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Abstract: The general solutions of the radial attractor flow equations for extremal black holes,
both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the
so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time
dimensions.
Comparisons with previous results, as well as the fake supergravity (first order) formalism
and an analysis of the BPS bound all along the non-BPS attractor flows and of the marginal
stability of corresponding D-brane configurations, are given.
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1. Introduction

The physics of black holes (BHs) [1]–[6] has received much attention in the last years. This is also
due to the issue of the Attractor Mechanism[7]–[10], a general phenomenon which occurs in extremal
BHs coupled to Maxwell and scalar fields, as it is the case in supersymmetric theories of gravity [11]–
[74] (for further developments, see also e.g. [75]–[78]).

Supergravity [79] can be obtained as the low-energy (small curvature expansion) limit of superstrings
[80]– [83] or M-theory [84–86]; in such a framework, a certain number of U (1) gauge fields and moduli
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fields are coupled to the Einstein-Hilbert action. This is especially the case for theories in d = 4 space-
time dimensions, and having N > 2 supercharges, where 4N is the number of supersymmetries. A
popular example is the compactification of Type II superstring theory on a Calabi-Yau threefold (N =

2) or on a six-torus (N = 8). The fermionic sector of these theories contains a certain number of
spin 1/2 fermions and N spin 3/2 Rarita-Schwinger fields, named gravitinos (the gauge fields of local
supersymmetry). The vanishing of the supersymmetric variation of the gravitinos determines whether or
not a certain number of supersymmetries (BPS property) is preserved by the BH background.

In this situation, asymptotically flat charged BH solutions, within a static and spherically symmetric
Ansatz, can be regarded as a generalization of the famous Schwarzschild BH. However, the presence of
additional quantum numbers (such as charges and scalar hair) make their properties change drastically,
and new phenomena appear. A novel important feature of electrically (and/or magnetically) charged
BHs [87] as well as rotating ones [88] is a somewhat unconventional thermodynamical property named
extremality [6, 92, 93]. Extremal BHs are possibly stable gravitational objects with finite entropy but
vanishing temperature, in which case the contribution to the gravitational energy entirely comes from
the electromagnetic (charges) and rotational [27] (angular momentum/spin) attributes. Extremality also
means that the inner (Cauchy) and outer (event) horizons do coincide, thus implying vanishing surface
gravity (for a recent review see e.g. [70], and Refs. therein).

In the regime of extremality a particular relation among entropy, charges and spin holds, yielding that
the Arnowitt-Deser-Misner (ADM) gravitational mass [89–91] is not an independent quantity. Stationary
and spherically symmetric BHs in d = 4 space-time dimensions and in an environment of scalar fields
(typically described by a non-linear sigma model) have scalar hair (scalar charges), corresponding to the
values of the scalars at (asymptotically flat) spatial infinity. These values may continuously vary, being
an arbitrary point in the moduli space of the theory or, in a more geometrical language, a point in the
target manifold of the scalar non-linear Lagrangian [7, 94]. Nevertheless, the BH entropy, as given by
the Bekenstein-Hawking entropy-area formula [95], is also in this case independent on the scalar charges
(“no scalar hair”) and it only depends on the asymptotic (generally dyonic) BH charges.

This apparent puzzle can be resolved thanks to the aforementioned Attractor Mechanism, a fascinating
phenomenon that combines extremal BHs, dynamical systems, algebraic geometry and number theory
[2]. It was firstly discovered in the context of supergravity; in a few words, in constructing extremal
dyonic BHs of N = 2, d = 4 ungauged supergravity coupled to vector and hypermultiplets (with no
d = 4 scalar potential), two phenomena occur: the hyperscalars can take arbitrary constant values, while
the radial evolution of the vector multiplets’ scalars is described by a dynamical system [8, 9]. Under
some mild assumptions, the scalar trajectory flows to a “fixed point”, located at the BH event horizon,
in the target (moduli) space. The “fixed point” (i.e. a point of vanishing phase velocity) represents the
system in equilibrium, and it is the analogue of an attractor in the dynamical flow of dissipative systems.
In approaching such an attractor, the orbits lose practically all memory of initial conditions (i.e. of the
“scalar hair”), even though the dynamics is fully deterministic. The scalars at the BH horizon turn out
to depend only on the dyonic (asymptotic) BH charges.

All extremal static, spherically symmetric and asymptotically flat BHs in d = 4 have a Bertotti-
Robinson [96] AdS2 × S2 near-horizon geometry, with vanishing scalar curvature and conformally flat;
in particular, the radius of AdS2 coincides with the radius of S2, and it is proportional to the (square root
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of the) BH entropy (in turn proportional, through the Bekenstein-Hawking formula [95], to the area of
the event horizon). Non-BPS (i.e. non-supersymmetric) (see e.g. [10, 26, 41, 43, 57, 59, 60]) extremal
BHs exist as well, and they also exhibit an attractor behavior.

A particularly remarkable N = 2, d = 4 ungauged supergravity is the so-called stu model, which
exhibits the noteworthy triality symmetry [15, 39, 41, 50, 97–100]. It has been recently shown to be rel-
evant for the analogy between pure states of multipartite entanglement of qubits in quantum information
theory and extremal stringy BHs [3].

The 3 complex scalars coming from the 3 Abelian vector multiplets coupled to the supergravity one

span the rank-3, completely factorized special Kähler manifold G
H

=
(
SU(1,1)
U(1)

)3

, with dimC = 3,

G = (SU (1, 1))3 ∼ (SO (2, 1))3 ∼ (SL (2,R))3 ∼ (Sp (2,R))3 (1)

being the d = 4 U -duality group, and H = (U (1))3 ∼ (SO (2))3 its maximal compact subgroup. Such
a space is nothing but the element n = 2 of the sequence of reducible homogeneous symmetric special
Kähler manifolds SU(1,1)

U(1)
⊗ SO(2,n)

SO(2)⊗SO(n)
(see e.g. [26] and Refs. therein). It is here worth pointing out

that, with a slight abuse of language, we refer to U -duality group as to the continuous version, valid for
large values of charges, of the string duality group introduced by Hull and Townsend [101].

The stu model has 2 non-BPS Z 6= 0 flat directions, spanning the moduli space SO (1, 1)×SO (1, 1)

(i.e. the scalar manifold of the stumodel in d = 5), but no non-BPS Z = 0 massless Hessian modes at all
[43] (see also [41] and [40]). In other words, the 6× 6 Hessian matrix of the effective BH potential at its
non-BPS Z 6= 0 critical points has 4 strictly positive and 2 vanishing eigenvalues (these latter correspond
to massless Hessian modes), whereas at its non-BPS Z = 0 critical points all the eigenvalue are strictly
positive. After [10], 1

2
-BPS critical points of VBH in N = 2, d = 4 supergravity are all stable, and thus

they determine attractors in a strict sense. It is here worth pointing out that the d = 6 uplift of the stu
model is (1, 0) supergravity coupled to nT = 1 tensor multiplet. The BH charge orbits supporting the
various classes of non-degenerate attractors have been studied in [26] (see also [50]).

Concerning its stringy origins, the stu model can be interpreted e.g. as the low-energy limit of Type
IIA superstrings compactified on a six-torus T 6 factorized as T 2× T 2× T 2. The D0−D2−D4−D6

branes wrapping the various T 2s determine the 4 magnetic and 4 electric BH charges.
Remarkably, the stu model is a sector of all N > 2, d = 4 supergravities, as well as of all N = 2,

d = 4 supergravities based on homogeneous (both symmetric [97, 113–115] and non-symmetric - see
e.g. [116, 117] -) scalar manifolds based on cubic geometries. Thus, stu model captures the essential
features of extremal BHs in all such theories (see e.g. the stu interpretation of N = 8, d = 4 attractors
[24], and the observations in [59]).

Recently, the stu model has been object of detailed investigation concerning the integration of the
equations of motion of the scalars in the background of a given BH charge configuration, in particular of
those ones which support non-supersymmetric flows:

• In [28] the non-BPS Z 6= 0 attractor flow was investigated for the first time. The 1
2
-BPS attractor

flow solution was previously studied in [105]-[109], and its most general form is known to be ob-
tained simply by replacing the BH charges with the corresponding, symplectic covariant harmonic
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functions in the the most general horizon, critical solution, obtained in [99, 100]. In [28] such a
feature has been shown to hold also for non-BPS Z 6= 0 attractor flow, for the D2−D6 (electric)
and D0−D2−D4−D6 configurations, for particular cases without B-fields.

• In [51] the D0 −D4 (magnetic) system was considered, and new exact non-BPS Z 6= 0 attractor
flow solutions were derived, with non-vanishing dynamical axion. Furthermore, the result of [28]
was proved to be non-general. Indeed, within the D0 −D4 (magnetic) configuration (dual to the
electric one, studied in [28]), it was pointed out that non-BPS Z 6= 0 attractor flow differ from the
1
2
-BPS one, because the most general non-BPS Z 6= 0 solution cannot be obtained by replacing

the BH charges with the corresponding harmonic functions in the most general horizon critical
solution, as instead it holds for the supersymmetric case [105]-[109], and actually also for the
non-BPS Z = 0 case (see Sect. 4.). This is actually due to the presence of non-trivial so-called
B-fields in the non-BPS Z 6= 0 attractor flow, as well as to the presence of flat directions (spanning
a related moduli space) all along such a flow.

• In [59] the stumodel was further studied in theD0−D4 (magnetic) as well as in theD0−D6 con-
figurations, by fully exploiting the contribution of the B-fields, and (as also done in [28]) perform-
ing the relevant U -duality transformations in order to relate different BH charge configurations
supporting the same attractor flow (i.e. belonging to the same BH charge orbit of U -duality [26]).
The ADM mass MADM of the extremal BH was computed in the 1

2
-BPS and in the non-BPS Z 6= 0

cases, and the marginal stability [111] of the corresponding physical states was studied, founding
that the marginal bound [111] was saturated in the non-supersymmetric case, contrarily to the
BPS case. The difference between the squared non-BPS Z 6= 0 ADM mass M2

ADM,non−BPS,Z 6=0

and |Z|2 was computed at the radial infinity along the non-BPS Z 6= 0 attractor flow, showing
that the BPS bound [112] actually holds also at the infinity, even if dependent on the asymptotical
values of the scalars (see Eq. (4.8) of [59]). Moreover, in such a paper the two non-BPS Z 6= 0

flat directions of the stu model [41, 43] were shown to hold also along the whole corresponding
attractor flow, as mentioned above.

• The analysis of [59] was further developed in [62], in which the non-BPS Z 6= 0 equations of
motion of the scalars were solved for the D2−D6 (electric) and D0−D2−D4 supporting BH
charge configurations.

The present paper is devoted to a detailed, complete study of the attractor flow equations of the stu
model, whose fundamental facts are summarized in Sect. 2.. All the classes of non-degenerate (i.e. with
non-vanishing classical Bekenstein-Hawking [95] BH entropy) attractor flow solutions are determined,
in their most general form (with allB-fields switched on). The main results of our investigation are listed
below:

• As mentioned above, the 1
2
-BPS attractor flow solution is known since [105]-[109], and it is re-

viewed in Sect. 3.. In Sect. 4. the non-BPS Z = 0 attractor flow solution, untreated so far, is
determined for the most general supporting BH charge configuration, and its relation to the super-
symmetric flow, both at and away from the event horizon radius rH , is established, consistently
with the results of [50].
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• Sect. 5. is devoted to the study of the non-BPS Z 6= 0 attractor flow solution in full general-
ity. By using suitable U -duality transformations (Subsect. 5.1.), and starting from the D0 − D6

configuration (Subsect. 5.2.), the non-BPS Z 6= 0 attractor flow supported by the most general
D0 − D2 − D4 − D6 configuration (with all charges switched on) is explicitly derived in Sub-
sect. 5.3.. This completes and generalizes the analyses and the results of [28], [51], [59] and [62].
The above mentioned finding of [59] is confirmed in such a general framework: the moduli space
(SO (1, 1))2, known to exist at the non-BPS Z 6= 0 critical points of VBH [41, 43], is found to be
present all along the non-BPS attractor flow, i.e. for every r > rH .

• In Sect. 6. a detailed analysis of particular configurations, namely D0 −D4 (magnetic, Subsect.
6.1.), its dual D2−D6 (electric, Subsect. 6.2.), and D0−D2−D4 (Subsect. 6.3.), is performed.

• The so-called first order (fake supergravity) formalism, introduced in [118], has been recently
developed in [37] and [42] in order to describe d = 4 extremal BHs; in general, it is based on a
suitably defined real, scalar-dependent, fake superpotential W . It is worth pointing out that the
first order formalism, as (re)formulated in [37] and [42] for d = 4 extremal BHs, automatically
selects the solutions which do not blow up at the BH event horizon. In other words, the (covariant)
scalar charges Σi built in terms of the fake superpotentialW (see Eq. (20) further below) satisfy
by construction all the conditions in order for the Attractor Mechanism to hold.

It should be here recalled that for extremal BHs the solution converging at the BH event hori-
zon (r → r+

H) does not depend on the initial, asymptotical values of the scalar fields. See e.g.
discussions in [33] and [44].

