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1. Introduction

Usually, the only knowledge about a physical system is the measurement of the average values of
a few relevant observables. The maximum entropy principle [1–3] is a tool to obtain the least biased
distribution for the equilibrium distribution of the system that reproduces these measurements. The
rough line of reasoning of this approach is as follows [4]. The Boltzmann-Gibbs entropy functional of a
distribution P (j) is defined by

S = −
∑
j∈Γ

P (j) ln P (j) (1)

where Γ is the (discrete) phase space. This entropy functional is most often used in statistical mechanics.
The equilibrium distribution is obtained by maximising the entropy functional under the constraints
that the average values of the relevant observables H1(j), . . . , Ht(j) take on certain values. To solve
this optimisation problem, usually the method of Lagrange multipliers is used. For every constraint, a
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Lagrange multiplier θi is introduced and the following function is maximised

L = S −
t∑

i=1

θi

∑
j∈Γ

P (j)Hi(j) (2)

to obtain the equilibrium distribution. After variation with respect to P (j) one obtains

P (j) ∼ exp

(
−

t∑
i=1

θiHi(j)

)
(3)

With this distribution, one can calculate expressions for the equilibrium values ⟨Hi(j)⟩ of the observables
as a function of the Lagrange multipliers θi. These relations can then be used to estimate the values of
θi after measurement of ⟨Hi(j)⟩. In this way, one obtains the least biased estimate of the parameters θi,
because P (j) satisfies the maximum entropy principle. The standard example of this procedure is the
estimation of the temperature by the measurement of the energy.

The maximum entropy principle can be used to introduce thermodynamic parameters in simple
theoretical models [5–7]. One starts from a mathematical model and calculates the entropy and the
average of the relevant observables as a function of the model parameters. Then the maximisation
procedure is carried out over the model parameters only, instead of over all the possible probability
distributions. The usefulness of this approach is already shown for specific models containing 2

and 5 parameters, see [5, 6] and [7] respectively. In this paper we show that the maximisation procedure
can be carried out for reversible N -state Markov chains. This problem of conditional optimisation
is more general and is also studied in the information theory framework [8, 9]. However, we focus
on the applications of this technique in the context of statistical mechanics and use the maximum
entropy principle to relate microscopic and macroscopic quantities of physical models. To illustrate
the theoretical ideas, one-dimensional classical spin systems are studied, the Ising model [10], the Potts
model [11, 12] and the Blume-Emery-Griffiths model [13, 14]. These examples serve to show that
our theoretical procedure is very general and that a broad range of physical models can be studied
within this approach. It is not the aim of the present paper to make progress in the understanding of
the aforementioned models.

The outline of the paper is as follows. In the next section we fix our notation and repeat briefly
some results obtained in [15] that will be used throughout the paper. The basic idea of this work is
introduced in Section 3. with the use of a simple example, the 2-state Markov chain. The main result of
this paper is obtained in Section 4. in which we apply the maximum entropy principle to the reversible
N -state Markov chain. In Section 5. we make the connection between our theory and thermodynamics
and examine under which conditions our technique coincides with the standard approach to introduce
thermodynamic parameters in theoretical models. In Section 6., the example of the 3-state Markov chain
is thoroughly studied. The final section contains a summary of our results and a brief discussion of the
different assumptions we made throughout the paper.
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2. Notation

We consider a finite state space Γ with N states. A Markov chain is defined by initial probabilities
p(z) and transition probabilities w(y, z), with y, z ∈ Γ. The equation of motion is simply

pt+1(z) =
∑
y∈Γ

pt(y)w(y, z), with p0(y) = p(y) (4)

Throughout the paper, we will assume that w(z, y) ̸= 0 for all z, y ∈ Γ. This means that we study
irreducible Markov chains [16]. The N initial probabilities p(z) and the N2 transition probabilities
w(z, y) can be interpreted as the parameters of the Markovian model. However, they are not independent
because of the normalisation conditions

1 =
∑
y∈Γ

p(y), (5)

1 =
∑
y∈Γ

w(z, y), ∀z ∈ Γ (6)

As a consequence, the Markovian model contains only (N − 1) + (N2 − N) = N2 − 1 independent
parameters. Usually, extra restrictions on the parameters are assumed. A Markov chain is called
stationary [16], when the following condition holds

p(z) =
∑
y∈Γ

p(y)w(y, z), ∀z ∈ Γ (7)

This is a set of N − 1 extra equations (the normalisation is already taken into account). A stronger
constraint is detailed balance

p(z)w(z, y) = p(y)w(y, z), ∀z, y ∈ Γ (8)

This is a set of N(N − 1)/2 extra equations. Throughout the paper, we will assume that this condition
is satisfied. This means that we study reversible Markov chains [16].

A path γ = (x0, x1, x2 . . . , xn) of the Markov chain with length n + 1 has probability

p(x0)w(x0, x1) . . . w(xn−1, xn) (9)

In [15] the record of transitions k is introduced. This is a sequence of numbers k(z, y), one for each pair
of states z, y ∈ Γ, counting how many times the transition from z to y is contained in a given path of the
Markov chain. The ensemble average of the elements of the transition records and the entropy S [17, 18]
of the Markov chain can be calculated as follows:

⟨k(z, y)⟩ =
∑
x0∈Γ

. . .
∑
xn∈Γ

p(x0)w(x0, x1) . . . w(xn−1, xn)

[
n−1∑
i=0

δxi,zδxi+1,y

]
S = −

∑
x0∈Γ

. . .
∑
xn∈Γ

p(x0)w(x0, x1) . . . w(xn−1, xn) ln [p(x0)w(x0, x1) . . . w(xn−1, xn)]

with δi,j the Kronecker delta. For stationary Markov chains, these expressions simplify to [15]

1

n
⟨k(z, y)⟩ = p(z)w(z, y) (10)

1

n
S = −

∑
z∈Γ

∑
y∈Γ

p(z)w(z, y) ln w(z, y) − 1

n

∑
z∈Γ

p(z) ln p(z) (11)
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The second term in the expression of the entropy is unimportant for large chains and will be ignored
in the remaining part of this paper. The technical consequences of taking these finite size effects into
account are already thoroughly studied for the 2-state Markov chain [5, 19].

