the minimum delivery cost and the overall maximum customer satisfaction as
the objective function, and a two-stage heuristic algorithm is designed to solve the model. In the
first stage, Euclidean distance is used to classify customers into the regions belonging to different
distribution centers, and the affinity propagation (AP) clustering algorithm is applied to allocate
orders from different distribution centers. The second stage uses an improved tabu search algorithm
for route optimization based on specifying the number of rider and drone calls. This paper takes
China’s Ele.me and Meituan takeout as the reference object and uses the Solomon data set for research.
The experimental results show that compared with the traditional rider delivery mode, the drone–
rider joint delivery mode with multiple distribution center collaboration can effectively reduce the
number of riders used, lower the delivery cost, and improve the overall customer satisfaction.

Keywords: routing optimization; takeout delivery; e-commerce; joint delivery; order distribution

1. Introduction

Takeout delivery consists of the basic functions of traditional e-commerce and the
value-added functions of delivery services, corresponding to online contracting and offline
fulfillment, respectively. As a third-party platform between catering sellers and consumers,
takeout delivery platforms provide both parties with network business premises, transac-
tion aggregation, and information dissemination services through the Internet and other
information networks. The platform brings together various types of restaurants, fresh food
supermarkets, and drug stores so that customers can place orders at any time, providing a
convenient shopping channel. In recent years, with the development of Internet technology
and the accelerated pace of urban life, more and more people tend to consume online,
making the takeout industry develop rapidly. However, the expansion of user scale does
not necessarily mean high profits. Firstly, the location of merchants and delivery cost
constraints limit the range that delivery services can cover. Secondly, the delivery process
has problems [1] such as a high number of riders and low per capita delivery volume,
which leads to low delivery efficiency, low customer satisfaction, high cost, and the inability
to significantly improve profits. To overcome the above problems and meet customers’
expectations for rapid order arrival, platforms are continuously improving their delivery
technologies and exploring drone delivery scenarios. For example, Meituan drone delivery
is exploring the construction of an urban low altitude delivery network. By the end of
August 2023, Meituan drones had planned 17 drone routes in Shenzhen and Shanghai
in China, with a total of more than 184,000 orders. Many large online retailers, such as
Amazon and Alibaba [2],are researching how to use drones for parcel delivery. Compared
with rider delivery, the drone delivery speed is faster, and the transportation cost is lower.
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It can easily avoid the traditional roads, effectively meeting the customer’s demand for
faster and more convenient food delivery service. Therefore, the use of drones and riders
for the joint delivery of takeout has become a highly promising solution.

According to research, the shorter the average daily delivery distance of riders, the
higher the delivery efficiency [3,4]. Considering the problems of tight customer time win-
dows and large numbers of orders during peak hours, it is a considerable challenge to
realize the collaboration between different distribution centers and seek an order distribu-
tion and route optimization scheme with low delivery cost and high customer satisfaction.
This paper proposes a drone–rider joint takeout delivery mode in multiple distribution
centers, which aims to reduce the number of riders, lower the delivery cost, and improve
customer satisfaction. A two-stage heuristic algorithm is designed to achieve order al-
location and routing optimization. The Solomon dataset is processed using Ele.me and
Meituan Takeout in China as reference objects. The effectiveness of the model is verified by
comparing it against the traditional rider delivery model.

Section 2 presents the related literature. Section 3 deals with the model construction.
Section 4 deals with the algorithm design. Section 5 deals with the simulation experiments,
including the comparison of the experimental results and the comparative analysis of
the algorithms. Finally, in Section 6, the paper is concluded and possible extensions
are discussed.

2. Literature Review
2.1. Order Distribution Intended Freight Distribution in an Urban Area

Order distribution is an important part of business operations that directly affects
efficiency, customer satisfaction, and profits. Firdausiyah et al. [5] research modelled
the behavior of freight carriers and an urban consolidation center (UCC) operator using
multi-agent simulation-adaptive dynamic programming based reinforcement learning
(MAS-ADP based RL) to evaluate a joint delivery system in an uncertain environment.
Ortiz-Astorquiza et al. [6] present a modeling framework with two integer linear program-
ming formulations. Jiang et al. [7] to solve the problems of improper order allocation
and the lack of a carbon emission constraint system in the road freight transportation
industry, established an order allocation optimization model with carbon tax constraints.
Azad et al. [8] developed a mixed-integer nonlinear programming model and solved it
using a suggested genetic algorithm (GA). Taillard [9] proposed a linearithmic (n log n)
randomized method based on a partial optimization metaheuristic under special intensifica-
tion conditions. B. Yu et al. [10] proposed a novel mathematical formulation for combined
order selection and a periodic vehicle routing problem with time windows for perish-
able products, and they designed a branch-and-price algorithm base on a set-partitioning
model to solve this problem. Battaglia et al. [11] presents a descriptive model that has
been specified, calibrated, and validated. Abdollahi et al. [12] proposed a partially time-
windowed dynamic routing approach. Zhen et al. [13] studied a heterogeneous delivery
order scheduling problem and developed a column generation model and heuristic solution
procedure to solve the problem. Diabat et al. [14] studied the zero-inventory-ordering (ZIO)
replenishment strategy for the IRP and developed branch-and-cut algorithms to solve it.