In the framework of stu model, we explicitly build upW in the non-trivial cases represented by
the non-BPS attractor flows. For the non-BPS Z = 0 attractor flow (Sect. 4.) a manifestly H -
invariant W is determined, in three different (but equivalent) “polarizations”. Furthermore, the
difference between the squared non-BPS Z = 0 fake superpotential W2

non−BPS,Z=0 and |Z|2 is
computed along the non-BPS Z = 0 attractor flow, and the BPS bound [112] is found to hold all
along the attractor flow (i.e. not only on the BH event horizon r = rH , but ∀r > rH). On the
other hand, for non-BPS Z 6= 0 attractor flow (Subsects. 5.2. and 5.3.) the fake superpotential is
manifestly not H -invariant.

As it will be commented in Sect. 7., this is not inconsistent with the treatment of [37] and [42].
Indeed, the fake superpotential is not unique within the same attractor flow, the various equivalent
superpotentials being related through a (possibly scalar-dependent) R-matrix satisfying the con-
ditions (2.28) and (2.29) of [37] (see in general Subsect. 2.2 of [37]). Moreover, in Sect. 6. the
difference between the squared non-BPS Z 6= 0 fake superpotential W2

non−BPS,Z 6=0 and |Z|2 is
computed along the non-BPS Z 6= 0 attractor flow in the magnetic (Subsect. 6.1.), electric (Sub-
sect. 6.2.) and D0−D2−D4 (Subsect. 6.3.) charge configurations. Analogously to the non-BPS
Z = 0 case, the BPS bound [112] is found to hold all along the attractor flow (i.e. not only on the
BH event horizon r = rH , but ∀r > rH). In particular, for the magnetic charge configuration at
radial infinity the result given by Eq. (4.8) of [59] is recovered. We are grateful to E. G. Gimon
for a clarifying discussion about the definition of “gap” above the BPS bound as given in [59].
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• Within the first order (fake supergravity) formalism, for all attractor flows we compute the covari-
ant scalar charges as well as the ADM mass, studying the issue of marginal stability [111]. We
thus complete the analysis and the results of [51], [59] and [62]. As expected due to the strict simi-
larity to the 1

2
-BPS attractor flow (Sect. 3.), also in the non-BPS Z = 0 case the marginal bound is

not saturated (Sect. 4.), as instead we confirm to hold in general in the (non-BPS Z 6= 0-supporting
branch of the) D0−D2−D4−D6 configuration (Subsect. 5.3.).

• Final remarks, comments, and outlook for further developments are given in the concluding Sect.
7..

2. Basics of the stu Model

We here recall some basic facts of the above mentioned stu model [15, 28, 39–41, 43, 50, 97–100],
fixing our notations and conventions. The three complex moduli of the model are defined as

z1 ≡ x1 − iy1 ≡ s, z2 ≡ x2 − iy2 ≡ t, z3 ≡ x3 − iy3 ≡ u, (2)

with yi ∈ R+
0 [122] (see also the treatment of [47]). In special coordinates (see e.g. [119] and Refs.

therein) the prepotential determining the relevant special Kähler geometry simply reads

f = stu. (3)

Due to the aforementioned triality symmetry among s, t and u, the expressions of all the relevant ge-
ometric quantities acquire quite elegant form. Some formulæ can be found e.g. in the treatments of
[28, 50, 59, 99, 100]; for completeness, below we list the expressions of the Kähler potential, contravari-
ant metric tensor, non-vanishing components of the Christoffel symbols of the second kind and of the
C-tensor, holomorphic central charge (also named superpotential) and BH effective potential (i = 1, 2, 3

throughout):

K = −ln
[
−i(s− s)(t− t)(u− u)

]
⇒ exp (−K) = 8y1y2y3;

gij̄ = −diag((s− s)2, (t− t)2, (u− u)2);

Γ1
11 = −2(s− s)−1, Γ2

22 = −2(t− t)−1, Γ3
33 = −2(u− u)−1;

Cstu = i
(s−s̄)(t−t̄)(u−ū)

= exp (K) ;

W (s, t, u) = q0 + q1s+ q2t+ q3u+ p0stu− p1tu− p2su− p3st ;

VBH = exp (K) · [ |W (s, t, u)|2 + |W (s̄, t, u)|2 + |W (s, t̄, u)|2 + |W (s, t, ū)|2] .

(4)
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Thus, the (covariantly holomorphic) central charge function for the stu model reads (see e.g. [119] and
Refs. therein)

Z
(
s, t, u, s, t, u

)
≡ eK/2W (s, t, u) =

=
1√

−i(s− s)(t− t)(u− u)

(
q0 + q1s+ q2t+ q3u+ p0stu− p1tu− p2su− p3st

)
.

(5)

The definition of the BH charges pΛ (magnetic) and qΛ (electric) (Λ = 0, 1, 2, 3 throughout), the
effective 1-dim. (quasi-)geodesic Lagrangian of the stu model, and the corresponding Eqs. of motion
for the scalars can be found in Subsects. 2.2 and 2.3, as well as in appendix A (treating the caseD0−D4

in detail), of [59].
Through the Bekenstein-Hawking entropy-area formula [95], the entropy of an extremal BH in the

stu model in the Einsteinian approximation reads as follows:

SBH =
AH
4

= π VBH |∂VBH=0 = π
√
|I4 (Γ)|, (6)

where the (2nV + 2)× 1 vector of BH charges

Γ ≡
(
pΛ, qΛ

)
, (7)

was introduced, nV denoting the number of Abelian vector multiplets coupled to the supergravity one
(in the case under consideration nV = 3). Furthermore, I4 (Γ) denotes the unique invariant of the tri-
fundamental representation (2,2,2) of the U -duality group G, reading as follows (see e.g. Eq. (4.10)
and Sect. 5 of [50], and Refs. therein):

I4 (Γ) = −
(
pΛqΛ

)2
+ 4

∑
i<j

piqip
jqj − 4p0q1q2q3 + 4q0p

1p2p3 = −Det (Ψ) , (8)

where Det (Ψ) is the so-called Cayley’s hyperdeterminant [3].

In the next three Sections we will discuss the explicit solutions of the equations of motion of the
scalars s, t and u in the dyonic background of an extremal BH of the stu model, also named Attractor
Flow Equations. We will consider only non-degenerate attractor flows, i.e. those flows determining a
regular, non-vanishing area of the horizon in the Einsteinian approximation.

As mentioned above, 3 classes of non-degenerate attractor flows exist in the stu model:

• 1
2
-BPS (Sect. 3.);

• non-BPS Z = 0 (Sect. 4.);

• non-BPS Z 6= 0 (Sects. 5.) and (6.).

3. The Most General 1
2
-BPS Attractor Flow

The explicit expression of the attractor flow solution supported by the most general 1
2
-BPS BH charge

configuration in N = 2, d = 4 ungauged supergravity coupled to nV Abelian vector multiplets (and
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exhibiting a unique U -invariant I4) is known after [105]-[109] (as well as the third of Refs. [111]):

exp
[
−4U 1

2
−BPS (τ)

]
= I4 (H (τ)) ;

zi1
2
−BPS (τ) =

H i (τ) + i∂Hi
I1/2

4 (H (τ))

H0 (τ) + i∂H0I
1/2
4 (H (τ))

, (9)

where ∂Hi
≡ ∂

∂Hi
, and the (2nV + 2)× 1(= 8× 1 in the model under consideration) symplectic vector

H (τ) ≡
(
HΛ (τ) , HΛ (τ)

)
, (10)

was introduced, where HΛ (τ) and HΛ (τ) are harmonic functions defined as follows (τ ≡ (rH − r)−1 ∈
R−):

HΛ (τ) ≡ pΛ
∞ + pΛτ ;

HΛ (τ) = qΛ,∞ + qΛτ,

(11)

such thatH (τ) can be formally rewritten as

H (τ) = Γ∞ + Γτ. (12)

The asymptotical constants Γ∞ must satisfy the following integrability conditions:

I4 (Γ∞) = 1, 〈Γ,Γ∞〉 = 0, (13)

where 〈·, ·〉 is the scalar product defined by the (2nV + 2) × (2nV + 2) symplectic metric. Under such
conditions, the flow (9) is the most general solution of the so-called 1

2
-BPS stabilization Eqs. (see e.g.

the recent treatment of [28]):

HT (τ) = 2eK(z(τ),z(τ))Im

W (z (τ) ,H (τ))

 X
Λ

(z (τ))

FΛ (z (τ))


 , (14)

obtained from the 1
2
-BPS Attractor Eqs. (see e.g. the treatment in [23], and Refs. therein)

ΓT = 2eK(z,z)Im

W (z,Γ)

 X
Λ

(z)

FΛ (z)


 (15)

by simply replacing Γ with H (τ) (see e.g. [106] and Refs. therein). Consistently, Eq. (15) is the
near-horizon (τ → −∞) limit of Eq. (14).

Moreover, the BH charge configurations supporting the 1
2
-BPS attractors at the BH event horizon

satisfy the following constraints, defining the 1
2
-BPS orbit (see Appendix II of [26])

O 1
2
−BPS =

(SU (1, 1))3

(U (1))2 (16)
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of the tri-fundamental representation (2,2,2) of the U -duality group (SU (1, 1))3 [26, 50]:

I4 (Γ) > 0;

p2p3 − p0q1 ≷ 0;

p1p3 − p0q2 ≷ 0;

p1p2 − p0q3 ≷ 0.

(17)

Correspondingly,H (τ) is constrained as follows along the 1
2
-BPS attractor flow (∀τ ∈ R−):

I4 (H (τ)) > 0;

H2 (τ)H3 (τ)−H0 (τ)H1 (τ) ≷ 0;

H1 (τ)H3 (τ)−H0 (τ)H2 (τ) ≷ 0;

H1 (τ)H2 (τ)−H0 (τ)H3 (τ) ≷ 0.

(18)

In the near-horizon limit τ → −∞, Eq. (9) yields the purely charge-dependent, critical expressions
of the scalars at the BH event horizon, e.g. given by Eq. (3.1) of [59]. In the same limit, the constraints
(18) consistently yield the constraints (17).

Consistently with the analysis of [47], the general 1
2
-BPS attractor flow solution (9) of the stu model

can be axion-free only for the configurations D0−D6, D0−D4 (magnetic) and D2−D6 (electric).
As found in [121] and observed also in [59], an immediate consequence of Eq. (9) is that Γ∞ satisfies

the 1
2
-BPS Attractor Eqs. [106]. This determines a sort of “Attractor Mechanism at spatial infinity”,

mapping the 6 real moduli (x1, x2, x3, y1, y2, y3) into the 8 real constants (p1
∞, p

2
∞, p

3
∞, q1,∞, q2,∞, q3,∞),

arranged as Γ∞ and constrained by the 2 real conditions (13).
As noticed in [59], the absence of flat directions in the 1

2
-BPS attractor flow (which is a general

feature of N = 2, d = 4 ungauged supergravity coupled to Abelian vector multiplets, at least as far as
the metric of the scalar manifold is strictly positive definite ∀τ ∈ R− [10]) is crucial for the validity of
the expression (9).

Now, by exploiting the first order formalism [118] for d = 4 extremal BHs [37, 42] (see also [70]
and [74]), one can compute the relevant BH parameters of the 1

2
-BPS attractor flow of the stu model

starting from the expression of the 1
2
-BPS fake superpotential W 1

2
−BPS . For instance, the ADM mass

and covariant scalar charges respectively read (see e.g. the treatments in [70] and [74]):

MADM (z∞, z∞,Γ) = W (z∞, z∞,Γ) ≡ limτ→0−W (z (τ) , z (τ) ,Γ) ; (19)

Σi (z∞, z∞,Γ) = (∂iW) (z∞, z∞,Γ) ≡ limτ→0− (∂iW) (z (τ) , z (τ) ,Γ) , (20)

where the subscript “∞” denotes the evaluation at the moduli at spatial infinity (r → ∞ ⇔ τ → 0−).
Notice that Eq. (19) provides, within the considered first order formalism, an alternative (eventually
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simpler) formula for the computation of MADM , with respect to the general definition in terms of the
warp factor U (see e.g. [10]):

MADM = limτ→0−
dU (τ)

dτ
. (21)

Recalling that for all N = 2, d = 4 ungauged supergravities it holds thatW 1
2
−BPS = |Z|, Eqs. (5)

and (19) yield the following expressions of the ADM mass of the 1
2
-BPS attractor flow of the stu model:

MADM, 1
2
−BPS (z∞, z∞,Γ) ≡ limτ→0− |Z| (z (τ) , z (τ) ,Γ) =

=
|q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞|√

−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)
.

(22)

Eq. (22) yields that the marginal bound [111] is not saturated by 1
2
-BPS states, because MADM, 1

2
−BPS

is not equal to the sum of the ADM masses of four D6-branes with appropriate fluxes (for further detail,
see the discussion in [59]).