The conditional probability P (k; x0) to observe a Markov chain with certain transition record k given
the initial condition x0 ∈ Γ is

P (k; x0) = c(k; x0)
∏
x∈Γ

∏
y∈Γ

w(x, y)k(x,y) = c(k; x0) exp

(∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y)

)
(12)

where the prior probability c(k; x0) counts the number of paths that have the same transition record k.
Notice that the value of c(k; x0) can vanish. An obvious example is a combination of an initial condition
x0 with a transition record in which no transition x0 → x with x ∈ Γ occurs. However, this is not the
only possibility to obtain c(k; x0) = 0. To see this, observe that there are two ways to count the number
of occurrences of a state x ∈ Γ given k and x0 ∈ Γ

δx,x0 +
∑
y∈Γ

ky,x and δx,xn +
∑
y∈Γ

kx,y (13)

where the Kronecker deltas δx,x0 and δx,xn take into account the first and last state of the path respectively.
Given k and x0 ∈ Γ, only when following equality

δx,x0 +
∑
y∈Γ

ky,x = δx,xn +
∑
y∈Γ

kx,y, ∀x ∈ Γ (14)

is fulfilled, one ends up with a unique value for the number of occurrences of every state x ∈ Γ.
Therefore, expression (14), is a necessary condition in order to obtain a non-vanishing value for c(k; x0).
This shows that the elements of the transition record are not independent. In Section 5., the importance
of this observation will become clear.

A Markov chain can be interpreted as a sequence of letters where the transition record k counts the
number of occurrences of two-letter words. Markov chains with a finite memory and generalisations
of k are examined in the information theory framework [20, 21] and find applications in, e.g., the
computational biology [22, 23]. In the present paper we study Markov chains in the context of statistical
mechanics and apply our results to physical models with only nearest neighbor interactions. The notion
of two-letter words is sufficient for these applications. The extension of our theoretical results to systems
with next (or higher order) nearest neighbor interactions is merely technical and can be obtained by
increasing the number of states of the chain which allows to maintain the Markov property.

3. Example: The 2-state Markov Chain

In this section we study a simple example, the 2-state Markov chain. The two states are denoted +

and −. The different parameters of the Markovian model are

p(+), p(−) and w(+, +), w(+,−), w(−,−), w(−, +) (15)

However, the number of independent parameters is reduced by 3 because of the normalisation
conditions (5), (6). The detailed balance condition (8) further reduces this number by 1. We conclude
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that this simple microscopic model contains only 2 independent parameters. We chose w(+,−) and
w(−, +) to be these parameters and use (5), (6) and (8) to obtain the following relations

p(+) =
w(−, +)

w(−, +) + w(+,−)
, p(−) =

w(+,−)

w(−, +) + w(+,−)
w(+, +) = 1 − w(+,−), w(−,−) = 1 − w(−, +) (16)

In Section 2. we introduced the transition record k. The matrix k contains only 4 elements for this
example

k =

[
k(+, +) k(+,−)

k(−, +) k(−,−)

]
(17)

The 2-state Markov chain can be interpreted as a one-dimensional Ising chain [10] with constant length
n + 1 and two different spin-values ±1. Two relevant observables are

H1(σ) = −J
n−1∑
i=0

σiσi+1 and H2(σ) =
n∑

i=0

σi (18)

with J a constant. The spin variables σi are scalars that can take on the values ±1. The two states of
the Markov chain +,− correspond to the spin values +1,−1 respectively. Therefore, one can express
H1(σ) and H2(σ) as a function of the elements of the transition record k as follows:

H1(k) = −J [k(+, +) + k(−,−)] + J [k(+,−) + k(−, +)] (19)

H2(k) = k(+, +) + k(−, +) − k(−,−) − k(+,−) (20)

The correspondence between H1(σ) and H1(k) is exact, while we ignored the contribution of the initial
spin σ0 to obtain H2(k) from H2(σ). This is only a finite size effect that is unimportant for large
chains. This means that the correspondence between H2(σ) and H2(k) is also exact for infinite chains.
With (10) and (16), one can immediately write out the ensemble averages of these variables as a function
of the independent parameters w(+,−) and w(−, +)

⟨H1(k)⟩
Jn

=
4w(−, +)w(+,−) − w(−, +) − w(+,−)

w(−, +) + w(+,−)
⟨H2(k)⟩

n
=

w(−, +) − w(+,−)

w(−, +) + w(+,−)
(21)

Also the entropy (11) of the Markov chain can be expressed as a function of w(+,−) and w(−, +) only

S

n
= − w(−, +)

w(−, +) + w(+,−)

(
[1 − w(+,−)] ln[1 − w(+,−)] + w(+,−) ln w(+,−)

)
− w(+,−)

w(−, +) + w(+,−)

(
w(−, +) ln w(−, +) + [1 − w(−, +)] ln[1 − w(−, +)]

)
(22)

We use ⟨H1(k)⟩ and ⟨H2(k)⟩ as constraints in the maximisation procedure (2)

L = S − θ1⟨H1(k)⟩ − θ2⟨H2(k)⟩ (23)
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By solving the following set of equations

∂L
∂w(+,−)

= 0 and
∂L

∂w(−, +)
= 0 (24)

one can express θ1 and θ2 as a function of the microscopic parameters

4Jθ1 = ln
1 − w(+,−)

w(+,−)

1 − w(−, +)

w(−, +)
and 2θ2 = ln

1 − w(−, +)

1 − w(+,−)
(25)

By inverting (25), one gets expressions for w(+,−) and w(−, +) as a function of θ1 and θ2

1 − w(−, +) = e2θ2 [1 − w(+,−)]

1 − w(+,−) =

(
cosh(θ2) −

√
sinh2(θ2) + e−4Jθ1

)(
1 − e−4Jθ1

)−1
e−θ2 (26)

In combination with (21), one finally obtains formulas for ⟨H1(k)⟩ and ⟨H2(k)⟩ as a function of θ1 and
θ2. These relations can then be used to estimate the values of θ1 and θ2 after measurement of ⟨H1(k)⟩
and ⟨H2(k)⟩.