2.2. Takeout Delivery

The takeout delivery problem is essentially a pick-up and delivery vehicle routing
problem with a time window (PDVRPTW) [15]. The issue of pickup and delivery was first
raised by Psarafis [16] in 1980, and Dumas [17] added the concept of time windows. At
present, there are many studies [18] in the existing literature on the problem of pick-up and
delivery vehicle routing with time windows. Some authors have proposed accurate solution
methods for PDVRPTW, and common solution methods include tabu search [19,20], genetic
algorithm [21,22], simulated annealing [23,24], ant colony algorithm [25–27], and other
intelligent algorithms. In addition, some new algorithms have been used to solve this prob-
lem. Wen et al. [28] proposing a novel meta-heuristic optimization algorithm called colony
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search optimization algorithm (CSOA). Yan et al. [29] designed a hybrid metaheuristic
algorithm of discrete particle swarm optimization (DPSO) and Harris hawks optimiza-
tion (HHO). Lu et al. [30] studied a hybrid beetle swarm optimization algorithm (HBSO).
Different scholars have studied the original problem from different angles. Lu et al. [31]
designed an ant colony system–improved grey wolf optimization (ACS–IGWO) to solve it.
Zhou et al. [32] studied a two-level vehicle distribution mode based on a time window and
simultaneous pick-up, and they designed a variable neighborhood tabu search algorithm
to solve it. Song W et al. [33] established a vehicle delivery problem model considering the
delivery time window and variable service time for the delivery problem in community
group buying. Wu et al. [27] proposed an ant colony optimization algorithm with a destroy
and restoration strategy to solve the problem.

With the development of the takeout delivery industry, the takeout delivery route
problem has the characteristics of pick-up and delivery, strong dynamics, and a large scale
compared with PDVRPTW. Some researchers have paid more attention to the constraints of
time windows; for instance, Schyns, M [34] considered the importance of responsiveness—
that is completing delivery as quickly as possible within the customer time window—based
on ant colony algorithms and added strategies to adapt to the responsiveness framework
to solve the problem. Sun et al. [35] re-established a dynamic vehicle route planning model
for pick-up and delivery according to the impact of four dynamic events on vehicle route
planning and distribution services, and they designed a dynamic algorithm framework to
solve it. Cui et al. [36] proposed a vehicle routing problem model considering two types
of customer time windows under time-dependent road networks, and they designed a
memetic algorithm combined with genetic algorithm and variable neighborhood search to
solve the problem. Bi et al. [37] proposed an improved ant lion optimizer (IALO) to solve
the problem. Tang et al. [38] proposed the one-to-many distribution mode and realized the
new distribution mode through a two-stage multi- objective optimization algorithm.

In order to bring the research closer to reality, many scholars have studied the dy-
namics of takeout orders: Kuo et al. [39] studied the route problem under dynamic orders
to maximize the amount of customer service and minimize the average customer wait-
ing time to establish a model. Liu et al. [40] studied the real-time routes of drone meal
pickup and delivery in the dynamic environment of random orders, and they proposed
a MIP-based heuristic algorithm to solve it. Ulmer et al. [41] proposed an anticipatory
customer allocation strategy for dynamic orders, which made order allocation more flexible.
Gmira. M et al. [20] considered the problem of adjusting in real-time a time-dependent
delivery plan to respond to dynamic changes in travel times. Fan et al. [42] comprehen-
sively considered the constraints of customer order time, merchant meal preparation time,
rider waiting time, and customer service time to establish an optimization model, and
they adopted the method of periodic optimization to dynamically adjust the delivery route
according to the rider and order status changes in different stages.

There are also scholars who have studied the problem from other angles; for instance,
Zhao et al. [43] proposed the drone–rider joint takeout delivery model. The spatiotemporal
distance measurement method was introduced, the routing optimization model was es-
tablished with the goal of minimizing the cost of meal delivery, and a two-stage heuristic
algorithm was designed to solve it. Li et al. [44] studied a remote takeout order splitting
strategy based on transit stations, established a mixed integer programming model for
the takeout delivery route problem, and solved it using an adaptive large neighborhood
search algorithm.

2.3. Drone Delivery

Compared to vehicle delivery, delivery by drone can be faster, offers lower trans-
portation costs, and can easily avoid traditional roads; however, they are limited by their
battery life [45,46], distance, and parcel size [47]. Therefore, most of the studies use a
model combining trucks and drone delivery to overcome the weaknesses of vehicles and
drones. Wang et al. [48] studied the use of trucks, truck–drone combined transportation,
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and drone systems to build a more effective truck–drone logistics and delivery system.
Felix et al. [49] considered the use of truck and drone joint delivery to complete the lo-
gistics of last-mile delivery, and they proposed a new mixed integer linear programming
model. Kuo et al. [50] constructed a mixed integer programming model considering the
customer time window for the optimization of truck and drone joint delivery routes, and
they proposed a simple and effective variable neighborhood search algorithm as a solver.
Salama et al. [51] studied the problem of coordinating one truck and multiple heteroge-
neous drones for last-mile parcel delivery. A hybrid integer linear programming model was
established to minimize the delivery completion time, and a two-stage search algorithm
with enhanced optimization of hybrid simulated annealing and variable neighborhood
search was designed. Mulumba and Diabat [52] studied a last-mile pickup and delivery
problem with truck—drone synchronization, and they proposed a novel heuristic solution
approach based on the classic Clarke–Wright savings heuristic. The articles are summarized
in Table 1.

Table 1. Summary of literature.

Author Topic Algorithm Nature of the Study Results

[5] order distribution MAS-ADP based RL simulation reducing environmental
emissions

[7] order distribution 0-1 integer programming
algorithm case study reduce carbon emissions

[10] order distribution branch-and-price algorithm real data reduce product losses revenue
increased

[8] order distribution genetic algorithm benchmark
reduce the overall cost of

tardiness and batch
distribution

[12] order distribution dynamic pricing fixed routing
forecast approach case study reduce delivery cost

[14] order distribution branch-and-cut algorithms benchmark IRP instances reduce the total cost of the
distribution plan

[19,20,32] PDVRPTW tabu search case study benchmark reduce travel time
[21,22] PDVRPTW

takeout delivery genetic algorithm case study reduce total operational cost
[23,24] PDVRPTW simulated annealing benchmark case reduce total delivery cost