Concerning the (covariant) scalar charges of the 1
2
-BPS attractor flow of the stu model, they can be

straightforwardly computed by using Eqs. (5) and (20):

Σs, 1
2
−BPS (z∞, z∞,Γ) =

= limτ→0−
eK/2

2

(∂sK) |W |+ (∂sW )

√
W

W

 (z (τ) , z (τ) ,Γ) =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·
[
|q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞|

(s∞ − s∞)
+

+
(
q1 + p0t∞u∞ − p2u∞ − p3t∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

 .
(23)
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Σt, 1
2
−BPS (z∞, z∞,Γ) =

= limτ→0−
eK/2

2

(∂tK) |W |+ (∂tW )

√
W

W

 (z (τ) , z (τ) ,Γ) =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·
[
|q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞|

(t∞ − t∞)
+

+
(
q2 + p0s∞u∞ − p1u∞ − p3s∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

 .
(24)

Σu, 1
2
−BPS (z∞, z∞,Γ) =

= limτ→0−
eK/2

2

(∂uK) |W |+ (∂uW )

√
W

W

 (z (τ) , z (τ) ,Γ) =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·
[
|q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞|

(u∞ − u∞)
+

+
(
q3 + p0s∞t∞ − p1t∞ − p2s∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

 .
(25)

4. The Most General Non-BPS Z = 0 Attractor Flow

Let us now investigate the non-BPS Z = 0 case.
As shortly noticed in [59], in spite of the fact that this attractor flow is non-supersymmetric, it has

many common features with the supersymmetric (1
2
-BPS) case.

As yielded by the analysis of [50], the non-BPS Z = 0 horizon attractor solutions can be obtained
from 1

2
-BPS ones simply by changing the signs of any two imaginary parts of the moduli (dilatons) and

consistently imposing specific constraints on BH charges. For example, one can choose (without any
loss of generality, due to triality symmetry) to flip the dilatons as follows:

y1 → y1, y2 → −y2, y3 → −y3. (26)
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This yields the following constraints on the BH charge configurations supporting the non-BPS Z = 0

attractors at the BH event horizon (τ → −∞) [50]:

I4 (Γ) > 0;

p2p3 − p0q1 ≶ 0;

p1p3 − p0q2 ≷ 0;

p1p2 − p0q3 ≷ 0.

(27)

The constraints (27) defines the non-BPS Z = 0 orbit of the tri-fundamental representation (2,2,2) of
the U -duality group (SU (1, 1))3 (see Appendix II of [26])

Onon−BPS,Z=0 =
(SU (1, 1))3

(U (1))2 . (28)

Notice that such an orbit shares the same coset expression of O 1
2
−BPS given by Eq. (16). However, they

do not coincide, but instead they are two separated branches of a disconnected manifold, classified by
the local value of the function sgn

(
|Z|2 − |DsZ|2

)
(see Appendix II of [26]; DsZ is defined below Eq.

(38)).
The same holds all along the attractor flow, i.e. ∀τ ∈ R−. Indeed, the most general non-BPS Z = 0

attractor flow can be obtained by taking the most general 1
2
-BPS attractor flow, and flipping any two out

of the three dilatons. Thus, by taking Eq. (9) and flipping the dilatons as given by Eq. (26), one achieves
the following result:

exp [−4Unon−BPS,Z=0 (τ)] = I4 (H (τ)) ;

z1
non−BPS,Z=0(τ) =

HΛ(τ)HΛ(τ)− 2H1(τ)H1(τ)− iI1/2
4 (H(τ))

2 [H2(τ)H3(τ)−H0(τ)H1(τ)]
= z1

1
2
−BPS(τ);

z2
non−BPS,Z=0(τ) =

HΛ(τ)HΛ(τ)− 2H2(τ)H2(τ) + iI1/2
4 (H(τ))

2 [H1(τ)H3(τ)−H0(τ)H2(τ)]
= z2

1
2
−BPS(τ);

z3
non−BPS,Z=0(τ) =

HΛ(τ)HΛ(τ)− 2H3(τ)H3(τ) + iI1/2
4 (H(τ))

2 [H2(τ)H1(τ)−H0(τ)H3(τ)]
= z3

1
2
−BPS(τ). (29)

This is the most general expression of the non-BPS Z = 0 attractor flow, in the “polarization” given by
Eq. (26), which, due to the underlying triality symmetry of the stu model, does not imply any loss of
generality.

Consistently with the constraints (27), H (τ) is constrained as follows along the non-BPS Z = 0
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attractor flow (∀τ ∈ R−):
I4 (H (τ)) > 0;

H2 (τ)H3 (τ)−H0 (τ)H1 (τ) ≶ 0;

H1 (τ)H3 (τ)−H0 (τ)H2 (τ) ≷ 0;

H1 (τ)H2 (τ)−H0 (τ)H3 (τ) ≷ 0.

(30)

In the near-horizon limit τ → −∞, Eq. (29) yields the purely charge-dependent, critical expressions
of the scalars at the BH event horizon, given by Eq. (4.9) of [50]. In the same limit, the constraints (30)
consistently yield the contraints (27). The integrability conditions (13) clearly hold also in this case.

Consistently with the analysis of [47], the general non-BPS Z = 0 attractor flow solution (29) of the
stu model can be axion-free only for the configurations D0 −D6, D0 −D4 (magnetic) and D2 −D6

(electric).
A consequence of Eq. (29) is that Γ∞ satisfies the non-BPS Z = 0 Attractor Eqs. (see e.g. [23] and

[32]). Analogously to what happens for the 1
2
-BPS attractor flow, this determines a sort of “Attractor

Mechanism at spatial infinity”.
Analogously to what happens in the 1

2
-BPS case, the absence of flat directions in the non-BPS Z = 0

attractor flow (which is not a general feature of N = 2, d = 4 ungauged supergravity coupled to
Abelian vector multiplets, but however holds for the stu model [40, 43]) is crucial for the validity of the
expression (29).

By exploiting the strict relation with the 1
2
-BPS attractor flow, one can also determine the explicit

expression of the fake superpotentialWnon−BPS,Z=0 for the non-BPS Z = 0 attractor flow. Considering
the absolute value of the N = 2, d = 4 central charge function Z given by Eq. (5) and flipping two
dilatons out of three in the “polarization” given by Eq. (26), one obtains the following non-BPS Z = 0

fake superpotential (notice that K, as given by the first Eq. of (4), is invariant under such a flipping):

Wnon−BPS,Z=0,s = eK/2
∣∣q0 + q1s+ q2t+ q3u+ p0stu− p1tu− p2su− p3st

∣∣ =

=
∣∣Z (s, t, u)∣∣ =W 1

2
−BPS

(
s, t, u

)
, (31)

where the subscript “s” denotes the modulus untouched by the considered flipping of dilatons; in the
last step we used that aforementioned fact that for all N = 2, d = 4 ungauged supergravities it holds
thatW 1

2
−BPS = |Z|.

Clearly, the flipping (26) is not the only possible one. By triality symmetry, two other equivalent
flippings exist, namely

y1 → −y1, y2 → y2, y3 → −y3; (32)

y1 → −y1, y2 → −y2, y3 → y3, (33)

obtained by cyclic permutations from (26). Such equivalent flippings respectively determine the follow-
ing (respectively “t-polarized” and “u-polarized”) non-BPS Z = 0 fake superpotentials, completely
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equivalent to the “s-polarized” one given by Eq. (31):

Wnon−BPS,Z=0,t = eK/2
∣∣q0 + q1s+ q2t+ q3u+ p0stu− p1tu− p2su− p3st

∣∣ =

= |Z (s, t, u)| =W 1
2
−BPS (s, t, u) ; (34)

Wnon−BPS,Z=0,u = eK/2
∣∣q0 + q1s+ q2t+ q3u+ p0stu− p1tu− p2su− p3st

∣∣ =

=
∣∣Z (s, t, u)∣∣ =W 1

2
−BPS

(
s, t, u

)
. (35)

It can be shown by straightforward computations that the real, moduli- and charge- dependent functions
given by Eqs. (31), (34) and (35) do satisfy all the conditions defining a first order fake superpotential
(see the treatment in [37, 42], recently reviewed in [70, 74]), and thus they respectively are an “s-
polarized”, “t-polarized” and “u-polarized” non-BPS Z = 0 fake superpotential.

Eqs. (31), (34) and (35) can also be rewritten respectively as follows:

Wnon−BPS,Z=0,s =

√
g11 (DsZ)DsZ; (36)

Wnon−BPS,Z=0,t =

√
g22 (DtZ)DtZ; (37)

Wnon−BPS,Z=0,u =

√
g33 (DuZ)DuZ, (38)

where DsZ ≡
[
∂s + 1

2
(∂sK)

]
Z is the covariant derivarive of Z along the direction s (and analogously

for the moduli t and u).

Due to the complete factorization of the manifold
(
SU(1,1)
U(1)

)3

(determining the diagonality of the

metric gij , given by the second Eq. of (4)), Eqs. (36), (38) and (37) are manifestly H-invariant. This
result is consistent with the H-invariance imposed by the relation (given by Eq. (2.21) of [37], as well
as by Eq. (13) of [42], and reported here for completeness’ sake)

dU (τ,Γ)

dτ
= eU(τ)W (z (τ) , z (τ) ,Γ) (39)

between W and the warp factor U (τ) appearing in the Ansatz for the static, spherically symmetric,
asymptotically flat, extremal dyonic BH metric:

ds2 = −e2U(τ)dt2 + e−2U(τ)d−→x 2. (40)

Actually, in the treatment given in the present paper, Eq. (39) has been crucial in order to guess (and
thus check) the analytical form of the fake superpotentialW (z (τ) , z (τ) ,Γ), by knowing the analyitical
solution for the warp factor U (τ,Γ) relevant to the considered charge configuration.

Under the integrability conditions (13), the flow (29) is the most general solution (within the “s-
polarization” defined by Eq. (26)) of the “non-BPS Z = 0 analogue” of the 1

2
-BPS stabilization Eqs.

(14), namely of:

HT (τ) = 2eK(z(τ),z(τ))Im

gij (z (τ) , z (τ))


(
DiX

Λ
)

(z (τ) , z (τ))

(DiFΛ) (z (τ) , z (τ))

(∂jW) (z (τ) ,H (τ))

 ,
(41)
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which we can refer to as the non-BPS Z = 0 stabilization Equations. It is easy realized that they can be
obtained from the non-BPS Z = 0 Attractor Eqs. (see the treatment in [23])

ΓT = 2eK(z,z)Im

gij (z, z)


(
DiX

Λ
)

(z, z)

(DiFΛ) (z, z)

(∂jW) (z,Γ)

 (42)

by simply replacing Γ with H (τ). Consistently, Eq. (42) is the near-horizon (τ → −∞) limit of Eq.
(41).

A remarkable consequence of the first order formalism for the non-BPS Z = 0 attractor flow is that
Eqs. (41) and (42) can actually be recast in the following (1

2
-)BPS-like forms in terms of the non-BPS

Z = 0 fake superpotential(s), respectively:

HT (τ) = 2eK(z(τ),z(τ))Im

Wnon−BPS,Z=0 (z (τ) , z (τ) ,H (τ))

 X
Λ

f (z (τ) , z (τ))

FΛ,f (z (τ) , z (τ))


 ;

(43)

ΓT = 2eK(z,z)Im

Wnon−BPS,Z=0 (z, z,Γ)

 X
Λ

f (z, z)

FΛ,f (z, z)


 , (44)

where

Wnon−BPS,Z=0 (z, z,Γ) = Z
(
s, t, u,Γ

)
in the “s−polarization” (Eq. 26); (45)

Wnon−BPS,Z=0 (z, z,Γ) = Z (s, t, u,Γ) in the “t−polarization” (Eq. 32); (46)

Wnon−BPS,Z=0 (z, z,Γ) = Z
(
s, t, u,Γ

)
in the “u−polarization” (Eq. 33), (47)

such that in general
Wnon−BPS,Z=0 = |Wnon−BPS,Z=0| . (48)

The subscript “f” in Eqs. (43) and (44) indicates that a flipping of the dilatons has been performed
((Eqs. (26), (32) and (33), respectively for the choices (45), (46) and (47)). Notice that such a flipping
destroys the holomorphicity of XΛ and FΛ in the moduli.

Eq. (29) is the most general solution of Eq. (43) with the choice (45), and equivalent expressions for
the most general non-BPS Z = 0 attractor flow can be obtained by solving Eq. (43) with the choice (46)
or (47).

Such a (1
2
-)BPS-like reformulation of the non-BPS Z = 0 stabilization Equations (41) and of their

near-horizon (τ → −∞) limit given by the non-BPS Z = 0 Attractor Eqs. (42) is possible due to the
strict similarity between the most general 1

2
-BPS and non-BPS Z = 0 attractor flows in the considered

stu model, which actually are related through a flipping of two dilatons out of three. This in turn is
related once again to the absence of flat directions along such flows, such that all moduli are explicitly
determined as functions of dyonic BH charges (and as functions of τ ) all along the attractor flow.

Now, by exploiting the first order formalism [118] for d = 4 extremal BHs [37, 42] (see also [70]
and [74]), one can compute the relevant BH parameters of the non-BPS Z = 0 attractor flow of the
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stu model starting from the expression of the non-BPS Z = 0 fake superpotentialWnon−BPS,Z=0 given
by Eqs. (31), (34) or (35). The choice of “s-polarization”, “t-polarization” or “u-polarization” is
immaterial, due to the underlying triality symmetry of the moduli s, t and u. Thus, without loss of
generality, we choose to perform computations in the “s-polarization” (equivalent results in the other
two “polarizations” can be obtained by cyclic permutations of the moduli).