4. General Theory

Our microscopic model is the N -state Markov chain with parameters p(z) and w(z, y). The only
constraints on these microscopic parameters are the normalisation conditions (5), (6) and the detailed
balance conditions (8). To proceed from this mathematical model to a physical model one has to
make a choice for the relevant observables Hi(k). Then one can introduce Lagrange multipliers
{θi, α, ζ(z), η(z, y)} and maximise the following function

1

n
L =

1

n
S − 1

n

t∑
i=1

θi⟨Hi(k)⟩ − α
∑
z∈Γ

p(z) −
∑
z∈Γ

ζ(z)
∑
y∈Γ

w(z, y)

−
∑
z∈Γ

∑
y∈Γ,y>z

η(z, y) [p(z)w(z, y) − p(y)w(y, z)] (27)

over the parameters p(z) and w(z, y). Notice the fundamental difference between the constraints that
are taken into account by the Lagrange multipliers {θi} and {α, ζ(z), η(z, y)}. The former should be
determined as a function of the model parameters p(z) and w(z, y). The latter are mathematical tools to
take into account some basic microscopic constraints. These multipliers should be eliminated out of the
theory since they are not connected to macroscopic observables.

Before (27) can be maximised over p(z) and w(z, y), the parameter dependence of S and ⟨Hi(k)⟩
must be know. We already obtained a formula for the entropy as a function of p(z) and w(z, y) only,
see expression (11). In this paper, we assume that the observables Hi(k) are linear combinations of the
elements of the transition record of the Markov chain

t∑
i=1

θiHi(k) =
∑
z∈Γ

∑
y∈Γ

Θ(z, y)k(z, y) (28)

where the elements of the matrix Θ are some linear combination of the Lagrange multipliers θi. Taking
the ensemble average of (28) and using expression (10) results in

1

n

t∑
i=1

θi⟨Hi(k)⟩ =
∑
z∈Γ

∑
y∈Γ

Θ(z, y)p(z)w(z, y) (29)
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In Appendix 1, the optimisation of the function (27) is carried out analytically. One ends up with the
following set of equations

ln
w(x, y)

w(x, x)

w(y, x)

w(y, y)
= Θ(x, x) + Θ(y, y) − Θ(x, y) − Θ(y, x)

ln
w(y, y)

w(x, x)
= Θ(x, x) − Θ(y, y) (30)

for all x, y ∈ Γ. These N(N − 1)/2 + N − 1 = (N − 1)(N + 2)/2 equations together with the
N(N − 1)/2 detailed balance conditions (8) and the 1+N normalisation conditions (5), (6) are a closed
set of equations for the N + N2 microscopic parameters p(x) and w(x, y). To obtain relations for p(x)

and w(x, y) as a function of the parameters θi (contained in the elements of the matrix Θ), one has to
invert this set of equations. A part of this inversion can be performed generally. Start by choosing an
arbitrary state r and rewrite the relations (8) and (5) as follows:

p(r) =

(
1 +

∑
y∈Γ′

w(r, y)

w(y, r)

)−1

, p(x) = p(r)
w(r, x)

w(x, r)
, ∀x ∈ Γ′ (31)

with Γ′ = Γ\{r}. Then, the remaining detailed balance conditions (8) can be rewritten as follows:

w(r, x)w(x, y)w(y, r) = w(x, r)w(y, x)w(r, y), ∀x, y ∈ Γ′ (32)

Notice that (31) expresses the probabilities p(x) as a function of the transition probabilities w(x, y) only.
Therefore to obtain relations for p(x) and w(x, y) as a function of the parameters θi one only has to
invert the relations (30), (32) together with the normalisation conditions (6). This part of the inversion
will depend on the particular form of the matrix Θ and has to be performed for every physical model
individually.

We want to emphasise that our procedure fits in the estimation theory [24, 25]. In that approach,
the average values of some observables are used to estimate the values of the model parameters. In
the present paper, we make a separation between the physical model of a theory and the underlying
mathematical model. The latter is the N -state Markov chain while the former model is introduced
by identifying some physically relevant observables. Usually, the number of microscopic parameters
p(x) and w(x, y) of the mathematical model is larger than the number of relevant observables Hi(k)

of the physical model. By measuring ⟨Hi(k)⟩, only the values of the corresponding parameters θi can
be estimated. Then, one can calculate an estimation of all the values of p(x) and w(x, y) with the
formulas obtained in this section. As such, no a priori choice for these parameters is necessary and one
obtains the least biased values for p(x) and w(x, y) given only the measured information and some basic
microscopic constraints.

5. Thermodynamics

In statistical mechanics, the starting point to describe a given model is usually the Hamiltonian
H(j) with j ∈ Γ and Γ the phase space. Then, the standard way of introducing the temperature
T is by postulating the Boltzmann-Gibbs form exp[−H(j)/T ] for the equilibrium distribution. This
approach is motivated by the maximum entropy principle that we already outlined in the introduction.
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Indeed, when the Hamiltonian is identified as the only relevant observable, expression (3) for the
equilibrium distribution simplifies to exp [−θ1H(j)]. Notice that this corresponds to the choice t = 1 and
H1(j) = H(j). Using the laws of thermodynamics, one can show that θ1 is indeed the inverse
temperature.

In previous sections, we used the maximum entropy principle to obtain the least biased values of
the microscopic parameters of a mathematical model gives some macroscopic constraints. Since this
problem fits in the estimation theory, we did not give a thermodynamic interpretation of the Lagrange
multipliers θi. However, such a deeper understanding is highly desirable for the application of our theory
to physical models like, e.g., the Ising chain. Therefore, in this section we study this thermodynamic
interpretation in more detail. We first outline briefly the concept of exponential families which is very
important in this context. Then we illustrate the relation between the Lagrange multipliers θi and the
temperature for the 2-state Markov chain. Finally, we show under which conditions our technique
coincides with the standard approach to introduce thermodynamic parameters into theoretical models.

5.1. Curved exponential family

A distribution with parameters w = [w1, . . . , ws] belongs to the t-parameter exponential family when
it can be written as follows:

P (j) = c(j) exp

(
G(w) −

t∑
i=1

θi(w)gi(j)

)
(33)

where t is the smallest integer for which the exponential form can be obtained, c(j) is a prior probability
and G(w) is determined by the normalisation condition

G(w) = − ln

(∑
j

c(j) exp

(
−

t∑
i=1

θi(w)gi(j)

))
(34)

The family is said to be curved when t > s [26] (s is the dimension of the parameter vector w, see
above). The special case for which s = t is called a full exponential family. Then, one can interpret the
functions θi(w) as the new parameters of the distribution θ = [θ1, . . . , θt]. The Boltzmann-Gibbs form is
obtained when also the functions gi(j) coincide with the relevant observables Hi(j)

P (j) = c(j) exp

(
G(θ) −

t∑
i=1

θiHi(j)

)
(35)

In the next section, we will show that the subtle differences between the curved and the full exponential
family are very important for the thermodynamic interpretation of the parameters θ. A generalisation of
the concept of exponential families with applications in the context of nonextensive statistical mechanics
is proposed by Naudts [25, 27, 28].