[25–27,33,34] PDVRPTW
takeout delivery ant colony algorithm VRP benchmark case reduce total distance

improve responsiveness
[35] dynamics takeout delivery TS, ALNS

dynamic insertion method real data reduce delivery cost

[35,38,43,44] takeout delivery
large-scale neighborhood

search algorithm
and genetic algorithm

case study
reduce delivery cost

reduce working hours and
delivery distance

[39] dynamics takeout delivery fuzzy ant colony
system benchmark case

increase number of customer
service and reduce average

customer waiting time

[41] dynamics takeout delivery anticipatory customer
assignment policy real data reduce delivery of tardiness

[42] dynamics takeout delivery variable neighborhood search
algorithm case study reduce delivery time and

average travel distance

[48] drone delivery hybrid truck–drone delivery
algorithm case study reduce delivery cost

[49] drone delivery branch cutting algorithm case study reduce delivery cost and
timeout penalty

[50,51] drone delivery hybrid simulated annealing,
variable neighborhood search case study reduce delivery completion

time

[52] drone delivery Clarke–Wright savings
heuristic case study reduce operational costs

This paper
order distribution takeout

delivery
drone delivery

two-stage heuristic algorithm benchmark case reduce delivery cost and
improve customer satisfaction

In summary, with the deepening of takeout delivery as well as drone research, drone–
rider joint delivery is beginning to be proposed, but there are fewer studies, so the routing
optimization study of drone–rider joint delivery is yet to be deepened. Considering the
impact of rider delivery distance on delivery efficiency, this paper proposes a drone–rider
joint delivery mode with collaboration between multiple distribution centers. The routing
optimization model is constructed with minimum delivery cost and maximum customer
satisfaction as the objective function, and a two-stage heuristic algorithm is designed to solve
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the problem. In the first stage, Euclidean distance is used to divide customers into the regions
belonging to different distribution centers, and AP clustering algorithm is used to allocate
orders in the regions of different distribution centers. In the second stage, the appropriate
numbers of riders and drones are called, and an improved tabu search algorithm is designed
for routing optimization. In numerical experiments and analyses, we take China’s Ele.me and
Meituan takeout as reference objects and process the Solomon dataset.

3. Problem Description and Model Establishment
3.1. Problem Description

We take China’s Ele.me and Meituan takeout as reference objects. There are multiple
merchant aggregation points in a city, and different merchants in a merchant aggregation
point can be approximated as distribution centers due to their close proximity to each other.
Considering that the delivery efficiency of the riders is affected by the average daily delivery
distance, the Euclidean distance is used to group the orders into the regions belonging to
different distribution centers, to shorten the delivery distance of the riders so that the riders
only turnover and deliver in the same region. For orders where the customer location of
the order exceeds the delivery range of the distribution center, the drones in the distribution
center are used to pick up the meal from the corresponding merchant of the order and deliver
it to the rider in the corresponding region; finally, the rider completes the process of delivering
the meal to the customer, as shown in Figure 1. The traditional rider delivery mode and the
drone–rider joint delivery mode studied in this paper can be visualized in Figure 2.
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3.2. Assumptions

(1) Rider delivery capacity is the same and there is no constraint on the maximum mileage
traveled, regardless of the electric vehicle’s range. There is a certain service time for
the rider to pick up and deliver the goods, and the time is set to a fixed value.

(2) A one-to-one correspondence is assumed between merchant points and customer points.
Multiple customers placing orders with the same merchant are set to multiple merchant
points with the same coordinates. If the same customer places orders with multiple
merchants, it will be set as multiple customer points with the same coordinates.

(3) Electric vehicles and drones travel at a constant speed.
(4) In the delivery process, the weather, accidents, and other circumstances are not

considered, and the delivery can be carried out normally.

3.3. Model Establishment
3.3.1. Model Notation Definition

The symbols used in the model are shown in Table 2.

Table 2. Model notation definition.

Notation Notation Definition Notation Notation Definition

I Set of customers I = {1, 2. . .n} vp Rider speed

J Set of merchants J = Jk + Ja = {n + 1, n + 2. . .
2n}, Jk rider is in charge, Ja drone is in charge

[ETi, LTi]
Customer i time window restrictions: ETi,
expected arrival time; LTi, latest acceptable
arrival time

O Set of drone take-off points O = {1,2. . .o} vu Drone speed
K Set of riders K = {1,2. . .k} cp1 Rider fixed costs
A Set of drones A = {1, 2. . .a} cu1 Drone fixed costs
V Set of rider service points V = I∪Jk cp2 Rider unit ride cost
G Set of drone stops G = {1, 2. . .g}, G⊂I cu2 Drone unit travel cost
dij The distance from node i to node j Wu

max Maximum cargo capacity of the drone
da

ij Distance from node i to node j for drone a Wk
max Maximum cargo capacity of electric vehicles

ti
k Time the rider arrives at node i ti

a Time taken by the drone to arrive at node i
qk

i Takeout weight for order i accepted by rider k qa
i Takeout weight for order i accepted by drone a

tf Merchant meal preparation time ts Customer service time

tik
m Rider K walks through m nodes to reach the

time of customer point i rij
If customer node i needs merchant node j’s
meal, rij = 1; otherwise, rij = 0

xk
ij

Decision variable: if rider k goes from node i
to node j, xk

ij = 1; otherwise, xk
ij = 0.

xa
ij

Decision variable: if the drone a goes from
node i to node j, xa

ij = 1; otherwise, xa
ij = 0.

3.3.2. Customer Satisfaction Function

Customer satisfaction mainly depends on the delivery time of takeout; riders need
to try to deliver takeouts to the corresponding customers within the specified time. If the
takeout delivery time exceeds the expected time, customer satisfaction will decline. There
are many functions for portraying satisfaction; this paper uses the cosine distribution time
satisfaction function to characterize customer satisfaction, as shown in Figure 3.
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Customer i satisfaction si calculation formula is as follows:

si =


1 i f tik

m < ETi
1
2 + 1

2 cos( π
LTi−ETi

(tik
m − LTi+ET

2 ) + π
2 ) i f ETi ≤ tik

m ≤ LTi

0 i f tik
m > LT

(1)

The time tik
m for rider K to reach node i can be expressed by the time taken for the

rider to reach the previous node plus the service time of the rider in the previous node and
the travel time from the previous node to the current node; the calculation formula of tik

m

is as follows:
dij =

∣∣xi − xj
∣∣+∣∣yi − yj

∣∣ (2)

tm
ik = tm−1

ik + dij/vp + ts (3)

3.3.3. Drone Energy Consumption

The symbols used in the model are shown in Table 3.