Eqs. (31) and (19) yield the following expressions of the ADM mass of the non-BPS Z = 0 attractor
flow of the stu model:

MADM,non−BPS,Z=0 (z∞, z∞,Γ) ≡ limτ→0−Wnon−BPS,Z=0,s (z (τ) , z (τ) ,Γ) =

= limτ→0−
∣∣Z (s (τ) , t (τ) , u (τ)

)∣∣ =

=

∣∣q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
∣∣√

−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)
.

(49)

Eq. (49) yields that the marginal bound [111] is not saturated by non-BPS Z = 0 states, because
MADM,non−BPS,Z=0 is not equal to the sum of the ADM masses of four D6-branes with appropriate
fluxes (for further detail, see the discussion in [59]). This is actually expected, due to the strict similarity,
discussed above, between 1

2
-BPS and non -BPS Z = 0 attractor flows in the considered stu model;

such a similarity can be explained by noticing that both such flows can be uplifted to the same 1
8
-BPS

non-degenerate attractor flow of N = 8, d = 4 supergravity (see e.g. the discussion in [50]).
Concerning the (covariant) scalar charges of the non-BPS Z = 0 attractor flow of the stu model,

they can be straightforwardly computed (in the “s-polarization”, without loss of generality) by using
Eqs. (31) and (20):

Σs,non−BPS,Z=0 (z∞, z∞,Γ) ≡ limτ→0− (∂sWnon−BPS,Z=0,s) (z (τ) , z (τ) ,Γ) =

= limτ→0−∂s
∣∣Z (s (τ) , t (τ) , u (τ)

)∣∣ =

= limτ→0−
eK/2

2

[
(∂sK)

∣∣W (
s, t, u

)∣∣+
(
∂sW

(
s, t, u

))√W (s, t, u)

W
(
s, t, u

)] =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·

[∣∣q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
∣∣

(s∞ − s∞)
+

+
(
q1 + p0t∞u∞ − p2u∞ − p3t∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

]
=

= Σs, 1
2
−BPS

∣∣∣
t∞→t∞,u∞→u∞

. (50)
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Σt,non−BPS,Z=0 (z∞, z∞,Γ) ≡ limτ→0− (∂tWnon−BPS,Z=0,s) (z (τ) , z (τ) ,Γ) =

= limτ→0−∂t
∣∣Z (s (τ) , t (τ) , u (τ)

)∣∣ =

= limτ→0−
eK/2

2

(∂tK)
∣∣W (

s, t, u
)∣∣+

(
∂tW (s, t, u)

)√W
(
s, t, u

)
W (s, t, u)

 =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·

[∣∣q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
∣∣

(t∞ − t∞)
+

+
(
q2 + p0s∞u∞ − p1u∞ − p3s∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

 .
(51)

Σu,non−BPS,Z=0 (z∞, z∞,Γ) ≡ limτ→0− (∂uWnon−BPS,Z=0,s) (z (τ) , z (τ) ,Γ) =

= limτ→0−∂u
∣∣Z (s (τ) , t (τ) , u (τ)

)∣∣ =

= limτ→0−
eK/2

2

(∂uK)
∣∣W (

s, t, u
)∣∣+

(
∂uW (s, t, u)

)√W
(
s, t, u

)
W (s, t, u)

 =

=
1

2
√
−i(s∞ − s∞)(t∞ − t∞)(u∞ − u∞)

·

·

[∣∣q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
∣∣

(u∞ − u∞)
+

+
(
q3 + p0s∞t∞ − p1t∞ − p2s∞

)
·

·

√
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞
q0 + q1s∞ + q2t∞ + q3u∞ + p0s∞t∞u∞ − p1t∞u∞ − p2s∞u∞ − p3s∞t∞

 .
(52)

Also, it is here worth computing the difference between the squared non-BPS Z = 0 fake superpo-
tential and the squared absolute value of theN = 2, d = 4 central charge along the considered non-BPS
Z = 0 attractor flow. This amounts to computing the difference generalizing the BPS bound [112] to the
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whole attractor flow (without loss of generality, we perform calculations in the “s-polarization”):

Θ (X ,Y ,Γ) ≡ W2
s,non−BPS,Z=0 − |Z|

2 =

= − 1

8(p1p3 − p0q2)Y2

[(
pΛqΛ − 2p2q2 − 2(p1p3 − p0q2)X 2

)2
+ 4(p1p3 − p0q2)2(Y2)2 + I4

]
−

− 1

8(p1p2 − p0q3)Y2

[(
pΛqΛ − 2p3q3 − 2(p1p2 − p0q3)X 3

)2
+ 4(p1p2 − p0q3)2(Y2)2 + I4

]
> 0.

(53)

Such an expression for the scalar-dependent, strictly positive Θ was obtained by using the following
relations:

(pΛqΛ − 2p2q2)2 + I4 = 4(p1p3 − p0q2)(q1q3 + p2q0);

(pΛqΛ − 2p3q3)2 + I4 = 4(p1p2 − p0q3)(q1q2 + p3q0). (54)

Thus, the BPS bound [112] holds not only at the BH event horizon (r = rH), but actually (in a scalar-
dependent way) all along the non-BPS Z = 0 attractor flow (i.e. ∀r > rH).

5. The most General Non-BPS Z 6= 0 Attractor Flow

All the features holding for 1
2
-BPS and non-BPS Z = 0 attractor flows (respectively treated in Sects.

3. and 4.) do not directly hold for the non-BPS Z 6= 0 attractor flow, which actually turns out to be rather
different from (and structurally much more intricate than) such two attractor flows.

As mentioned in the Introduction, the non-BPSZ 6= 0 attractor flow of the stumodel has been already
considered in literature in particular cases, namely for the D0−D4 (magnetic) [51, 59], D0−D6 [59],
D2 −D6 (electric) [28, 62] D0 −D2 −D4 (magnetic with D2) [62], D0 −D2 −D4 −D6 (without
B-fields) [28] supporting BH charge configurations.

In the present Section we determine the explicit expression of the non-BPS Z 6= 0 attractor flow for
the most general supporting BH charge configuration, with all electric and magnetic charges switched
on, namely for the non-BPS Z 6= 0-supporting branch of the D0 − D2 − D4 − D6 configuration.
Thence, as already done for 1

2
-BPS and non-BPS Z = 0 attractor flows, by exploiting the first order

(fake supergravity) formalism [37, 42, 118], we compute the ADM masses as well as the covariant
scalar charges, and study the issue of marginal stability [111], completing and refining the treatment
given in [51, 59, 62].

5.1. U -Duality Transformations along the Orbit Onon−BPS,Z 6=0

In order to derive the explicit expression of the non-BPS Z 6= 0 attractor flow when all BH charges
are non-vanishing, we exploit a method already used in [28], [59] and [62], based on performing suitable
symplectic transformations along the relevant (i.e. supporting) charge orbit of the U -duality group. In
Eqs. (16) and (28) we recalled the form of the 1

2
-BPS- and non-BPS Z = 0- supporting BH charge

orbits of the tri-fundamental representation (2,2,2) of the U -duality group G (given by Eq.(1)) of the
stu model, also commenting on their separation [26]. The corresponding non-BPS Z 6= 0-supporting
BH charge orbit reads [26]

Onon−BPS,Z 6=0 =
(SU (1, 1))3

(SO (1, 1))2 , (55)
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defined by the constraint
I4 (Γ) < 0. (56)

As done in [59] and [62], in order to perform a symplectic transformation along the charge orbit
Onon−BPS,Z 6=0 of the (2,2,2) representation of the U -duality, we take advantage of the complete factor-

ization of the special Kähler manifold
(
SU(1,1)
U(1)

)3

(ultimately determining the triality symmetry), which
allows one to deal with the product of three distinct 2×2 matrices of SL (2,R), rather than with a unique
8× 8 matrix of the U -duality group embedded in the relevant symplectic group Sp (8,R).

The first step is to perform an Sp (8,R)-transformation from the basis
(
pΛ, qΛ

)
to a basis Aabc

(a, b, c = 0, 1 throughout) of BH charges expicitly transforming under the (2,2,2) of the U -duality.
Such a transformation is given by Eq. (5.1) of [59] (equivalent to Eq. (3.5) of the second Ref. of [3]; see
also Section 5 of [50]). The explicit action of a generic symplectic transformation of the U -duality on
the BH charges Aabc is given, up to some change of notation, by Eqs. (5.2) and (5.3) of [59], which we
report below for simplicity’s sake:

A′a′b′c′ = (M1) aa′ (M2) bb′ (M3) cc′ aabc; (57)

Mi ≡

(
ai bi

ci di

)
∈ SL (2,R) , det (Mi) = 1, ∀i = 1, 2, 3, (58)

where each matrix pertains to the degrees of freedom of only one modulus (e.g. M1 to s, M2 to t, M3 to
u). The transformation (57)-(58) of (SL (2,R))3 ⊂ Sp (8,R) induces also a linear fractional (Möbius)
transformation on the moduli zi as follows (no summation on repeated indices; once again, we report
Eq. (5.3) of [59] for simplicity’s sake; also recall Eq. (2)):

z′i =
aiz

i + bi

cizi + di
. (59)

As done in [59] and [62], we use the configuration D0 − D6 as “pivot” in order to perform the
transformation (57)-(59). Indeed, such a BH charge configuration supports only non-BPS Z 6= 0 at-
tractors, as it can be easily realized by computing the corresponding quartic U -invariant, given by Eq.
(8): I4 (ΓD0−D6) < 0 (see also the treatment of [47]). Thus, we want to transform from the configu-
ration D0 − D6 (corresponding to charges (q0, p

0), which we denote here (q, p)) to the most general
configuration D0 − D2 − D4 − D6, corresponding to all BH charges switched on: (q0, qi, p

i, p0). By
exploiting the transformation (57)-(59), the parameters ai, bi, ci, di of the Mis dualizing from D0 −D6

to D0−D2−D4−D6 must satisfy the following set of constraints:

− q0 = −a1a2a3q + b1b2b3p;

qi = −1

2
sijkciajakq +

1

2
sijkdibjbkp;

pi = −1

2
sijkaicjckq +

1

2
sijkbidjdkp;

p0 = −c1c2c3q + d1d2d3p, (60)
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where sijk ≡ |εijk|. Notice that the system (60) admits solutions iff the condition (56) is met; this implies
the transformation (57)-(59) to belong to the U -duality orbit Onon−BPS,Z 6=0 given by Eq. (55). The sign
of the BH charges q and p is actually irrelevant for the condition (56) to be satisfied; thus, without loss of
any generality, one can choose e.g. q > 0, p > 0. Within such a choice, the explicit form of the matrices
Mis under consideration (and of their inverse) reads as follows:

Mi = − sgn (ξ)√
(ςi + %i) ξ

(
ςiξ −%i
ξ 1

)
⇔M−1

i = − sgn (ξ)√
(ςi + %i) ξ

(
1 %i

−ξ ςiξ

)
; (61)

ξ ≡
(
p

q

)1/3
[

2p1p2p3 + p0
(√
−I4 − pΛqΛ

)
2p1p2p3 − p0

(√
−I4 − pΛqΛ

)]1/3

∈ R; (62)

ςi ≡
√
−I4 + pΛqΛ − 2piqi
sijkpjpk − 2p0qi

∈ R (no sum on i); (63)

%i ≡
√
−I4 − pΛqΛ + 2piqi
sijkpjpk − 2p0qi

∈ R (no sum on i). (64)

The definitions (63) and (64), together with Eq. (8), imply that (no sum on i)

ςi%i = − sijkqjqk + 2q0p
i

sijkpjpk − 2p0qi
. (65)

As expected since the transformation (57)-(59) belongs to the orbit Onon−BPS,Z 6=0 of the U -duality, it
leaves I4 unchanged:

I4 (ΓD0−D2−D4−D6) = −
(
pΛqΛ

)2
+ 4

∑
i<j

piqip
jqj − 4p0q1q2q3 + 4q0p

1p2p3 = − (pq)2 = I4 (ΓD0−D6) .

(66)
It should be stressed that the transformation (57)-(59) (along with Eqs. (61)-(64)) is not the most

general transformation ofOnon−BPS,Z 6=0 mapping theD0−D6 into theD0−D2−D4−D6 configuration
(and vice versa). Indeed, it may be further generalized by replacing ξ with a triplet ξi, constrained by
ξ1ξ2ξ3 = ξ3. Such a two-parameter generalization of the above transformation indicates, as mentioned
above, the presence of a real, 2-dim. moduli space (namely (SO (1, 1))2 [41, 43]) all along the non-
BPS Z 6= 0 attractor flow; this will become evident when looking at the explicit form of such a flow,
presented further below.