5.2. Example: the 2-state Markov chain

We studied the 2-state Markov chain already in Section 3. and interpreted this model as
a one-dimensional Ising chain. We identified two relevant observables H1(k) and H2(k), see
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expressions (19) and (20) respectively, and used ⟨H1(k)⟩ and ⟨H2(k)⟩ as constraints in the maximisation
procedure. As a consequence, the matrix Θ (28) becomes

Θ =

[
Θ(1, 1) Θ(1, 2)

Θ(2, 1) Θ(2, 2)

]
=

[
−Jθ1 + θ2 Jθ1 − θ2

Jθ1 + θ2 −Jθ1 − θ2

]
(36)

Using (30), the parameters θ1 and θ2 can then be expressed as a function of the microscopic parameters.
It is easy to check that this procedure results in the same formulas for θ1 and θ2 that we obtained before
(25), as it should be. Clearly, ⟨H2(k)⟩ is just the magnetisation M of the chain, while ⟨H1(k)⟩ is usually
interpreted as the internal energy U of the one-dimensional Ising model. Within this interpretation, the
parameters θ1 and θ2 can be related to the temperature T and an external applied field F as follows:
θ1 = 1/T and θ2 = −F/T . One can check this, e.g., by showing that the following thermodynamic
relations [4] hold

∂βG

∂β
= U − FM and

∂G

∂F
= −M (37)

with G the free energy G = U − FM − TS. The final expression for the magnetisation as a function of
T and F is

M

n
= sinh(F/T )

(
sinh2(F/T ) + e−4J/T

)−1/2
(38)

This is the well-known result for the one-dimensional Ising model [10]. We proceed by studying the
equilibrium distribution that is obtained by our optimisation procedure in order to understand why our
final formula for the magnetisation (38) coincides with the standard result. The probability P (k) to
observe a Markov chain with certain transition record k is proportional to

P (k) ∼ w(+, +)k(+,+)w(+,−)k(+,−)w(−,−)k(−,−)w(−, +)k(−,+) (39)

Now we want to express this probability as a function of the relevant variables H1(k), H2(k) and n.
Expressions for H1(k) and H2(k) as a function of the elements of k are already given in (19) and (20).
The length of the Ising chain n + 1 is just the sum of all the elements of k plus 1, i.e.,

n = k(+, +) + k(+,−) + k(−,−) + k(−, +) (40)

In this way, we obtain only 3 equations for 4 variables, the 4 elements of the transition record. However
notice that the difference between the values of k(−, +) and k(+,−) can only be 0 or 1. Therefore in
the thermodynamic limit we have an extra constraint for the elements of k

k(+,−) = k(−, +) (41)

In this way we end up with a closed set of equations (19,20,40,41) for the 4 elements of k. By solving
this set of equations for H1(k), H2(k) and n, we can rewrite expression (39) as follows:

P (k) ∼ exp[−θ1H1(k) − θ2H2(k)] (42)

see (25) for the definitions of θ1 and θ2. We omitted the dependence of n to obtain (42), because
the length of the Ising chain is assumed to be constant. Rewriting P (k) in this form makes the
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thermodynamic interpretation of the parameters θ1 and θ2 as θ1 = 1/T and θ2 = −F/T immediately
clear because expression (42) is just the Boltzmann-Gibbs distribution exp[−θ1H(k)], with H(k) =

H1(k)+H2(k)θ2/θ1. This is indeed the Hamiltonian of the Ising chain. We conclude that for this simple
example, our technique to introduce the thermodynamic temperature in a statistical model coincides with
the standard approach. As a consequence, it is no surprise that our expression for the magnetisation (38)
is equal to the well-known result for the one-dimensional Ising model.

Notice that ignoring equation (41) in this procedure results in an extra contribution to expression (42)

P (k) ∼ exp[−θ1H1(k) − θ2H2(k) − θ3H3(k)] (43)

with

H3(k) = k(+,−) − k(−, +) and θ3 =
1

2
ln

w(−,−)

w(+, +)

w(−, +)

w(+,−)
(44)

Observe that the distribution (43) is a member of the curved exponential family. Indeed, the 2

independent parameters are w = [w(+,−), w(−, +)]. However, in order to rewrite P (k) in an
exponential form, one needs 3 functions θ = [θ1, θ2, θ3] of these parameters instead of 2. Therefore,
the distribution (43) belongs to the curved exponential family while the distribution (42) is a member
of the full exponential family. As a consequence, the interpretation of the parameters of the
distribution (43) is not immediately clear. As we mentioned before, the difference between the values of
k(−, +) and k(+,−) can only be 0 or 1. So for this particular example, the difference between the full
and curved exponential family only occurs for finite systems. However, the problem is more general.
In this paper, we study mathematical models with an arbitrary number of microscopic parameters.
The number of physically relevant observables Hi(k) is usually a lot smaller. Therefore, it is not
obvious whether the distribution P (k) belongs to the full or curved exponential family in the variables
Hi(k). Or equivalently, it is not obvious whether it is possible to rewrite the probability P (k) in the
Boltzmann-Gibbs form. We examine this question for the N -state Markov chain in the next section.