Table 3. Drone energy consumption model notation definition.

Parameter Parameter Description Parameter Parameter Description

Qa
max maximum power of drone mb drone battery weight

µ battery safety factor ϑv ratio of drone rise and drag
mt drone unladen weight η energy transfer efficiency
c electricity costs

When the drone returns to its take-off point after the meal delivery, it is in the no-load
state [53]. The energy consumption formula in the horizontal state of the drone at this
time is

f1 =
(mt + mb)gµ

3600ϑvη
da

ij, i ∈ G, j ∈ O (4)

The process of the drone picking up and delivering the meal to the drone stop is in the
state of load. The energy consumption formula in the horizontal state of the drone at this
time is

f2 =
(mt + mb + qa

m)gµ

3600ϑvη
da

ij, i ∈ O, j ∈ G, a ∈ A, m ∈ Ja (5)

Therefore, the total energy consumption of the drone is

f = ∑
i∈O

∑
j∈G

A

∑
a=1

∑
m∈Ja

( f1 + f2) (6)

3.3.4. Multi-Objective Optimization Model

Objective function:

minZ1 = ∑
i∈V

∑
j∈V

K

∑
k=1

cp2dijxk
ij + 2∑

i∈O
∑
j∈G

A

∑
a=1

cu2da
ijx

a
ij + kcp1 + acu1 + c f (7)

maxZ2 = ∑
i∈I

si (8)

The objective function (7) indicates that the minimum meal delivery cost is the sum
of the total travel cost of the rider and the drone, the fixed use cost of the rider and drone,
and the cost of replacing the battery each time the drone returns to the take-off point. The
objective function (8) indicates that the overall customer satisfaction is maximal.
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In order to better solve the problem, this paper converts multi-objective processing
into single-objective processing, and it uses the staged penalty function to convert customer
satisfaction into penalty cost, which is expressed as follows:

pi =


0 i f si = 1

ω1 ∗ (tik
m − ETi) i f 0 < si < 1

ω1 ∗ (LTi − ETi) + ω2 ∗ (tik
m − LTi) i f si = 0

(9)

When customer satisfaction si = 1, rider k arrives at customer i within customer i’s time
window; there is no penalty cost. Furthermore, 0 < si < 1 indicates that the rider exceeds
the expected delivery time ETi, but does not exceed customer i’s latest acceptable arrival
time LTi, and a penalty cost emerges; ω1 is the unit time penalty cost for this stage. si = 0
indicates that the arrival time exceeds the latest acceptable time LTi, and the penalty cost
increases sharply; ω2 is the unit time penalty cost for this stage, where ω2 > ω1 > 0.

Adding the penalty cost to the objective function (7) proceeds as follows:

minZ = ∑
i∈V

∑
j∈V

K

∑
k=1

cp2dijxk
ij + 2∑

i∈O
∑
j∈G

A

∑
a=1

cu2da
ijx

a
ij + kcp1 + acu1 + c f + ∑

i∈I
pi (10)

Constraints:
K

∑
k=1

∑
j∈V

xa
ij = 1, ∀i ∈ V (11)

K

∑
k=1

∑
i∈V

xk
ij = 1, ∀j ∈ V (12)

A

∑
a=1

∑
j∈Ja

xa
ij = 1, ∀i ∈ Ja (13)

A

∑
a=1

∑
i∈Ja

xa
ij = 1, ∀j ∈ Ja (14)

∑
i∈V

xk
iz − ∑

j∈V
xk

zj = 0, ∀z ∈ V, ∀k ∈ K (15)

∑
i∈V

∑
j∈V

qk
i xk

ij ≤ Wk
max, ∀k ∈ K (16)

∑
i∈Ja

∑
j∈Ja

qa
i xa

ij ≤ Wu
max, ∀a ∈ A (17)

∑
i∈S

∑
j∈S

xk
ij ≤ |S| − 1, ∀S ∈ V, ∀k ∈ K (18)

rijtk
i ≤ rijtk

j , ∀i ∈ Jk, ∀j ∈ I (19)

rijta
i ≤ rijta

m ≤ rijtk
j , ∀i ∈ Ja, ∀m ∈ G, ∀j ∈ I (20)

(mt + mb + qa
m)gµ

3600ϑvη
da

ij +
(mt + mb)gµ

3600ϑvη
da

ij ≤ Qa
max/µ, ∀i ∈ O, ∀j ∈ G (21)

Constraints (11) and (12) indicate that a customer point or merchant point is only
visited by one rider. Constraints (13) and (14) indicate that a merchant point is only
visited by one drone. Constraint (15) indicates that the rider’s route starts and ends
continuously. Constraint (16) indicates that the rider cannot deliver more meals than its
maximum capacity. Constraint (17) indicates that the drone’s meal delivery volume cannot
exceed its maximum capacity. Constraint (18) indicates the elimination of subcircuits in the
rider’s route. Constraint (19) indicates that the rider picks up the meal before delivering it.
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Constraint (20) indicates that the rider picks up the meal at the drone stop before continuing
the delivery. Constraint (21) indicates that the energy consumed by the drone to complete a
delivery should not exceed the maximum energy storage of its battery.