5.2. D0−D6: the Most General Flow and Fake Superpotential

The most general non-BPS Z 6= 0 attractor flow in the D0−D6 configuration reads as follows [59]:

exp [−4Unon−BPS,Z 6=0 (τ)] =

=
[
a− (−I4)1/4 τ

] [
k1 − (−I4)1/4 τ

] [
k2 − (−I4)1/4 τ

] [
k3 − (−I4)1/4 τ

]
− b2; (67)
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xinon−BPS,Z 6=0 (τ) = ξ−1
0 eαi ·

·

[
kj − (−I4)1/4 τ

] [
kl − (−I4)1/4 τ

]
−
[
a− (−I4)1/4 τ

] [
ki − (−I4)1/4 τ

]
[
kj − (−I4)1/4 τ

] [
kl − (−I4)1/4 τ

]
+
[
a− (−I4)1/4 τ

] [
ki − (−I4)1/4 τ

]
− 2b

; (68)

yinon−BPS,Z 6=0 (τ) = 2ξ−1
0 eαi ·

· exp [−2Unon−BPS,Z 6=0 (τ)][
kj − (−I4)1/4 τ

] [
kl − (−I4)1/4 τ

]
+
[
a− (−I4)1/4 τ

] [
ki − (−I4)1/4 τ

]
− 2b

, (69)

where
ξ0 ≡ (p/q)1/3, (70)

a ∈ R0, b, ki ∈ R (kis cannot all vanish), and the triplet of real constants αi satisfies the constraint∑
i

αi = 0. (71)

It is worth pointing out that the D0−D6 configuration supports axion-free non-BPS Z 6= 0 attractor
flow(s); when considering the near-horizon limit, and thus the critical, charge-dependent values of the
moduli, this is consistent with the analysis performed in [15, 41, 47]. An axion-free attractor flow
solution of Eqs. (67)-(69) can be obtained e.g. by putting

ki = a ∀i = 1, 2, 3, (72)

and it reads as follows:

exp [−4Unon−BPS,Z 6=0,axion−free (τ)] =
[
a− (−I4)1/4 τ

]4

− b2;

xinon−BPS,Z 6=0,axion−free (τ) = 0;

yinon−BPS,Z 6=0,axion−free (τ) = ξ−1
0 eαi

√√√√√√
[
a− (−I4)1/4 τ

]2

+ b[
a− (−I4)1/4 τ

]2

− b
. (73)

The non-BPS Z 6= 0 fake superpotential of the first order formalism can be computed to have the
following form in the D0−D6 configuration:

Wnon−BPS,Z 6=0(z, z, q, p) =
1

4
eK/2

[∏
i

∣∣q1/3 + p1/3e−αizi
∣∣] ·

·

1 +
∑
i<j

(
q2/3 − p2/3e−2αi |zi|2

)(
q2/3 − p2/3e−2αj |zj|2

)
− e−αi−αjq2/3p2/3(zi − zi)(zj − zj)

|q1/3 + p1/3e−αizi|2 |q1/3 + p1/3e−αjzj|2

 .
(74)
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The axion-free version of such a fake superpotential (e.g. pertaining to the solution (73)-(73)) reads as
follows:

Wnon−BPS,Z 6=0,axion−free(y, q, p) =
1

23
√

2

1√
y1y2y3

[∏
l

∣∣q1/3 − ip1/3e−αlyl
∣∣] ·

·

1 +
∑
i<j

[
q2/3 − p2/3e−2αi (yi)

2
] [
q2/3 − p2/3e−2αj (yj)

2
]

+ 4e−αi−αjq2/3p2/3yiyj

|q1/3 − ip1/3e−αiyi|2 |q1/3 − ip1/3e−αjyj|2

 . (75)

Now, by exploiting the first order formalism [118] for d = 4 extremal BHs [37, 42] (see also [70]
and [74]), one can compute the relevant BH parameters of the non-BPS Z 6= 0 attractor flow of d = 4

stu model in the D0 − D6 configuration, starting from the expression of the non-BPS Z 6= 0 fake
superpotentialWnon−BPS,Z 6=0 given by Eq. (74).

Eqs. (74) and (19) yield, after some algebra, the following expression for the ADM mass:

MADM,non−BPS,Z 6=0 (z∞, z∞,ΓD0−D6) =
P

27/2

[∏
i

√[
(Λi)−1 +Bi

]2
+ 1

]
·

·

1 +
∑
i<j

[
(Λi)

−2 − (Bi)
2 − 1

] [
(Λj)

−2 − (Bj)
2 − 1

]
+ 4 (Λi)

−1
(Λj)

−1[[
(Λi)−1 +Bi

]2
+ 1
] [[

(Λj)−1 +Bj
]2

+ 1
]

 ,

(76)

where the quantities

Λi ≡ ξ0y
i
∞; Bi ≡ xi∞

yi∞
, P ≡ p

√
y1
∞y

2
∞y

3
∞, Q ≡

q√
y1
∞y

2
∞y

3
∞

(77)

were introduced, and, for simplicity’s sake, the αis were chosen all to vanish (i.e. αi = 0 ∀i = 1, 2, 3).
P and Q are the dressed charges, i.e. a sort of asymptotical redefinition of the charges pertaining to D6

andD0 branes, respectively. On the other hand, Λi andBi are usually named (asymptotical brane) fluxes
and B-fields, respectively.

Eq. (5.2.) (along with the definitions (77)) coincides with Eq. (5.56) of [59], provided that the
following condition is met (see Eq. (5.44) of [59]):

Λ1
[
1 +

(
B1
)2
]
−
(
Λ1
)−1

= Λ2
[
1 +

(
B2
)2
]
−
(
Λ2
)−1

= Λ3
[
1 +

(
B3
)2
]
−
(
Λ3
)−1

. (78)

As observed in [59], Eq. (5.2.) (along with the definitions (77)) yields the marginal bound [111] to be
saturated, because MADM,non−BPS,Z 6=0 is equal to the sum of the ADM masses of four D6-branes with
appropriate fluxes (for further detail, see the discussion in [59]).

Concerning the (covariant) scalar charges, they can be straightforwardly computed by recalling Eqs.
(74) and (20), but their expressions are rather cumbersome. For simplicity’s sake, here we limit ourselves
to give the scalar charges for the “t3-degeneration” of the stu model (in which all charges and moduli
are equal, insensitive to i-index; see e.g. Eq. (116) below, as well as the treatment in Sect. 5 of [50]).
By denoting t ≡ x− iy, the covariant scalar charges of axion and dilaton in the D0−D6 configuration
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respectively read

Σx,non−BPS,Z 6=0 (x∞, y∞,ΓD0−D6) =
√

2P x∞
(Λ−1B +B2 + 1)√

(Λ−1 +B)2 + 1
; (79)

Σy,non−BPS,Z 6=0 (x∞, y∞,ΓD0−D6) = −P y∞√
2

[Λ−4 + Λ−3B + Λ−1B (B2 − 1) +B4 − 1]√
(Λ−1 +B)2 + 1

.

(80)

5.3. D0−D2−D4−D6: the Most General Flow and Fake Superpotential

Now, by performing the U -duality transformation (57-(59) (along with Eqs. (61)-(65)) and using the
most general non-BPS Z 6= 0 attractor flow in the D0−D6 configuration given by Eqs. (67)-(69), it is a
matter of long but straightforward computations to determine the most general non-BPS Z 6= 0 attractor
flow in the most general configuration, namely in the D0−D2−D4−D6 one, in which all BH charges
are switched on. It reads as follows (the moduli are here denoted as Z i ≡ X i − iY i; i 6= j 6= l and no
sum on repeated i−indices throughout):

exp [−4Unon−BPS,Z 6=0 (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ)− b2; (81)

X i
non−BPS,Z 6=0 (τ) =



ςie
2αiν2 [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b] +

+eαiν(ςi − %i) [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

−%i [hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b]



e2αiν2 [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b] +

+2eαiν [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b



;

(82)

Y inon−BPS,Z 6=0 (τ) =
2νeαi(ςi + %i)exp [−2Unon−BPS,Z 6=0 (τ)]

e2αiν2 [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b] +

+2eαiν [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b



,

(83)
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where ςi and %i have been defined in Eqs. (63) and (64), respectively. The constants αi and b have been
introduced in Eqs. (67)-(69). Furthermore, the new quantities (see Eqs. (62) and (70), as well)

ν ≡ ξ

ξ0

=

[
2p1p2p3 + p0

(√
−I4 − pΛqΛ

)
2p1p2p3 − p0

(√
−I4 − pΛqΛ

)]1/3

∈ R; (84)

hΛ (τ) ≡ bΛ − (−I4)1/4 τ, (85)

where bΣ are real constants, have been defined.
In the particular case in which b = 0, the expression of exp [−4Unon−BPS,Z 6=0 (τ)] can be recast in the

form
exp [−4Unon−BPS,Z 6=0 (τ)] = −I4 (H (τ)) ,

consistently with the results of [28] and [59], and on the same ground of (the first of) Eqs. (9) and (29),
respectively holding for the 1

2
-BPS and non-BPS Z = 0 attractor flows.

By performing the near-horizon (i.e. τ → −∞) limit, Eqs. (82) and (83) respectively yield the
following critical values of the moduli (the subscript “H” stands for “horizon”):

X i
non−BPS,Z 6=0,H ≡ limτ→−∞ X i

non−BPS,Z 6=0 (τ) =
ςie

2αiν2 − %i
e2αiν2 + 1

; (86)

Y inon−BPS,Z 6=0,H ≡ limτ→−∞ Y inon−BPS,Z 6=0 (τ) =
1

2

eαi(ςi + %i)ν

e2αiν2 + 1
=

√
−I4e

αiν

(sijkpjpk − 2p0qi) (e2αiν2 + 1)
.

(87)

It is worth pointing out that the D0−D2−D4−D6 configuration does not support axion-free non-BPS
Z 6= 0 attractor flow(s); when considering the near-horizon limit, and thus the critical, charge-dependent
values of the moduli, this is consistent with the analysis performed in [15, 41, 47].

The solution (81)-(83) (along with the definitions (84) and (85)) generalizes the result of [28]. As
mentioned in the Introduction, in [28] it was shown that, within the (non-BPSZ 6= 0-supporting branches
of the) D2 − D6 (electric) and D0 − D2 − D4 − D6 configurations, in absence of (some of the) B-
fields the attractor flow solution can be obtained by replacing the Sp (8,R)-covariant vector Γ of charges
(defined by Eq. (7)) with the Sp (8,R)-covariant vector H (τ) of harmonic functions (defined by Eqs.
(10)-(13)) in the corresponding critical, horizon solution.

For the 1
2
-BPS and non-BPS Z = 0 attractor flows, respectively treated in Sects. 3. and 4., such a pro-

cedure allows one to determine the most general attractor flow solution starting from the corresponding
critical, horizon solution.

On the other hand, for the non-BPS Z 6= 0 attractor flow such a procedure fails in presence of non-
vanishing B-fields. In other words, it can be shown that the completely general non-BPS Z 6= 0 attractor
flow solution (81)-(83) is not a solution of the would-be non-BPS Z 6= 0 stabilization Eqs. (see e.g. the
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treatments of [23], [19] and [32])

HT (τ) = 2eK(z(τ),z(τ))Im

W (z (τ))

 X
Λ

(z (τ))

FΛ (z (τ))

 +

+
i

2

W (z (τ))

|W |2 (z (τ) , z (τ))
Cijk (z (τ) , z (τ)) gii (z (τ) , z (τ)) gjj (z (τ) , z (τ)) gkk (z (τ) , z (τ)) ·

· (DjW ) (z (τ) , z (τ) ,H (τ)) (DkW ) (z (τ) , z (τ) ,H (τ))


(
DiX

Λ
)

(z (τ) , z (τ))

(DiFΛ) (z (τ) , z (τ))


 ,

(88)

which can be obtained from the non-BPS Z 6= 0 Attractor Eqs. (see e.g. the treatments in [23] and [32])

ΓT = 2eK(z,z)Im

W (z)

 X
Λ

(z)

FΛ (z)

 +

+
i

2

W (z)

|W |2 (z, z)
Cijk (z, z) gii (z, z) gjj (z, z) gkk (z, z) ·

· (DjW ) (z, z,Γ) (DkW ) (z, z,Γ)


(
DiX

Λ
)

(z, z)

(DiFΛ) (z, z)


 (89)

by simply replacing Γ with H (τ). On the other hand, the non-BPS Z 6= 0 attractor flow solutions
obtained in [28] for the D2 − D6 and D0 − D2 − D4 − D6 configurations (both without B-fields)
consistently do satisfy Eq. (88).

Furthermore, Eq. (89) is the near-horizon (τ → −∞) limit of Eq. (88), as it has to be.
The issue concerning whether (in all non-BPS Z 6= 0-supporting configurations) the actual non-BPS

Z 6= 0 stabilization Eqs. (if any) admit a (1
2
-)BPS-like reformulation in terms of a non-BPS Z 6= 0 fake

superpotential (whose general form is given by Eq. (90) below) is open, and its investigation is left for
future work.