5.3. Boltzmann-Gibbs distribution

The conditional probability P (k; x0) to observe a Markov chain with certain transition record k given
the initial condition x0 ∈ Γ can be written as (12). We also derived relations between the elements of the
transition record (14) that must be satisfied in order to obtain a non-vanishing value for P (k; x0). The
dependence of P (k; x0) on the initial condition x0 is unimportant for large Markov chains. Therefore,
we ignore the dependence of x0 in the remaining part of this section and write the probability P (k) to
observe a Markov chain with certain transition record k as follows:

P (k) = c(k) exp

(∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y)

)
:= c(k) exp (Υ(k)) (45)

When finite size effects are ignored, expression (14) simplifies to∑
y∈Γ

k(r, y) =
∑
y∈Γ

k(y, r), ∀r ∈ Γ (46)
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Notice that these relations are the generalisation of expression (41). In this paper we have assumed that
the detailed balance conditions (8) hold and derived relations (30) between w(x, y) using the maximum
entropy principle. The aim of this section is to examine whether the conditions (46) together with (8)
and (30) are sufficient to rewrite P (k) as the Boltzmann-Gibbs distribution (35)

P (k) ∼ c(k) exp

(
−

t∑
i=1

θiHi(k)

)
= c(k) exp

(
−
∑
x∈Γ

∑
y∈Γ

k(x, y)Θ(x, y)

)
. (47)

See expression (28) for the definition of the matrix Θ. Notice that we omitted the dependence of the
normalisation G(θ). By using the conditions (8), (46) and (30), we rewrite Υ(k) (45) as follows:

Υ(k) =
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y) +
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y)

=
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y) +
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(y, x)
p(y)

p(x)

=
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) ln w(x, y)w(y, x)

=
1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) [Θ(x, x) + Θ(y, y) − Θ(x, y) − Θ(y, x) + ln w(x, x)w(y, y)] (48)

Then, we use (46) and (30) again together with
∑

x,y k(x, y) = n to prove the following equality

1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) [Θ(x, x) + Θ(y, y) + ln w(x, x)w(y, y)] = n [Θ(r, r) + ln w(r, r)] (49)

with r an arbitrary state. Since we assumed n to be constant, this term can be absorbed in the
normalisation of the distribution P (k). Therefore, we end up with the following expression

P (k) ∼ c(k) exp

(
−1

2

∑
x∈Γ

∑
y∈Γ

k(x, y) [Θ(x, y) + Θ(y, x)]

)
(50)

The distribution P (k) is only of the Boltzmann-Gibbs form when the following condition holds (compare
(50) with (47))

0 =
∑
x∈Γ

∑
y∈Γ

k(x, y) [Θ(x, y) − Θ(y, x)] (51)

or equivalently

0 =
∑
x∈Γ

∑
y∈Γ

[k(x, y) − k(y, x)]Θ(x, y) (52)

A sufficient condition for the equality (51) to hold is obviously Θ(x, y) = Θ(y, x) for all x, y ∈ Γ.
However, the results of previous section show that this constraint is to restrictive. Indeed, we showed
for a simple example that one can rewrite the distribution P (k) in the Boltzmann-Gibbs form, without
the matrix Θ (36) being symmetric. The crucial observation to obtain this result was that following
constraint, k(+,−) = k(−, +), is fulfilled for the 2-state Markov chain. For N -state Markov chains,
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the latter equality can be generalised to (46). We proceed by eliminating some of the elements of the
transition record out of expression (51) by using the conditions (46). Chose an arbitrary state r and
replace in expression (51), k(x, r) by

k(x, r) = k(r, x) +
∑
y∈Γ′

[k(y, x) − k(x, y)] (53)

with Γ′ = Γ\{r}. This results in the following condition

0 =
∑
x∈Γ′

∑
y∈Γ′

k(x, y) [Θ(x, y) − Θ(y, x) − Θ(x, r) + Θ(r, x) + Θ(y, r) − Θ(r, y)] (54)

A sufficient condition for this equality to hold is

Θ(r, x) + Θ(x, y) + Θ(y, r) = Θ(x, r) + Θ(y, x) + Θ(r, y) (55)

Notice that this is a similar constraint to the detailed balance condition for the transition
probabilities (32). This derivation does not depend on the arbitrary chosen state r. As such, expression
(55) should hold for all r, x, y ∈ Γ. For the examples studied in this paper, condition (55) will always be
satisfied. As a consequence, the relation between the Lagrange multipliers θi (contained in the matrix Θ)
and the thermodynamic parameters is immediately clear. Therefore, in the remaining part of this paper,
we will omit the substep of explicitly checking thermodynamic relations like (37) during our analysis.

6. Example: The 3-state Markov Chain

In this section we study the 3-state Markov chain. The three states are denoted 1, 2 and 3. The
different parameters of the Markovian model are

p(1), p(2), p(3) and w(1, 1), w(1, 2), w(1, 3), w(2, 1), w(2, 2), w(2, 3), w(3, 1), w(3, 2), w(3, 3)

However, the number of independent parameters is reduced by 4 because of the normalisation conditions
(5), (6). The detailed balance conditions (8) further reduce the number of independent parameters by
3. We conclude that this microscopic model contains 5 independent parameters. In Section 2. we
introduced the transition record k. For this example, the matrix k contains 9 elements

k =

 k(1, 1) k(1, 2) k(1, 3)

k(2, 1) k(2, 2) k(2, 3)

k(3, 1) k(3, 2) k(3, 3)

 (56)

In the next two sections we study two physical models that are contained in this 3-state Markov chain.
The relevant observables of these two models are different and, as such, the elements of the matrix Θ are
not equal. As a consequence, the constraints (30) that relate the thermodynamic parameters (contained
in the matrix Θ) to the microscopic parameters w(x, y) will be different for the two physical models.
However, the relations (31), (32) and (6) are the same because they only depend on the mathematical
3-state model and not on the particular choice of the relevant observables. Therefore we write out the
formulas (31), (32) and (6) here, before we proceed with studying the expressions (30) in the next two
sections. We choose r = 1 in expressions (31) and (32)

p(1) =
w(2, 1)w(3, 1)

w(2, 1)w(3, 1) + w(1, 2)w(3, 1) + w(2, 1)w(1, 3)
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p(2) =
w(1, 2)

w(2, 1)
p(1), p(3) =

w(1, 3)

w(3, 1)
p(1) (57)

w(3, 1)w(1, 2)w(2, 3) = w(1, 3)w(2, 1)w(3, 2) (58)

and write out the normalisation conditions (5) for the transition probabilities

w(1, 1) = 1 − w(1, 2) − w(1, 3), w(2, 2) = 1 − w(2, 1) − w(2, 3)

w(3, 3) = 1 − w(3, 1) − w(3, 2) (59)

6.1. Potts model

The 3-state Markov chain can be interpreted as a one-dimensional Potts model [11, 12]. This system
corresponds to a chain of n + 1 spins. Contrary to the Ising model, the spin variables σi are vectors with
unit length that can point in 3 directions specified by the angles 2qπ/3 with q = 0, 1, 2. Two relevant
observables are