4. Two-Stage Heuristic Algorithm

A two-stage heuristic algorithm is designed to solve the routing optimization problem
of drone–rider joint delivery via collaboration between multiple distribution centers. In the
first stage, considering the impact of rider delivery distance on delivery efficiency, Euclidean
distance is used to classify customers into regions belonging to different distribution centers,
and an AP clustering algorithm is applied to allocate orders within different regions. In
the second stage, because the traditional tabu search algorithm is sensitive to the initial
value, the global development ability is weak and we can only search for the local optimal
solution. The initial routes of pickup and delivery for riders and drones are generated
by the sorting method, and several neighborhood operators are designed to optimize the
pickup and delivery routes of riders and drones by incorporating the idea of changing the
set of neighborhood structures in variable neighborhood search algorithms to expand the
search range and obtain the optimal solution.

4.1. In the First Stage: AP Clustering Algorithm

The AP (affinity propagation) clustering algorithm was proposed by [54] Frey and
Dueck in 2007. The basic idea is to view the data as nodes in a network and keep modifying
the number and position of clustering centers by passing messages between data points
until the similarity of the whole dataset is maximized. At the same time, high clustering
centers are generated and the remaining points are assigned to the corresponding clusters.
Since the algorithm does not need to formulate the number of final clustered clusters, mul-
tiple executions of the algorithm give exactly the same results, and there is no requirement
for symmetry of the initial similarity matrix data. The results are characterized by a small
squared error, robustness, and accuracy. Therefore, the AP clustering algorithm is used for
order allocation. The specific operation process is as follows:

Step 1: Enter the customer set and initialize the similarity matrix S (similarity), the
attraction matrix R (responsibility), and the attribution matrix A (availability).

Step 2: Calculate the R matrix. Here, a (i, k′) represents the attribution degree value of
other customer points to i customer points besides k customer points; s (i, k′) indicates the
attractiveness of other customer points (except k customer points) to i customer points; and
r (i, k) indicates the cumulative proof that customer point k becomes the clustering center of
customer point i. The expression is as follows:

rt+1(i, k) = s(i, k)− max
k′̸=k

{
at(i, k′) + s(i, k′)

}
(22)

Step 3: Calculate the A matrix. Here, r (i′, k) represents the similarity value of customer
point k as the clustering center of other customer points (except customer point i):

at+1(i, k) = min{0, rt(k, k) + ∑
i′/∈{i,k}

max
{

0, rt(i′, k)
}
}, i ̸= k (23)

at+1(k, k) = ∑
i′/∈{i,k}

max{0, rt(i′, k)}}, i = k (24)

Step 4: Update the R matrix and A matrix. To avoid oscillation, the AP algorithm
introduces the damping factor λ when updating the information. The damping factor λ is
a real number between 0 and 1. Thus,

rt+1(i, k) = (1 − λ) ∗ rt+1(i, k) + λ ∗ rt(i, k) (25)

at+1(i, k) = (1 − λ) ∗ at+1(i, k) + λ ∗ at(i, k) (26)
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Step 5: Calculate the value of E = R + A; if the maximum value of the i-th customer
row is located at the k-th customer point, it means that the clustering center of customer i is
at the sample k. If the value of E does not change for a long time, exit the loop; otherwise,
jump to Step 2.

Step 6: End of the algorithm. Output the clustering result of the customer set and the
coordinate result of the cluster center k.

4.2. In the Second Stage: Improved Tabu Search Algorithm

The tabu search algorithm is a meta-heuristic algorithm based on local neighborhood
search. Its basic idea is to store the recent historical search process in the tabu table in
the search process, to prevent the algorithm from entering repeatedly, so as to effectively
prevent the cycle in the search process and obtain the optimal solution. The traditional tabu
search algorithm is sensitive to the initial value; the global development ability is weak and
can only search for the local optimal solution. Therefore, in this paper, for the joint delivery
of riders and drones in the takeout delivery process, the traditional tabu search algorithm
is improved in terms of generating the initial solution, the neighborhood structure, and the
tabu length. As shown in Figure 4.
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(a) Generate initial solution

In this paper, real number encoding is used. The order of real numbers is used as the
route of the rider and drone delivery order. For example, (1-4)-1-2-3-4 indicates that the
rider completes picking up the meal from merchants at 1 and 4 and then delivers the meal
to customers as 1, 2, 3, and 4 in turn; (2-3)-0-2-0 indicates that after picking up the meals
from the merchants at 2 and 3, the drone departs from the distribution center and returns
to the distribution center by delivering the meal at the handover point 2. In this paper,
Euclidean distance ordering is used to generate the initial pickup and delivery routes of
the rider and the drone.

(b) Neighborhood structure

A very important component of the optimization process of the tabu search algorithm
is the neighborhood structure: its role is to generate a new solution from a previous solution
and increase the search range. This paper combines the idea of changing the neighborhood
structure set in the variable neighborhood search algorithm, to expand the search range and
obtain the optimal solution; it uses 2-opt operators, insert operators, and reverse operators
to construct neighborhood structures.

2-opt operators: swap the position of the two elements, as shown in Figure 5. The order
of the numbers indicates the solution and the colors indicate the change of the solution
during the update process.
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Insert operators: randomly select an element to insert at the very beginning and move
the other elements back in turn, as shown in Figure 6.
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Reverse operators: flip the order of a segment randomly, as shown in Figure 7.
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(c) Length of tabu table

The tabu objects of the tabu search algorithm refer to those local optimal solutions that
are tabu in the tabu table. This article puts the best solution obtained from each iteration
into the tabu table as a tabu object. The shorter the tabu length, the higher the probability
of obtaining an excellent solution; however, at the same time, it increases the roundabout
search, and it is difficult to explore other effective search routes. In the study of this paper,
the contraindication length was set to

[√
N(N − 1)/2

]
.
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(d) Fitness function

In order to filter out the solutions that do not meet the constraints and improve the
convergence speed of the algorithm, this paper processes the objective function so that
the values of the solutions that do not meet the constraints are inf, so as to improve the
optimization ability of the solution sets for future generations:

rijtk
m ≤ rijtk

j , ∀m ∈ G, ∀j ∈ Ja (27)

F(x) =

{
inf i f rijtk

m > rijtk
j

Z i f rijtk
m ≤ rijtk

j
(28)

Constraint (27) indicates that the rider must first go through the drone stop to pick
up food before delivering the order carried by the drone. Constraint (28) indicates that the
solution that satisfies the conditions of Constraint (27) is solved according to the objective
function (10), otherwise, the value is assigned inf.