Next, we can compute the non-BPS Z 6= 0 fake superpotential of the first order formalism in the
D0−D2−D4−D6 configuration. To do this, we apply the U -duality transformation (57-(59) (along
with Eqs. (61)-(65)) to the expression of the non-BPS Z 6= 0 fake superpotential in the D0 − D6

configuration given by Eq. (74), and, by noticing thatW does not have any further covariance property
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under such a transformation, after some algebra one achieves the following result:

Wnon−BPS,Z 6=0(Z,Z, p0, p1, p2, p3, q0, q1, q2, q3) =

=
1

4

ν3/2 (−I4)1/4√∏
i(ςi + %i)

eK/2

[∏
i

∣∣ςi −Z i + (%i + Z i)e−αiν−1
∣∣] ·

·

(
1 +

∑
i<j

[|ςi −Z i|2 − |%i + Z i|2e−2αiν−2] [|ςj −Zj|2 − |%j + Zj|2e−2αjν−2]

|ςi −Z i + (%i + Z i)e−αiν−1|2 |ςj −Zj + (%j + Zj)e−αjν−1|2
+

−
∑
i<j

e−αi−αjν−2(ςi + %i)(ςj + %j)(Z i −Z
i
)(Zj −Zj)

|ςi −Z i + (%i + Z i)e−αiν−1|2 |ςj −Zj + (%j + Zj)e−αjν−1|2

)
. (90)

Consistently with the first order formalism [118] for d = 4 extremal BHs [37, 42] (see also [70] and
[74]), it is easy to check that the near-horizon limit of W2

non−BPS,Z 6=0 yields the square root of −I4

(given by Eq. (8)), or equivalently the square root of the Cayley’s hyperdeterminant Det (Ψ):

W2
non−BPS,Z 6=0,H(ΓD0−D2−D4−D6) ≡

≡ limτ→−∞W2
non−BPS,Z 6=0(Z (τ) ,Z (τ) ,ΓD0−D2−D4−D6) =

=
√
−I4 =

√
Det (Ψ) =

SBH,non−BPZ,Z 6=0(ΓD0−D2−D4−D6)

π
, (91)

where in the last step the Bekenstein-Hawking entropy-area formula [95] was used.
Now, as done for the D0−D6 configuration in the previous Subsection, by exploiting the first order

formalism [118] for d = 4 extremal BHs [37, 42] (see also [70] and [74]), one can compute the relevant
BH parameters, such as the ADM mass (Eq. (19)) and the covariant scalar charges (Eq. (20)), starting
from the fake superpotentialWnon−BPS,Z 6=0 given by Eq. (90). The computations are long but straight-
forward, and they yield cumbersome results (also e.g. in the limit of “t3-degeneration”, see Eq. (116)
below), which we thus decide to omit here. We will explicitly analyze some particular configurations in
Sect. 6..

However, it is easy to realize that Eq. (90) implies the marginal bound [111] to be saturated, because
(see Eq. (19))

MADM,non−BPS,Z 6=0,(Z∞,Z∞,ΓD0−D2−D4−D6) =

=Wnon−BPS,Z 6=0(Z∞,Z∞,ΓD0−D2−D4−D6) ≡
≡ limτ→0−Wnon−BPS,Z 6=0(Z (τ) ,Z (τ) ,ΓD0−D2−D4−D6) (92)

is equal to the sum of the ADM masses of four D6-branes with appropriate fluxes (for further detail on
definition of such brane fluxes, see the related discussion in [59]). Thus, generalizing the related results
of [59] and [62], it can be stated that the marginal stability holds for the most general non-BPS Z 6= 0

attractor flow of the N = 2, d = 4 stu model.

6. Analysis of Particular Configurations

In this Section we analyze in depth some particularly simple configurations, generalizing some results
in literature [28, 51, 59, 62].
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6.1. Magnetic (D0−D4)

The configuration D0 − D4 (also named magnetic) of the stu model has been previously treated in
[51] and [59]. In this case, the quantities of the U -duality transformation (57)-(59) along Onon−BPS,Z 6=0

defined by Eqs. (62)-(64) undergo a major simplification:

ξ = ξ0; ςi = %i =

√
−q0pi

1
2
sijkpjpk

. (93)

Correspondingly, the non-BPS Z 6= 0 attractor flow (81)-(83) acquires the following form (as above, the
moduli are here denoted as Z i ≡ X i − iY i; i 6= j 6= l and no sum on repeated i−indices throughout):

exp [−4Unon−BPS,Z 6=0 (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ)− b2; (94)

X i
non−BPS,Z 6=0 (τ) = ςi ·

· e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b]− [hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b]
e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b] + 2eαi [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b


;

(95)

Y inon−BPS,Z 6=0 (τ) = 4ςi ·

· eαiexp [−2Unon−BPS,Z 6=0 (τ)]
e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b] + 2eαi [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b


.

(96)

It is worth pointing out that the D0 − D4 configuration supports axion-free non-BPS Z 6= 0 attractor
flow(s); when considering the near-horizon limit, and thus the critical, charge-dependent values of the
moduli, this is consistent with the analysis performed in [15, 41, 47]. An axion-free attractor flow
solution of Eqs. (94)-(96) can be obtained e.g. by putting

αi = 0 ∀i = 1, 2, 3; (97)

b = 0, (98)

and it reads as follows:

exp [−4Unon−BPS,Z 6=0,axion−free (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ) ;

X i
non−BPS,Z 6=0,axion−free (τ) = 0;

Y inon−BPS,Z 6=0,axion−free (τ) = 4ςi

√
h0 (τ)h1 (τ)h2 (τ)h3 (τ)

4hj (τ)hl (τ)
. (99)
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Furthermore, within the additional assumption (97), Eqs. (94)-(96) yield the solution obtained in [59].
Always considering a framework in which the assumption (97) holds true, Eqs. (90) yields that the

non-BPS Z 6= 0 fake superpotential in the D0−D4 configuration has the following expression:

Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z,Z,ΓD0−D4

)
= eK/2·

·
[
−q0 +

p1

2

(
Z2Z3

+ Z3Z2
)

+
p2

2

(
Z1Z3

+ Z3Z1
)

+
p3

2

(
Z2Z1

+ Z1Z2
)]

. (100)

The axion-free version of such a fake superpotential (e.g. pertaining to the solution (99)-(99)) reads as
follows:

Wnon−BPS,Z 6=0,axion−free (Y ,ΓD0−D4) =
1

2
√

2

[−q0 + p1Y2Y3 + p2Y1Y3 + p3Y1Y2]√
Y1Y2Y3

. (101)

The existence of a first order formalism in the non-BPS Z 6= 0-supporting (branch of the) D0 −D4

configuration of the stu model, based on the fake superpotential given by Eq. (100), gives a simple
explanation of the integrability of the equations of motion of scalars, answering to the question raised in
Appendix A of [59].

Now, as done above for the D0 − D6 and D0 − D2 − D4 − D6 configurations, by exploiting the
first order formalism for d = 4 extremal BHs, one can compute the relevant BH parameters, such as the
ADM mass and the covariant scalar charges, starting from the fake superpotential Wnon−BPS,Z 6=0|αi=0 ∀i
given by Eq. (100).

Concerning the ADM mass, by recalling Eq. (19) and using Eq. (100) one obtains an explicit ex-
pression which, after introducing suitable dressed charges (see Eq. (104)) and putting (see Eq. (77))

B1 = B2 = B3 = B, (102)

is given by Eq. (4.6) of [59], which we report here for completeness’ sake:

MADM,non−BPS,Z 6=0|αi=0 ∀i
(
Z∞,Z∞,ΓD0−D4

)
=

= limτ→0− Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z (τ) ,Z (τ) ,ΓD0−D4

)
=

=
1

2
√

2

[
|Q0|+

(
1 +B2

)∑
i

P i

]
, (103)

where the dressed charges are defined as follows (no summation on repeated indices; notice the different
definitions with respect to the D0−D6 configuration, whose dressed charges are given by Eq. (77)):

Q0 ≡
q0√

Y1
∞Y2

∞Y2
∞
, P i ≡

√
Y1
∞Y2

∞Y2
∞

Y i∞
pi. (104)

By recalling Eq. (20) and using Eq. (100), one can compute the covariant scalar charges of the
non-BPS Z 6= 0 attractor flow in the D0 −D4 configuration. Within the simplifying assumptions (97)
and (102), one obtains the following explicit expressions (i 6= j 6= l, no sum on repeated indices):

ΣX ,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD0−D4) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂X i

)(
Z (τ) ,Z (τ) ,ΓD0−D4

)
=

=
√

2X i
∞ (P j + P l); (105)
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ΣY,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD0−D4) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂Y i

)(
Z (τ) ,Z (τ) ,ΓD0−D4

)
=

=
Y i∞√

2

(
− |Q0| − 2P i + (1−B2)

∑
k

P k

)
, (106)

where the split in axionic scalar charges ΣX ,i and dilatonic scalar charges ΣY,i was performed.

It is here worth computing the difference between the squared non-BPS Z 6= 0 fake superpotential
and the squared absolute value of the N = 2, d = 4 central charge along the non-BPS Z 6= 0 attractor
flow. This amounts to computing the difference generalizing the BPS bound [112] to the whole attractor
flow (in the non-BPS Z 6= 0-supporting branch of the magnetic charge configuration):

∆ (Y ,Γ) ≡ W2
non−BPS,Z 6=0 − |Z|

2 =
|q0|
2

(
p1

Y1
+
p2

Y2
+
p3

Y3

)
> 0. (107)

∆ is dilaton-dependent and strictly positive all along the non-BPS Z 6= 0 attractor flow. At the infinity,
by using the dressed charges defined by Eq. (104), the result given by Eq. (4.8) of [59] is recovered.
Thus, the BPS bound [112] holds not only at the BH event horizon (r = rH), but actually (in a dilaton-
dependent way) all along the non-BPS Z 6= 0 attractor flow (i.e. ∀r > rH).

Of course, by relaxing the simplifying conditions (97) and/or (102), i.e. by considering non-vanishing
αis (constrained by Eq. (71)) and/or different, i-indexed B-fields, a much richer situation arises, but the
main features of the framework, outlined above, are left unchanged.

6.2. Electric (D2−D6)

The configuration D2 − D6 (also named electric) of the stu model has been previously treated in
[28] and [62]. Analogously to what happens in the D0 − D4 (magnetic) configuration, in this case
the quantities of the U -duality transformation (57)-(59) along Onon−BPS,Z 6=0 defined by Eqs. (62)-(64)
undergo a major simplification (the prime denotes the charges in the considered configuration):

ξ = −ξ0; ςi = %i = −

√
1
2
sijkq′jq

′
k

p′0q′i
. (108)

Correspondingly, the non-BPS Z 6= 0 attractor flow (81)-(83) acquires the following form (as above,
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the moduli are here denoted as Z i ≡ X i− iY i; i 6= j 6= l and no sum on repeated i−indices throughout):

exp [−4Unon−BPS,Z 6=0 (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ)− b2; (109)

X i
non−BPS,Z 6=0 (τ) = ςi ·

· e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b]− [hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b]
e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b]− 2eαi [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b


;

(110)

Y inon−BPS,Z 6=0 (τ) = −4ςi ·

· eαiexp [−2Unon−BPS,Z 6=0 (τ)]
e2αi [hj (τ)hl (τ) + h0 (τ)hi (τ) + 2b]− 2eαi [hj (τ)hl (τ)− h0 (τ)hi (τ)] +

+hj (τ)hl (τ) + h0 (τ)hi (τ)− 2b


.

(111)

It is worth pointing out that the D2 − D6 configuration supports axion-free non-BPS Z 6= 0 attractor
flow(s); when considering the near-horizon limit, and thus the critical, charge-dependent values of the
moduli, this is consistent with the analysis performed in [15, 41, 47]. An axion-free attractor flow
solution of Eqs. (109)-(111) can be obtained e.g. by assuming the conditions given by Eqs. (97) and
(98), and it reads as follows:

exp [−4Unon−BPS,Z 6=0,axion−free (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ) ; (112)

X i
non−BPS,Z 6=0,axion−free (τ) = 0;

Y inon−BPS,Z 6=0,axion−free (τ) = − ςi
hi (τ)

√
h1 (τ)h2 (τ)h3 (τ)

h0 (τ)
. (113)

As done for the magnetic configuration, in order to further simplify Eqs. (109)-(111) and (112)-(113),
one can consider the particular case constrained by Eq. (97). Within such an additional assumption, the
solution obtained in [62], generalizing the one of [28], is recovered.

Furthermore, within the simplifying assumption (97), Eq. (90) yields that the non-BPS Z 6= 0 fake
superpotential in the D2−D6 configuration has the following expression:

Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z,Z,ΓD2−D6

)
= eK/2

∣∣Z1
∣∣ ∣∣Z2

∣∣ ∣∣Z3
∣∣ ·

·

p′0 +
q′1
2

(
Z2Z3

+ Z3Z2
)

|Z2|2 |Z3|2
+
q′2
2

(
Z1Z3

+ Z3Z1
)

|Z1|2 |Z3|2
+
q′3
2

(
Z2Z1

+ Z1Z2
)

|Z1|2 |Z2|2

 . (114)



Entropy 2008, 10 537

The axion-free version of such a fake superpotential (e.g. pertaining to the solution (112)-(113)) reads
as follows:

Wnon−BPS,Z 6=0|αi=0 ∀i, axion−free
(
Z,Z,ΓD2−D6

)
=

1

2
√

2

√
Y1Y2Y3

[
p′0 +

q′1
Y2Y3

+
q′2
Y1Y3

+
q′3
Y1Y2

]
,

(115)
coinciding with the fake superpotential given by Eq. (4-20) of [37].

The existence of a first order formalism in the non-BPS Z 6= 0-supporting (branch of the) D2 −D6

configuration of the stu model, based on the fake superpotential given by Eq. (114), gives a explanation
of the integrability of the equations of motion of scalars supported by the electric configuration (see the
treatment of [62]).