H1(σ) = −J
n−1∑
i=0

σi · σi+1 and H2(σ) =
n∑

i=0

1 · σi (60)

where J is a constant and 1 is a unit vector that points in one of the spin directions. Clearly, ⟨H2(σ)⟩ is
just the magnetisation M of the chain along the direction of 1, while ⟨H1(σ)⟩ is usually interpreted as
the internal energy U of the one-dimensional Potts model. The three states of the Markov chain 1, 2, 3

correspond to the three different spin directions. The contribution to H1(σ) is −J or J/2 depending on
whether σi = σi+1 or σi ̸= σi+1 respectively. Therefore, one can express H1(σ) as a function of the
elements of the transition record k as follows:

H1(k) = −J [k(1, 1) + k(2, 2) + k(3, 3)]

+J
1

2
[k(1, 2) + k(1, 3) + k(2, 1) + k(2, 3) + k(3, 1) + k(3, 2)] (61)

In order to obtain a similar expression for H2(σ), we chose arbitrarily the direction of 1 along the state
with label 1

H2(k) = k(1, 1) + k(2, 1) + k(3, 1) − 1

2
[k(1, 2) + k(2, 2) + k(3, 2) + k(1, 3) + k(2, 3) + k(3, 3)] (62)

Analogous to the example of the Ising model, see Section 3., we ignored the unimportant finite size
contribution of the initial spin σ0 to obtain H2(k) from H2(σ). We use ⟨H1(k)⟩ and ⟨H2(k)⟩ as
constraints in the maximisation procedure. As a consequence, the matrix Θ (28) becomes

Θ =

 Θ(1, 1) Θ(1, 2) Θ(1, 3)

Θ(2, 1) Θ(2, 2) Θ(2, 3)

Θ(3, 1) Θ(3, 2) Θ(3, 3)

 =
1

2

 −2Jθ1 + 2θ2 Jθ1 − θ2 Jθ1 − θ2

Jθ1 + 2θ2 −2Jθ1 − θ2 Jθ1 − θ2

Jθ1 + 2θ2 Jθ1 − θ2 −2Jθ1 − θ2

 (63)

Using (30), the parameters θ1 and θ2 can then be expressed as a function of the microscopic parameters
as follows:

3Jθ1 = ln
w(1, 1)

w(1, 2)

w(2, 2)

w(2, 1)
= ln

w(1, 1)

w(1, 3)

w(3, 3)

w(3, 1)
= ln

w(2, 2)

w(2, 3)

w(3, 3)

w(3, 2)
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3

2
θ2 = ln

w(2, 2)

w(1, 1)
= ln

w(3, 3)

w(1, 1)
(64)

Together with (58) and (59) these expressions form a closed set of equations that relate the parameters
θ1 and θ2 to the microscopic parameters w(x, y). In Appendix 2, this set is inverted analytically. We
proceed by writing out the ensemble average of H2(k) with (10), (57) and (59)

⟨H2(k)⟩
n

= −1

2
+

3

2

w(2, 1)

w(2, 1) + 2w(1, 2)
(65)

In combination with the results of Appendix 2, one then obtains a formula for ⟨H2(k)⟩ as a function of θ1

and θ2. These parameters can be related to the temperature T and an external applied field F as follows:
θ1 = 1/T and θ2 = −F/T . The final expression for the magnetisation M = ⟨H2(k)⟩ as a function of T

and F is
M

n
=

1

4
+

3

4

e3J/2T −
(
1 + e3J/2T

)
e−3F/2T√

[e3J/2T − (1 + e3J/2T ) e−3F/2T ]
2
+ 8e−3F/2T

(66)

An identical expression is obtained in [12]. The authors assume that the equilibrium distribution is
of the Boltzmann-Gibbs form and solve the one-dimensional Potts model with the technique of the
transfer-matrix. Since the Hamiltonian of this model satisfies (55), the resulting equilibrium distribution
of our approach is also of the Boltzmann-Gibbs form. That’s the reason why the final expressions for M

as a function of T and F of the two different approaches coincide.

6.2. Blume-Emery-Griffiths model

The 3-state Markov chain can be interpreted as a one-dimensional Blume-Emery-Griffiths
model [13, 14]. This system corresponds to a chain of n + 1 spins. The spin variables σi are scalars that
can take on three values +1, 0,−1. Two relevant observables are

H1(σ) = −J
n−1∑
i=0

σiσi+1 − K
n−1∑
i=0

σ2
i σ

2
i+1 + ∆

n∑
i=0

σ2
i and H2(σ) =

n∑
i=0

σi (67)

where J,K, ∆ are constants. Clearly, ⟨H2(σ)⟩ is just the magnetisation M of the chain, while ⟨H1(σ)⟩ is
usually interpreted as the internal energy U of the one-dimensional Blume-Emery-Griffiths model. The
three states of the Markov chain 1, 2, 3 correspond to the spin values +1, 0,−1 respectively. Within this
interpretation, one can express H1(σ) and H2(σ) as a function of the elements of the transition record k

as follows:

H1(k) = −J [k(1, 1) + k(3, 3) − k(1, 3) − k(3, 1)] − K[k(1, 1) + k(3, 3) + k(1, 3) + k(3, 1)]

+∆[k(1, 1) + k(2, 1) + k(3, 1) + k(1, 3) + k(2, 3) + k(3, 3)] (68)

H2(k) = k(1, 1) + k(2, 1) + k(3, 1) − [k(1, 3) + k(2, 3) + k(3, 3)] (69)

Analogous to previous examples, we ignored the contribution of ∆σ2
0 to obtain H1(k) from H1(σ) and

the contribution of σ0 to obtain H2(k) from H2(σ). We use ⟨H1(k)⟩ and ⟨H2(k)⟩ as constraints in the
maximisation procedure. As a consequence, the matrix Θ (28) becomes

Θ =

 Θ(1, 1) Θ(1, 2) Θ(1, 3)

Θ(2, 1) Θ(2, 2) Θ(2, 3)

Θ(3, 1) Θ(3, 2) Θ(3, 3)

 =

 θ1(−J − K + ∆) + θ2 0 θ1(J − K + ∆) − θ2

θ1∆ + θ2 0 θ1∆ − θ2

θ1(J − K + ∆) + θ2 0 θ1(−J − K + ∆) − θ2

 (70)
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Using (30), the parameters θ1 and θ2 can then be expressed as a function of the microscopic parameters
as follows:

− θ1(J + K) = ln
w(1, 2)

w(1, 1)

w(2, 1)

w(2, 2)
= ln

w(2, 3)

w(2, 2)

w(3, 2)

w(3, 3)

−4θ1J = ln
w(1, 3)

w(1, 1)

w(3, 1)

w(3, 3)

−θ1(J + K − ∆) + θ2 = ln
w(2, 2)

w(1, 1)

−θ1(J + K − ∆) − θ2 = ln
w(2, 2)

w(3, 3)
(71)

Together with (58) and (59) these expressions form a closed set of equations that relate the parameters
θ1 and θ2 to the microscopic parameters w(x, y). In Appendix 3, this set is inverted analytically. As in
previous example, the parameters θ1 and θ2 are related to the temperature T and an external applied field
F as follows: θ1 = 1/T and θ2 = −F/T . We proceed by writing out the ensemble average of H2(k)

(69) with (10), (57) and (59)

⟨H2(k)⟩
n

=
w(3, 1)w(2, 1) − w(2, 1)w(1, 3)

w(3, 1)w(2, 1) + w(1, 3)w(2, 1) + w(1, 2)w(3, 1)
(72)

In combination with the results of Appendix 3, one finally obtains an expression for the magnetisation
M = ⟨H2(k)⟩ as a function of T and F . A plot of the magnetisation as a function of the external
applied field at constant temperature θ1 = 1/T = 20 is shown in Figure 1 for the following values of the
constants of H1(k) (68) K = 0, J = −1 and ∆ = 0; 0.5; 1. It is known that multiple plateaus show up
is this curve depending on the value of ∆ [14, 29]. This interesting behaviour can also be observed in
Figure 1.

Figure 1. Plot of the magnetisation of the one-dimensional Blume-Emery-Griffiths model
as a function of the external applied field at constant temperature 1/T = 20. The values of
the constants of H1 (68) are K = 0, J = −1 and ∆ = 0; 0.5; 1 for the dotted, the solid, the
dashed line respectively.
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7. Discussion

In this paper, we present a general procedure to estimate parameters in Markovian models. The
Markov chain is a mathematical model that is defined by initial probabilities p(z) and transition
probabilities w(z, y). We interpret p(z) and w(z, y) as the microscopic parameters of the Markovian
model. Then, relations between p(z), w(z, y) and some relevant control parameters θi are determined
with the maximum entropy principle. Finally, one ends up with formulas that express the average values
of the relevant observables Hi(k) as a function of the corresponding control parameters θi only. These
expressions can be used to estimate the values of θi after the measurement of ⟨Hi(k)⟩. We want to stress
that the dependence on the microscopic parameters is completely eliminated out of the theory. This
means that no a priori choice for the values of p(x) or w(x, y) is necessary. This is important because
the values of these parameters are not measurable.

We made a clear separation between the physical model of a theory and the underlying mathematical
model. The latter is the N -state Markov chain while the former model is introduced by identifying
some relevant observables. As such, different physical models can be contained in one type of Markov
chain. This is illustrated in Section 6. where we examined two different physical models that are
contained in the 3-state Markov chain. We showed that is possible to perform the aforementioned
optimisation procedure in full generality for the N -state Markov chain. This results in relations (30)
between the microscopic parameters of the mathematical model and some relevant control parameters.
These formulas are the main result of this paper.

In Section 5.3. we studied under which conditions the equilibrium distribution of our approach is of
the Boltzmann-Gibbs form. Obtaining this type of equilibrium distribution is advantageous because a
thermodynamic interpretation of the control parameters is obvious in that case. We derived a sufficient
condition that is satisfied for all the examples studied in this paper. As such, the final formulas for
the average values of the relevant observables as a function of the thermodynamic parameters that are
obtained in this paper have been studied before. The general procedure to obtain these formulas is the
novel contribution of this paper. Notice that further generalisations of our technique are still possible.
We assumed that the relevant observables are linear combinations of the elements of the transition record
of the Markov chain. In [30], this condition is lifted. In that paper, the specific example of the 2-state
Markov chain with a mean-field Hamiltonian is studied with the same technique as described in the
present paper. It is an interesting topic for further research to examine the effect of allowing mean-field
Hamiltonians in the theory for the general N -state Markov chain. We also assumed that all the transitions
are allowed (w(x, y) ̸= 0 for all x, y ∈ Γ). Lifting this assumption will usually cause the violation
of the detailed balance condition. The generalisation of the results reported in the present paper to
non-equilibrium steady states is currently under study. Notice that allowing for a vanishing transition
probability w(x, y) will not cause the violation of the detailed balance condition when the transition
y → x is also not allowed. The specific example of a 6-state Markov chain with that property is studied
in [7]. Throughout the present paper, we ignored finite size effects. The technical consequences of taking
these effects into account are already thoroughly examined for the 2-state Markov chain in [5, 19].
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Appendix

Appendix 1

In this appendix we maximise the function

1

n
L = −

∑
z∈Γ

∑
y∈Γ

p(z)w(z, y) ln w(z, y) −
∑
z∈Γ

∑
y∈Γ

Θ(z, y)p(z)w(z, y) − α
∑
z∈Γ

p(z)

−
∑
z∈Γ

ζ(z)
∑
y∈Γ

w(z, y) −
∑
z∈Γ

∑
y∈Γ,y>z

η(z, y) [p(z)w(z, y) − p(y)w(y, z)] , (73)

over the parameters p(z) and w(z, y). Therefore, we set the first derivative of L with respect to these
parameters equal to zero. The resulting equations for differentiating with respect to w(u, u) (74), p(u)

(75), w(u, v) (76), w(v, u) (77) with v > u are

ζ(u) = −p(u) [1 + ln w(u, u) + Θ(u, u)] , (74)

0 =
∑
y∈Γ

w(u, y) ln w(u, y) +
∑
y∈Γ

Θ(u, y)w(u, y) + α

+
∑

y∈Γ,y>u

η(u, y)w(u, y) −
∑

y∈Γ,y<u

η(y, u)w(u, y), (75)

0 = p(u) [1 + ln w(u, v)] + Θ(u, v)p(u) + ζ(u) + η(u, v)p(u), (76)