(e) Stop guidelines

This paper adopts the number of iterations of the algorithm as the termination criterion,
so the total number of iteration steps does not exceed this number, and the number of
iteration steps of the algorithm in advance can effectively control the running time of
the algorithm.

4.3. Two Times Clustering

In order to improve customer satisfaction and reduce the cost of punishment, this
paper makes a judgment on customer satisfaction in the result after obtaining the optimal
route formed by the 1-time clustering result. If customer satisfaction si = 0 because of the
delivery of the order of the rider at this time, there is an unreasonable phenomenon of
order allocation, and the rider’s order requires 2-times clustering. The two-stage heuristic
algorithm flowchart is shown in Figure 8.
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5. Simulation Experiment and Result Analysis
5.1. Data Sources and Experimental Settings

The paper takes China’s Ele.me and Meituan takeout as a reference objects; according
to the existing literature and the survey data, the average daily order delivery distance [3,4]
of merchants is about 1.5 km, and the average daily order delivery time is about 31.6 min.
In this paper, the Solomon dataset is processed with three distribution centers, and five sets
of calculations with order quantities of 50, 75, 100, 125, and 150 are used as instances for the
calculations. The algorithm programming adopts MATLAB R2020a, the operating system
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is Windows 10, the computer memory is 8 GB, and the CPU is Intel(R) Core (TM) i5-8250U.
The main frequency is 1.80 GHz. The experimental parameter settings are shown in Table 4.

Table 4. Simulation experimental parameters.

Parameter Description Parameter Value Parameter Description Parameter Value

Rider speed vp 25 km/h Drone speed vu 57.6 km/h
Rider fixed costs cp1 50 RMB Drone fixed costs cu1 10 RMB
Rider unit ride cost cp2 0.2 RMB/km Drone unit travel cost cu2 0.3 RMB/km

Maximum cargo capacity of electric vehicles Wk
max 50 kg Maximum cargo capacity of

drone Wu
max 5 kg

Merchant meal preparation time tf 5 min Drone unladen weight and
battery weight mt + mb 10.1 kg

Customer service time ts 3 min Electricity costs c 0.66 RMB/kW
Battery safety factor µ 1.25 Energy transfer efficiency η 0.66
Ratio of drone rise and drag ϑv 3.5 Acceleration due to gravity g 9.8 kg/N
Penalty cost 1 ω1 0.5 Penalty cost 2 ω2 1

5.2. Comparison of Experimental Results
5.2.1. Comparison of the Two Modes

This paper selects the instance R1(50) to make a specific explanation of the experimen-
tal solution process. The coordinates of the drone take-off point are shown in Table 5, and
the orders information of R1(50) is shown in Table 6.

Table 5. Coordinates of the take-off point of the drone.

Number X Y

1 2600 1000
2 1100 3300
3 3800 4000

Table 6. Orders information for instance R1(50).

Distribution
Center Number Merchant

Coordinates
Customer

Coordinates ET LT Weight

1

1 (2710, 908) (2975, 400) 19 29 1.2
2 (2614, 1012) (3375, 750) 21 31 0.7
3 (2545, 1023) (3150, 525) 20 30 0.6

. . . . . . . . . . . . . . . . . .
16 (2572, 977) (2375, 1300) 13 23 1.1
17 (2614, 1012) (3075, 2775) 40 50 0.7

2

18 (1198, 3398) (450, 4900) 40 50 1.2
19 (1148, 3249) (150, 4500) 36 46 0.6
20 (1191, 3197) (450, 2850) 21 31 1.3
. . . . . . . . . . . . . . . . . .
34 (1196, 3337) (2575, 1950) 40 50 1.1
35 (1048, 3299) (2600, 2150) 40 50 1.4

3

36 (3874, 3945) (3075, 3675) 21 31 0.9
37 (3928, 3944) (3525, 3525) 16 26 0.7
38 (3840, 3912) (3750, 3625) 13 23 0.8
. . . . . . . . . . . . . . . . . .
49 (3874, 3945) (2975, 3150) 29 39 1.4
50 (3840, 3912) (4875, 4125) 27 37 0.9

In Figure 9, (a) shows the customer order information received by the merchant in
each distribution center, and the rider delivers the order after picking up the food from the
merchant; (b) shows how the Euclidean distance is used to divide the region into different
distribution centers. The rider is only responsible for the distribution center region of
the order. The orders to a customer location beyond the distribution center region of the
order are picked up by the drone and delivered to the rider, who ultimately completes the
delivery of the meal.
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The data of the instance are brought in, and the results of the orders distribution under
the traditional rider delivery mode and the drone–rider joint delivery mode are solved
separately using the AP clustering algorithm, as shown in Figure 10.

The initial routes of the rider and the drone are generated by the sorting method, and
the initial routes are optimized using the improved tabu search algorithm to obtain the
delivery scheme of the rider in both modes. The penalty cost is used to determine whether
it is necessary to carry out 2-times clustering, to reduce the penalty cost and obtain greater
customer satisfaction.

It can be seen from Table 7 that compared with traditional rider delivery, the delivery
cost of the drone–rider joint delivery mode is reduced by 2.86%, the number of riders used
is reduced, there are no penalty costs, and customer satisfaction is increased by 1.9926%.
The rider delivery routes in both modes are shown in Table 8, where (. . .) denotes the
intersection point between the rider and the drone. For example, 12-13-14-(27)-26-30 means
that after picking up the meal from the merchant, the rider delivers the meal to customer
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Nos. 12, 13, and 14 in turn, goes to customer No. 27 to pick up the order carried by the
drone, and then carries out the delivery of the meal to customer Nos. 27, 26, and 30.
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Table 7. Experimental results of instance R1(50).