Let us now consider the “t3-degeneration” of the stu model, in which all charges and moduli are
equal, insensitive to i-index; in the considered configuration this amounts to putting

Z1 = Z2 = Z3 = Z, q′1 = q′2 = q′3 = q′/3 (116)

(see the treatment in Sect. 5 of [50]). By doing so, Eq. (114) yields the non-BPS Z 6= 0 fake superpo-
tential given by Eq. (5.5) of [37], which we report here for completeness’ sake:

Wnon−BPS,Z 6=0|αi=0 ∀i, t3−deg. =

∣∣∣∣∣∣p
′0 (Z)2Z + q′Z√
−i(Z − Z)3

∣∣∣∣∣∣ . (117)

The axion-free version of such a fake superpotential (e.g. pertaining to “t3-degeneration” of the solution
(112)-(113)) reads as follows:

Wnon−BPS,Z 6=0,axion−free, t3−deg. =
1

2
√

2

∣∣∣∣p′0Y3 + q′Y√
Y3

∣∣∣∣ . (118)

Now, as done above for the D0 − D6, D0 − D2 − D4 − D6 and D0 − D4 configurations, by
exploiting the first order formalism for d = 4 extremal BHs, one can compute the relevant BH param-
eters, such as the ADM mass and the covariant scalar charges, starting from the fake superpotential
Wnon−BPS,Z 6=0|αi=0 ∀i given by Eq. (114).

Concerning the ADM mass, by recalling Eq. (19) and using Eqs. (114), (77) and (102), one obtains an
explicit expression which, after introducing suitable dressed charges (see Eq. (120)), reads as follows:

MADM,non−BPS,Z 6=0|αi=0 ∀i
(
Z∞,Z∞,ΓD2−D6

)
=

= limτ→0− Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z (τ) ,Z (τ) ,ΓD2−D6

)
=

=

√
1 +B2

2
√

2

[
(1 +B2)P ′0 +

∑
i

Q′i

]
, (119)

where the dressed charges are defined as follows (no summation on repeated indices; notice the different
definitions with respect to the D0−D6 and D0−D4 configurations, whose dressed charges are given
by Eqs. (77) and (104), respectively):

P ′0 ≡ p′0
√
Y1
∞Y2

∞Y2
∞, Q′i ≡

Y i∞√
Y1
∞Y2

∞Y2
∞
q′i. (120)
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Up to redefinition of the dressed charges, Eq. (119) is nothing but Eq. (5.2) of [62].
By recalling Eq. (20) and using Eq. (114), one can compute the covariant scalar charges of the

non-BPS Z 6= 0 attractor flow in the D2 −D6 configuration. Within the simplifying assumptions (97)
and (102), one obtains the following explicit expressions (no sum on repeated indices):

ΣX ,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD2−D6) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂X i

)(
Z (τ) ,Z (τ) ,ΓD2−D6

)
=

=
√

2
X i
∞√

1 +B2

[
(1 +B2)P ′0 +Q′i

]
; (121)

ΣY,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD2−D6) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂Y i

)(
Z (τ) ,Z (τ) ,ΓD2−D6

)
=

=
Y i∞√

2
√

1 +B2

[(
B4 − 1

)
P ′0 − 2Q′i +

(
1 +B2

)2
∑
j

Q′j

]
, (122)

where, as for the D0 − D4 configuration, the split in axionic scalar charges ΣX ,i and dilatonic scalar
charges ΣY,i was performed.

As done for the magnetic configuration in Subsect. 6.1., also for electric configuration it is worth
computing the difference between the squared non-BPS Z 6= 0 fake superpotential and the squared
absolute value of the N = 2, d = 4 central charge along the non-BPS Z 6= 0 attractor flow:

∆ (X ,Y ,Γ) ≡ W2
non−BPS,Z 6=0−|Z|

2 =
p′0

2

(
q′1

(X 1)2 + (Y1)2

Y1
+ q′2

(X 2)2 + (Y2)2

Y2
+ q′3

(X 3)2 + (Y3)2

Y3

)
> 0.

(123)
Differently from what happens for the magnetic configuration, for electric configuration ∆ does depend
also on axions, but nevertheless it is still strictly positive all along the non-BPS Z 6= 0 attractor flow. At
infinity, by using the dressed charges defined by Eq. (120), the following result is achieved:

∆ (X∞,Y∞,Γ) =
P ′0

2
(1 +B2)

∑
i

Q′i. (124)

Thus, the BPS bound [112] holds not only at the BH event horizon (r = rH), but actually (in a scalar-
dependent way) all along the non-BPS Z 6= 0 attractor flow (i.e. ∀r > rH).

Of course, by relaxing the simplifying conditions (97) and/or (102), i.e. by considering non-vanishing
αis (constrained by Eq. (71)) and/or different, i-indexed B-fields, a much richer situation arises, but the
main features of the framework, outlined above, are left unchanged.

By noticing that theD0−D4 (magnetic) andD2−D6 (electric) configurations are reciprocally dual in
d = 4 and recalling the treatment of Subsect. 5.1., it is worth computing the matrices Mi,D0−D4−→D2−D6

representing the U -duality transformation along the charge orbitOnon−BPS,Z 6=0 which connects (the non-
BPS Z 6= 0-supporting branches of) such two charge configurations. In order to do this, we exploit the
treatment given in Subsect. 5.1., by performing the following steps:

(q0,pi)
D0−D4 −→

(q,p)

D0−D6 −→
(q′i,p′0)

D2−D6. (125)
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For the step D0 − D4 −→ D0 − D6, we consider M−1
i given by Eq. (61), along with the definitions

(62)-(64) specified for the configurationD0−D4, obtainingM−1
i,D0−D4−→D0−D6. Thence, for the the step

D0−D6 −→ D2−D6, we take Mi given by Eq. (61), along with the definitions (62)-(64) specified for
the configuration D2 − D6, obtaining Mi,D0−D6−→D2−D6. Thus (no sum on repeated index i = 1, 2, 3

throughout; also recall Eq. (57)):

(Mi,D0−D4−→D2−D6) b
′

a′ = (Mi,D0−D6−→D2−D6) aa′
(
M−1

i,D0−D4−→D0−D6

) b′
a

=

=

 0 − 4

√
− q0pi sijkq

′
jq
′
k

p′0q′i sijkpjpk

4

√
−p′0q′i sijkpjpk

q0pi sijkq
′
jq
′
k

0

 . (126)

Consequently, by recalling Eqs. (59) and (65) one can directly relate the non-BPS Z 6= 0 attractor flows
Z inon−BPS,Z 6=0,D2−D6 (τ) and Z inon−BPS,Z 6=0,D0−D4 (τ) (respectively given by Eqs. (109)-(111) and (94)-
(96); recall that Z i (τ) = X i (τ) − iY i (τ)) by the following expression, explicitly showing the duality
between the D0−D4 (magnetic) and D2−D6 (electric) configurations in d = 4:

Z inon−BPS,Z 6=0,D2−D6 (τ) = −

√
− q0 pi sijkq′jq′k
p′0 q′i sijkpjpk

1

Z inon−BPS,Z 6=0,D0−D4 (τ)
. (127)

6.3. D0−D2−D4

The configuration D0−D2−D4 of the stu model has been previously treated in [62]. In this case,
the quantities of the U -duality transformation (57)-(59) along Onon−BPS,Z 6=0 defined by Eqs. (62)-(64)
have the following form (no summation on repeated index i = 1, 2, 3 throughout):

ξ = ξ0; ςi =

√
−I4 + plql − 2piqi

sijkpjpk
; %i =

√
−I4 − plql + 2piqi

sijkpjpk
. (128)

Within the additional assumption (97) (considered for simplicity’ sake), the non-BPS Z 6= 0 attractor
flow (81)-(83) correspondingly acquires the following form (as above, the moduli are here denoted as
Z i ≡ X i − iY i; i 6= j 6= l, and no sum on repeated i−indices throughout):

exp [−4Unon−BPS,Z 6=0 (τ)] = h0 (τ)h1 (τ)h2 (τ)h3 (τ)− b2; (129)

X i
non−BPS,Z 6=0 (τ) =

√
−I4

sikmpkpm
b

hj (τ)hl (τ)
+
pnqn − 2piqi
sikmpkpm

; (130)

Y inon−BPS,Z 6=0 (τ) =

√
−I4

sikmpkpm
exp [−2Unon−BPS,Z 6=0 (τ)]

hj (τ)hl (τ)
. (131)

This is nothing but the solution obtained in [62].
It is worth pointing out that, as the general case D0 − D2 − D4 − D6 (see Subsect. 5.3.), the

D0 − D2 − D4 configuration does not support axion-free non-BPS Z 6= 0 attractor flow(s); when
considering the near-horizon limit, and thus the critical, charge-dependent values of the moduli, this is
consistent with the analysis performed in [15, 41, 47].
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Furthermore, always within the simplifying assumption (97), Eq. (90) yields that the non-BPS Z 6= 0

fake superpotential in the D0−D2−D4 configuration has the following expression:

Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z,Z,ΓD0−D2−D4

)
=

= eK/2
[
−q0 −

q1

2

(
Z1 + Z1

)
− q2

2

(
Z2 + Z2

)
− q3

2

(
Z3 + Z3

)
+

+
p1

2

(
Z2Z3

+ Z3Z2
)

+
p2

2

(
Z1Z3

+ Z3Z1
)

+
p3

2

(
Z1Z2

+ Z2Z1
)]

. (132)

The existence of a first order formalism in the non-BPS Z 6= 0-supporting (branch of the)D0−D2−D4

configuration of the stu model, based on the fake superpotential given by Eq. (132), gives a explanation
of the integrability of the equations of motion of scalars supported by such a configuration (see the
treatment of [62]).

Now, by exploiting the first order formalism for d = 4 extremal BHs, one can compute the rele-
vant BH parameters, such as the ADM mass and the covariant scalar charges, starting from the fake
superpotential Wnon−BPS,Z 6=0|αi=0 ∀i given by Eq. (132).

Concerning the ADM mass, by recalling Eq. (19) and using Eq. (132) one obtains the following
result:

MADM,non−BPS,Z 6=0|αi=0 ∀i
(
Z∞,Z∞,ΓD0−D2−D4

)
=

= limτ→0− Wnon−BPS,Z 6=0|αi=0 ∀i
(
Z (τ) ,Z (τ) ,ΓD0−D2−D4

)
=

=
1

2
√

2

[
|Q0| −

∑
i

QiBi +
∑
i

P i +
∑
i 6=j 6=k

P iBjBk

]
, (133)

where the dressed charges are defined by Eqs. (104) and (120).
By recalling Eq. (20) and using Eq. (132), one can compute the covariant scalar charges of the

non-BPS Z 6= 0 attractor flow in the D0−D2−D4 configuration. Always within the assumption (97),
one obtains the following explicit expressions (no sum on repeated index i = 1, 2, 3):

ΣX ,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD0−D2−D4) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂X i

)(
Z (τ) ,Z (τ) ,ΓD0−D2−D4

)
=

=
√

2Y i∞ (sijkP
jBk −Qi); (134)

ΣY,i,non−BPS,Z 6=0 (X∞,Y∞,ΓD0−D2−D4) ≡

≡ limτ→0−

(
∂ Wnon−BPS,Z 6=0|αm=0 ∀m

∂Y i

)(
Z (τ) ,Z (τ) ,ΓD0−D2−D4

)
=

=
Y i∞√

2

[
− |Q0| − 2P i +

∑
j

Qj Bj +
∑
j

P j −
∑
i 6=j 6=k

P iBjBk

]
, (135)

where, as above, the split in axionic scalar charges ΣX ,i and dilatonic scalar charges ΣY,i was per-
formed, and the definition (77) of B-fields was used.

As done for the magnetic and electric configurations (respectively in Subsects. 6.1. and 6.2.), also
for D0 − D2 − D4 configuration it is worth computing the difference between the squared non-BPS
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Z 6= 0 fake superpotential and the squared absolute value of the N = 2, d = 4 central charge along
the non-BPS Z 6= 0 attractor flow. For simplicity’s sake, we decide to perform computations in the
“t3-degeneration” of the stu model, in which all charges and moduli are equal, insensitive to i-index; in
the considered configuration this amounts to putting (see the treatment in Sect. 5 of [50])

Z1 = Z2 = Z3 = Z ≡ X − iY , q1 = q2 = q3 = q/3, p1 = p2 = p3 = p, (136)

which generalizes Eq. (116), also implying the assumption (102). Then, one obtains the following result:

∆ (Y ,Γ) ≡ W2
non−BPS,Z 6=0 − |Z|

2 =
1

8Y
(
12|q0|p− q2

)
> 0. (137)

In this case, ∆ is strictly positive all along the non-BPS Z 6= 0 attractor flow, due to the fact that I4 is
strictly negative. At infinity, by using the dressed charges defined by Eqs. (104) and (120), the following
result is achieved:

∆ (Y∞,Γ) =
1

8

(
12|Q0|P −Q2

)
. (138)

Thus, the BPS bound [112] is found to hold not only at the BH event horizon (r = rH), but actually (in
a scalar-dependent way) all along the non-BPS Z 6= 0 attractor flow (i.e. ∀r > rH).