R1(50) Traditional Rider Delivery Drone–Rider Joint Delivery

Meal delivery costs 663.3786 644.4304
Penalty costs 5.6816 0

Overall customer satisfaction 98.0074% 100.0000%
Number of riders 13 12

Table 8. Delivery routes in both models.

Number Rider Delivery Drone–Rider Joint
Delivery Number Rider Delivery Drone–Rider Joint

Delivery

1 1-3-2 1-3-2 8 35-34 23-(44)-31-45
2 11-5-9-4-17-15 11-5-9-4 9 23-29-33-32 50-(10)-7-6-8
3 6-7-10-8 12-13-14-(27)-26-30 10 48-37-36-38-49 48-38-37
4 16-12-13-14 16-(34)-35-39-40 11 39-40 47-46-42-43-41
5 31-22-19-18 21-22-19-18 12 45-44 36-(49)-15-17
6 24-21-20-25-28 24-20-25-28 13 43-46-42-50-47-41
7 26-27-30 32-29-33

Figures 11 and 12 show the traditional rider delivery route diagram and the drone–
rider joint delivery route diagram, respectively. By comparing the route diagrams of the two
delivery modes, the Euclidean distance is used to divide customers into areas belonging
to different distribution centers and then complete the delivery jointly through the drone
and rider. This can effectively reduce the problems of unreasonable order distribution
and low delivery efficiency in the process of rider delivery. The serial number of the rider
represents the number of riders used and the delivery route of the rider. The serial number
of the drone represents the number of flights of the drone under the distribution center and
the flight route. Drone 2-1 indicates the drone in the second distribution center delivers a
meal once.
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5.2.2. Comparison of Different Instances

In order to verify the effectiveness of multiple distribution center collaboration in
improving delivery efficiency and overall customer satisfaction, as well as the superiority
of the drone–rider joint delivery mode compared to the traditional rider delivery mode, this
paper solves the above five sets of instances R1(50), R2(75), R3(100), R4(125), and R5(150),
and the experimental results are as follows.

It can be seen from Table 9 that the two takeout delivery models gradually increase the
penalty cost as the order volume increases, and the overall customer satisfaction decreases.
This means that when faced with a large influx of orders, the larger the order quantity,
the weaker the ability to process orders. By comparing the instances of 150 and 50, the
overall customer satisfaction of rider delivery decreased by 5.3977%, the overall customer
satisfaction of drone–rider combined delivery decreased by 2.8658%, and the difference
between the customer satisfaction of the two delivery modes increased from 1.9926% to
4.5245%. Compared with the traditional rider delivery mode, the customer satisfaction
growth value of the drone–rider joint delivery mode increased from 1.9926% to 4.5245%,
the reduction value of delivery cost increased from 2.86% to 17.18%, the number of riders
used decreased by 20.69% in 150 instances, and the results were more significant. Therefore,
the drone–rider joint delivery mode for multiple distribution centers, as proposed in this
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paper, can effectively reduce the pressure of rider delivery, reduce the number of riders
and delivery costs, and improve customer satisfaction.

Table 9. Comparison of simulation experiment results under different instances.

Order Volume R1(50) R2(75) R3(100) R4(125) R5(150)

Traditional
rider delivery

meal delivery costs 663.3786 869.6576 1230.3801 1401.7971 1529.8870
penalty costs 5.6816 9.4473 15.8378 32.5861 60.1637

overall customer satisfaction 98.0074% 98.2671% 97.4499% 95.7050% 92.6097%
number of riders 13 17 24 27 29

Drone–rider
joint delivery

meal delivery costs 644.4304 758.0905 973.609 1151.9947 1266.9962
penalty costs 0 6.6695 7.8468 20.3476 26.0462

overall customer satisfaction 100.0000% 98.9841% 98.8018% 97.5074% 97.1342%
number of riders 12 12 13 18 23

5.3. Damping Factor λ

The rapidity and convergence of the AP clustering algorithm are mainly determined
by the damping factor λ, so the value of λ has a sizeable influence on the final experimental
results. In order to obtain the optimal objective function value, this paper first adds λ from
0.1 to 0.9, and the value of damping factor λ is determined according to the experimental
results. Selecting instance R1(50) to specifically explain the solution process according to
the different values of damping factor λ, the clustering results generated are seen to differ.
By conducting 30 experimental simulations, the optimal objective function as well as the
corresponding customer satisfaction and number of riders for different values are recorded,
and the results are as follows:

It can be seen from Table 10 that when the damping factor λ is 0.3 or 0.6–0.9, the
clustering result of traditional rider delivery is the same, and the minimum delivery cost
obtained by the clustering result is lower than that of other damping factor λ values. When
the damping factors λ are 0.3 and 0.4, the minimum delivery cost obtained by the clustering
results of drone–rider joint delivery is lowest. Therefore, combined with the results of the
optimal objective function values of the two delivery modes, the damping factor λ in this
paper takes a value of 0.3.

Table 10. Damping factor λ.

Damping
Factor λ

Rider Delivery Drone–Rider Joint Delivery

Meal Delivery
Costs

Overall Customer
Satisfaction

Number of
Riders

Meal Delivery
Costs

Overall Customer
Satisfaction

Number of
Riders

0.1 ——— ———
0.2 1158.1949 99.9994% 23 646.9576 99.9930% 12
0.3 663.3786 98.0074% 13 644.4304 100.0000% 12
0.4 709.1361 99.8250% 14 644.4304 100.0000% 12
0.5 709.1361 99.8250% 14 644.6047 99.9994% 12
0.6 663.3786 98.0074% 13 644.6047 99.9994% 12
0.7 663.3786 98.0074% 13 644.6047 99.9994% 12
0.8 663.3786 98.0074% 13 644.6047 99.9994% 12
0.9 663.3786 98.0074% 13 644.6047 99.9994% 12

5.4. Algorithm Performance Comparison

In order to verify the effectiveness of the improved tabu search algorithm (ITS) al-
gorithm for solving this problem, the traditional tabu search algorithm (TS), variable
neighborhood search algorithm (VNS), whale optimization algorithm (WOA) [55], genetic
algorithm (GA), and particle swarm algorithm (PSO) were used to solve the experimental
instances of R1, R3, and R5, respectively; the experimental results were run 50 times each,
and the experimental results are shown in Table 11. Comparing the solution results of the
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six algorithms at different scales, the optimal value, worst value, average value, standard
deviation, and average customer satisfaction of ITS are the best.

Table 11. Comparison of algorithm experimental results.

Case Algorithm Optimal
Value

Worst
Value

Average
Value

Standard
Deviation Time/s

Average
Customer

Satisfaction

R1
50

ITS 644.43 644.44 644.43 0.0014 0.1618 100.000%
TS 644.43 644.50 644.45 0.0281 0.1410 100.000%

VNS 644.43 644.59 644.50 0.0408 0.2234 100.000%
WOA 644.43 644.61 644.48 0.0401 1.7562 100.000%

GA 644.43 644.50 644.45 0.0257 1.7563 100.000%
PSO 644.43 651.38 645.41 1.4804 3.6469 99.806%

R3
100

ITS 973.61 973.92 973.63 0.0603 0.4176 98.802%
TS 973.61 974.81 973.71 0.2610 0.3791 98.739%

VNS 973.69 975.99 975.22 0.5385 0.5207 98.647%
WOA 973.63 979.84 975.81 1.6217 2.5825 98.504%

GA 973.80 979.19 975.28 1.2092 3.0271 98.592%
PSO 982.93 1010.65 996.87 7.5983 6.4289 96.352%

R5
150

ITS 1267.00 1270.14 1268.59 0.4864 0.5997 97.049%
TS 1267.57 1275.25 1270.60 2.4134 0.5422 96.889%

VNS 1270.26 1285.90 1279.90 3.5920 0.8537 95.763%
WOA 1274.47 1295.97 1284.31 5.0797 3.5512 95.562%

GA 1273.71 1293.69 1284.39 4.2174 3.9468 95.612%
PSO 1318.06 1375.57 1349.24 13.7427 9.0076 91.816%

As shown in Figure 13, as the scale increases, the calculation time of each algorithm
becomes longer, and the level of customer satisfaction decreases. Compared with other
comparison algorithms, the operation time of the improved tabu search algorithm is slightly
higher than that of the traditional tabu search algorithm, but it is significantly lower than
that of other comparison algorithms. In the 50 experimental instances, the customer
satisfaction of each algorithm is basically the same. When the experimental study increases
to 100, the customer satisfaction of the PSO algorithm decreases significantly; the customer
satisfaction decline of the rest of the comparison algorithm is close to that of ITS, but the
results of ITS are still higher than other comparison algorithms. When the experimental
example increases to 150, it can be seen that the customer satisfaction of ITS is significantly
higher than that of other comparison algorithms.
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It can be seen from Figure 14 that under any instance, the improved tabu search
algorithm can converge to a better optimal solution, and the convergence speed is faster.
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It can be seen from the box plots that ITS has better stability than the results of running
50 times under other comparison algorithms. Furthermore, with the increase of scale, the
optimal objective fitness obtained by ITS is significantly better than the optimal objective
fitness obtained by other comparison algorithms.
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From the comparison of the standard deviation of different algorithms under the
three different instances of Figure 15, the standard deviation of the improved tabu search
algorithm with the increase of scale is significantly lower than that of other algorithms and
has better stability. Therefore, the above experimental results confirm the rationality and
effectiveness of the improved tabu search algorithm in solving this problem.
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6. Conclusions

To solve the problems of high delivery cost, low delivery order volume, low delivery
efficiency, and low profit of merchants in the delivery process, the order distribution and
delivery route optimization problems of a takeout platform are studied. The drone–rider
joint delivery model with multiple distribution centers is constructed with the objective
function of minimum delivery cost and overall maximum customer satisfaction. A two-
phase heuristic algorithm is designed for this model. In the first phase, Euclidean distance
is used to classify customers into the regions belonging to different distribution centers,
and the AP clustering algorithm is used to allocate the orders from different distribution
centers. In the second stage, to compensate for the defects of the tabu search algorithm, an
improved tabu search algorithm is designed to perform routing optimization to enhance
the optimality seeking ability. This paper uses China’s Ele.me and Meituan takeout as
reference objects and uses the Solomon dataset for research. The relevant conclusions
obtained are as follows:

(1) Starting from the actual situation, we consider the collaboration of multiple distri-
bution centers to make the service scope of merchants wider and at the same time
satisfy the customers’ requirements on order delivery time. Through the study of
order allocation and delivery route optimization problems, the platform reduces the
distribution cost and gains profit while attracting more customers, in line with reality.

(2) We propose the mode of drone–rider joint delivery and compare it with the traditional
delivery mode. The analysis concludes that the mode can effectively reduce the num-
ber of riders used, reduce the transportation cost, and improve customer satisfaction.

(3) The effectiveness of the algorithm proposed in this paper is verified through experi-
mental cases. The value of the damping factor λ in the AP clustering algorithm plays
an important role in the solution of the model, so the running results are optimized
by debugging its assignment. As the size of the case increases, the running results of
ITS have better stability compared to other algorithms.

However, there are still some areas for improvement in the current research: consid-
ering obstacle avoidance during drone flight, considering the uncertainty of the time of
delivery, traffic conditions in the takeout delivery process, a small number of emergencies,
new orders joining, etc. These will be considered in subsequent studies.
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