It is here worth pointing out that, by exploiting the procedure outlined in Subsect. 5.1., the results
(107), (123) and (137) can be related one to the others by performing suitable U -duality transformations.
In such a way (or equivalently by recalling the results of Sect. 2. and Subsect. 5.3.), one can also
compute ∆ for the non-BPS Z 6= 0-supporting branch of the most general (i.e. D0 −D2 −D4 −D6)
BH charge configuration.

Of course, by relaxing the simplifying condition (97) and/or the “t3-degeneration” described by Eq.
(136) (in turn implying the condition(102)), a much richer situation arises, but the main features of the
framework, outlined above, are left unchanged.

7. Conclusion

In the present paper the analysis and solution of the equations of motion of the scalar fields of the so-
called stu model [15, 39, 41, 50, 97–100], consisting of N = 2, d = 4 ungauged supergravity coupled

to 3 Abelian vector multiplets whose complex scalars span the special Kähler manifold G
H

=
(
SU(1,1)
U(1)

)3

,
has been performed in full detail. The obtained results complete and generalize the ones already present
in literature [28, 51, 59, 62].

The 3 classes of non-degenerate attractor flows of the stu model have been presented and/or de-
termined in full generality, and their features have been studied and compared. We sketchily list the
essential facts below:

• The 1
2
-BPS attractor flow, known since [105]- [109] (as well as the third of Refs. [111]), has

been reviewed. It corresponds to I4 > 0, and it does not yield any associated moduli space, at
the BH event horizon nor along the flow. The most general flow solution (9) can be obtained
starting from the known most general horizon, critical solution [15, 28, 39, 41, 50, 99, 100], and
replacing the BH charges with suitable harmonic functions. Correspondingly, the 1

2
-BPS Attractor

Eqs. (15), determining the attractor solution at BH event horizon, can be extended to the whole
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flow into the so-called 1
2
-BPS stabilization Eqs. (14) by simply substituting the BH charges with

the corresponding harmonic functions in the radial parameter τ . The (first order) 1
2
-BPS fake

superpotential (which is nothing but the absolute value of the N = 2, d = 4 central charge
function Z given by Eq. (5), and thus it is manifesly H-invariant) has been explicitly determined,
and the relevant BH parameters, namely the gravitational ADM mass (22) and (covariant) scalar
charges , have been computed, as functions of BH charges and (spatially) asymptotical scalars.
The marginal bound has been shown to be never saturated, and thus marginal stability [111] does
not hold for 1

2
-BPS states in the considered framework.

• The non-BPS Z = 0 attractor flow, hitherto unknown (up to a short comment in [59]), has been
studied and derived in full generality. As the 1

2
-BPS attractor flow, it corresponds to I4 > 0, and

it does not yield any associated moduli space, at the BH event horizon nor along the flow. Due
to the underlying triality symmetry of the stu model, 3 different “polarizations” of the results
are possible, and choosing one of them does not imply any loss of generality. The most general
flow solution (29) can be obtained starting from the known most general horizon, critical solution
[50], and replacing the BH charges with suitable harmonic functions. Correspondingly, the non-
BPS Z = 0 Attractor Eqs. (42), determining the attractor solution at BH event horizon, can be
extended to the whole flow into the so-called non-BPS Z = 0 stabilization Eqs. (41) by simply
substituting the BH charges with the corresponding harmonic functions in the radial parameter τ .
The (first order) non-BPS Z = 0 fake superpotential has been explicitly determined, and it is given
by the manifestly H-invariant Eqs. (31) and (36) (or equivalently, by Eqs. (34) and (38), or (35)
and (37)). The relevant BH parameters, namely the gravitational ADM mass (49) and (covariant)
scalar charges , have been computed, as functions of BH charges and (spatially) asymptotical
scalars. Furthermore, the BPS bound [112] has been shown to hold all along the non-BPS Z = 0

attractor flow (i.e. ∀r > rH), and not only at the BH event horizon (r = rH). The marginal bound
has been shown to be never saturated, and thus marginal stability [111] does not hold for non-
BPS Z = 0 states in the considered framework. The strict similarity between 1

2
BPS and non-BPS

Z = 0 attractor flows can be explained by noticing that both such flows can be uplifted to the same
1
8
-BPS non-degenerate attractor flow of N = 8, d = 4 supergravity (see e.g. the discussion in

[50]).

• The non-BPS Z 6= 0 attractor flow, studied in [28, 51, 59, 62] in various configurations, has been
here studied and analyzed in full generality. It corresponds to I4 < 0, and it yields an associated
moduli space (SO (1, 1))2 (which is nothing but the scalar manifold of the d = 5 uplift of the stu
model), both at the BH event horizon [41, 43] and along the flow [59]. Consistently with the anal-
ysis performed in [51] for the D0 −D4 (magnetic) configuration, the most general flow solution
(81)-(83), supported by the (relevant branch of the) D0−D2−D4−D6 configuration (with all
charges switched on), cannot be obtained starting from the known most general horizon, critical
solution, and replacing the BH charges with suitable harmonic functions. The opposite claim of
[28] for the D2−D6 (electric) and D0−D2−D4−D6 configurations is actually due to the fact
that (some) B-fields were chosen to vanish therein. Correspondingly, the non-BPS Z 6= 0 Attrac-
tor Eqs. (89), determining the attractor solution at BH event horizon, cannot be extended to the
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whole flow into the so-called non-BPS Z 6= 0 stabilization Eqs. (whose would-be version is given
by Eq. (88)) by simply substituting the BH charges with the corresponding harmonic functions in
the radial parameter τ . The (first order) non-BPS Z 6= 0 fake superpotential has been explicitly
determined, and it is given by the manifestly non-H-invariant Eq. (90), which reproduces the few
known results [37] in the corresponding particular cases. The relevant BH parameters, namely the
gravitational ADM mass and (covariant) scalar charges, have been computed in Subsect. 5.2. and
Sect. 6. for various configurations, as functions of BH charges and (spatially) asymptotical scalars.
Furthermore, the BPS bound [112] has been shown to hold all along the non-BPS Z 6= 0 attractor
flow (i.e. ∀r > rH), and not only at the BH event horizon (r = rH). This has been explicitly
computed for non-BPS Z 6= 0-supporting branches of magnetic (Subsect. 6.1.), electric (Subsect.
6.2.) and D0 − D2 − D4 (Subsect. 6.3.) configurations. On the other hand, by exploiting the
procedure outlined in Subsect. 5.1., or equivalently by recalling the results of Sect. 2. and Subsect.
5.3., one can also prove the BPS bound to hold for the non-BPS Z 6= 0-supporting branch of the
most general (i.e. D0 − D2 − D4 − D6) BH charge configuration. From the very Eq. (90), the
marginal bound turns out to be saturated, and thus marginal stability [111] holds for non-BPS
Z 6= 0 states in the considered framework. The manifest non-H-invariance of the general (first
order) non-BPS Z 6= 0 fake superpotential (90) seems clash with the H-invariance imposed by
Eq. (2.21) of [37] (or equivalently by Eq. (13) of [42]), reported as eq. (39) above, relating the
fake superpotential and the warp factor U (τ) appearing in the Ansatz (40)for the static, spheri-
cally symmetric, asymptotically flat, extremal dyonic BH metric. A way out to such an apparent
contradiction consists in recalling the treatment of Subsect. 2.2. of [37], and thus observing that
the fake superpotential is not unique within the same attractor flow, the various equivalent superpo-
tentials being related through a matrix R satisfying the conditions (2.28) and (2.29) of [37] (see in
general Subsect. 2.2 of [37]). If R is scalar-dependent, it may relate (manifestly) H-invariant fake
superpotentials to (manifestly) non-H-invariant ones, and vice versa. Thus, one may state that a
suitable scalar-dependent matrix R exists, satisfying Eqs. (2.28) and (2.29) of [37], and mapping
the non-BPS Z 6= 0 fake superpotential (90) into an equivalent, but (manifestly) H-invariant one.
It would be interesting to determine explicitly such a matrix; we leave such an issue for future
work.

Various comments, remarks, ideas for further developments along the lines of research considered in
the present paper are listed below.

• By exploiting the approach considered in Sect. 5 of [50], the stu can be consistently related to the
so-called st2 and t3 models, respectively with 2 and 1 complex scalars. Through such a procedure,
all the results obtained for the stu model can be considered to hold for such models. Furthermore,
by performing the near-horizon (i.e. τ → −∞) limit on the attractor flow solutions, one obtains
the corresponding attractor solution at the event horizon of the extremal BH. This is particularly
relevant for the non-BPS Z 6= 0 horizon attractor solutions, hitherto analytically known (in a rather
intricate form) only for the t3 model, so far the only N = 2, d = 4 supergravity model based on
cubic special Kähler geometry whose Attractor Eqs. had been completely solved. In the near-
horizon limit, the results of the present paper yield the non-BPS Z 6= 0 horizon attractor solutions



Entropy 2008, 10 544

for both st2 and stu models.

• It should be recalled once again that the stu model is a sector of all N > 2, d = 4 supergravities,
as well as of all N = 2, d = 4 supergravities based on homogeneous (both symmetric [97, 113–
115] and non-symmetric - see e.g. [116, 117] -) scalar manifolds based on cubic geometries. Thus,
stu model captures the essential features of extremal BHs in all such theories (see e.g. the stu
interpretation of N = 8, d = 4 attractors , and the observations in [59]). Consequently, (the core
of) the results holding for stu model can be thought to hold at least for all such theories. For
instance, it would be interesting to try to extend them to some of the theories considered in [74],
also in relation to the issue of the effective horizon radius treated therein.

• The stu model has been recently shown to be relevant for the analogy between pure states of mul-
tipartite entanglement of qubits in quantum information theory and extremal stringy BHs [3] (see
also [120] for further recent developments). In the seventh of Refs. [3] the relation between quan-
tum information theory and the theory of extremal stringy BHs was studied within the stu model,
showing that the three-qubit interpretation of supersymmetric, 1

2
-BPS attractors can be extended

also to include non-supersymmetric, non-BPS (both Z 6= 0 and Z = 0) ones, performing a classi-
fication of the attractor solutions based on the charge codes of quantum error correction. However,
only double-extremal solutions, with constant, non-dynamical scalars all along the attractor flow,
were discussed therein. Thus, as also observed in [62], it would be interesting to extend the anal-
ysis of the seventh of Refs. [3] using the full general non-BPS (both Z 6= 0 and Z = 0) attractor
flow solutions obtained in the present paper.

• The existence of a first order formalism for the equations of motion of the scalar fields (also named
attractor flow Eqs.) in the background of an extremal BH [37, 42] in principle implies the inte-
grability of such equations, regardless their eventual intricate form. This answers to the question
raised in Appendix A of [59], and it is particularly relevant for the non-BPSZ 6= 0 attractor flow, as
pointed out in Subsects. 6.1.-6.3.. It would be interesting to study the integrability of the equations
of motion of the scalars in presence of quantum (perturbative and/or non-perturbative) corrections
to the considered stu model. For instance, it would be interesting to study the attractor flow Eqs.
for a quantum corrected prepotential f = stu + iλ, with λ ∈ R, which is the only correction
which preserves the axion shift symmetry and modifies the geometry of the scalar manifold (see
[58] and Refs. therein). A tempting ideas, inspired by the intriguing connection between quantum
information theory and extremal BHs mentioned at the previous point, is to consider the quantum,
axion-shift-consistent parameter λ as related to the quantum noise of the system (see e.g. [123]
and Refs. therein).

• As found in [121], observed also in [59] and noticed in Sect. 3., an immediate consequence of the
general form of 1

2
-BPS attractor flow given by Eq. (9) is that Γ∞ satisfies the 1

2
-BPS Attractor Eqs.

[106]. This determines a sort of “Attractor Mechanism at spatial infinity”, mapping the 6 real
moduli (x1, x2, x3, y1, y2, y3) into the 8 real constants (p1

∞, p
2
∞, p

3
∞, q1,∞, q2,∞, q3,∞), arranged as

Γ∞ and constrained by the 2 real conditions (13). As noticed in [59], the absence of flat directions
in the 1

2
-BPS attractor flow (which is a general feature of N = 2, d = 4 ungauged supergravity
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coupled to Abelian vector multiplets, at least as far as the metric of the scalar manifold is strictly
positive definite ∀τ ∈ R− [10]) is crucial for the validity of the expression (9). As pointed out in
Sect. 4., the same holds for the non-BPS Z = 0 case. Indeed, a consequence of the general form of
non-BPS Z = 0 attractor flow given by Eq. (29) is that Γ∞ satisfies the non-BPS Z = 0 Attractor
Eqs. (see e.g. [23] and [32]), determining a sort of “Attractor Mechanism at spatial infinity”.
Analogously to what happens in the 1

2
-BPS case, the absence of flat directions in the non-BPS

Z = 0 attractor flow (which is not a general feature of N = 2, d = 4 ungauged supergravity
coupled to Abelian vector multiplets, but however holds for the stu model [40, 43]) is crucial for
the validity of the expression (29). In view of the crucial differences among the non-BPS Z 6= 0

attractor flow and the 1
2
-BPS and non-BPS Z = 0 attractor flows (such as the presence of a 2-dim.

real moduli space (SO (1, 1))2 all along the non-BPS Z 6= 0 attractor flow), it would be interesting
to investigate the non-BPS Z 6= 0 “Attractor Mechanism at spatial infinity”, if any.
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