0 = p(v) [1 + ln w(v, u)] + Θ(v, u)p(v) + ζ(v) − η(u, v)p(v). (77)

One can simplify the expressions (76) and (77) with the use of the formula for ζ(u) (74)

0 = ln
w(u, v)

w(u, u)
+ Θ(u, v) − Θ(u, u) + η(u, v), (78)

0 = ln
w(v, u)

w(v, v)
+ Θ(v, u) − Θ(v, v) − η(u, v). (79)

Combining these two equations results in

Θ(u, u) + Θ(v, v) − Θ(u, v) − Θ(v, u) = ln
w(u, v)

w(u, u)

w(v, u)

w(v, v)
. (80)

We proceed by rewriting expression (75) as follows:

0 = w(u, u) [ln w(u, u) + Θ(u, u)] + α

+
∑

y∈Γ,y>u

w(u, y) [ln w(u, y) + Θ(u, y) + η(u, y)]

+
∑

y∈Γ,y<u

w(u, y) [ln w(u, y) + Θ(u, y) − η(y, u)] . (81)

Then, we use (78) and (79) to transform (81) further to

0 = w(u, u) [ln w(u, u) + Θ(u, u)] + α
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+
∑

y∈Γ,y>u

w(u, y) [ln w(u, u) + Θ(u, u)]

+
∑

y∈Γ,y<u

w(u, y) [ln w(u, u) + Θ(u, u)]

−α = ln w(u, u) + Θ(u, u). (82)

The latter equation is valid for all u ∈ Γ. The parameter α can then be eliminated, by combining these
equations two by two

Θ(u, u) − Θ(v, v) = ln
w(v, v)

w(u, u)
. (83)

Appendix 2

In this appendix we invert the set of equations (64), (58), (59)

e3Jθ1 =
1 − w(1, 2) − w(1, 3)

w(1, 2)

1 − w(2, 1) − w(2, 3)

w(2, 1)
, (84)

e
3
2
θ2 =

1 − w(2, 1) − w(2, 3)

1 − w(1, 2) − w(1, 3)
, (85)

1

w(1, 2)

1 − w(2, 1) − w(2, 3)

w(2, 1)
=

1

w(1, 3)

1 − w(3, 1) − w(3, 2)

w(3, 1)
, (86)

1 − w(1, 2) − w(1, 3)

w(1, 2)

1

w(2, 1)
=

1

w(2, 3)

1 − w(3, 1) − w(3, 2)

w(3, 2)
, (87)

1 − w(2, 1) − w(2, 3) = 1 − w(3, 1) − w(3, 2), (88)

w(3, 1)w(1, 2)w(2, 3) = w(1, 3)w(2, 1)w(3, 2), (89)

to obtain formulas in closed form for the microscopic parameters w(x, y) as a function of θ1 and θ2 only.
Equations (86), (88) and (89) can be simplified to

w(1, 3) = w(1, 2), w(3, 1) = w(2, 1) and w(3, 2) = w(2, 3). (90)

Notice that this restricts the values of w(1, 2) and w(1, 3) to the interval [0..1/2], because of the
normalisation condition. Using (90), equation (87) can be rewritten as follows:

w(1, 2) =
w(2, 3)2

2w(2, 3)2 + w(2, 1)[1 − w(2, 1) − w(2, 3)]
. (91)

Inserting (90) and (91) into equations (84) and (85) results in two equations in the variables w(2, 3) and
w(2, 1). By inverting these two equations

w(2, 1) = 1 − w(2, 3)
(
1 + e

3
2
Jθ1

)
,

w(2, 3) = −1

2

e
3
2
Jθ1 +

(
1 + e

3
2
Jθ1

)
e

3
2
θ2 −

√[
e

3
2
Jθ1 −

(
1 + e

3
2
Jθ1

)
e

3
2
θ2

]2
+ 8e

3
2
θ2

2 −
(
1 + e

3
2
Jθ1

)
e

3
2
Jθ1

, (92)

one finally obtains a closed chain of equations for the transition probabilities.
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Appendix 3

In this appendix we invert the set of equations (71), (58), (59). We first introduce a shorthand notation

η1 = e−θ1(J+K), η2 = e−2θ1J , η3 = e−θ1(J+K−∆)+θ2 , η4 = e−θ1(J+K−∆)−θ2 , (93)

and the substitution

X1 =
w(1, 2)

w(1, 1)
, X2 =

w(2, 1)

w(2, 2)
, X3 =

w(2, 3)

w(2, 2)
,

X4 =
w(3, 2)

w(3, 3)
, X5 =

w(1, 3)

w(1, 1)
, X6 =

w(3, 1)

w(3, 3)
, (94)

to obtain the following expressions for the normalisation conditions (59)

w(1, 1) = (1 + X1 + X5)
−1 , w(2, 2) = (1 + X2 + X3)

−1 , w(3, 3) = (1 + X4 + X6)
−1 , (95)

and the equations (71), (58)

η1 = X1X2, η1 = X3X4, η2
2 = X5X6, X1X3X6 = X2X4X5, (96)

X5 = η3(1 + X2 + X3) − 1 − X1, X4 = η4(1 + X2 + X3) − 1 − X6. (97)

We proceed by rewriting (96) as follows:

η1 = X1X2, η1 = X3X4, η2X3 = X2X5, η2X2 = X3X6. (98)

Then, we use the expressions (97) for X4 and X5 to transform (98) further to

X1 =
η1

X2

, X6 = η4(1 + X2 + X3) − 1 − η1

X3

, (99)

η2X3 = X2η3(1 + X2 + X3) − X2 − η1, η2X2 = X3η4(1 + X2 + X3) − X3 − η1. (100)

Finally, we rewrite (100) as follows:

X3 =
X2η3(1 + X2) − X2 − η1

η2 − X2η3

, (101)

(X2η2 + η1)(X2η3 − η2)
2 =

[
X2η3(1 + X2) − (X2 + η1)

]
×[

η4η2(1 + X2) − η4(X2 + η1) + X2η3 − η2

]
, (102)

to obtain a closed chain of equations for the variables Xi with i = 1 . . . 6. Expression (102) is
a cubic equation in the variable X2 which can have 3 real solutions. However, it is well known
that one-dimensional systems with short range interactions do not exhibit phase transitions when the
equilibrium distribution is of the Boltzmann-Gibbs form. Therefore, only one of the solutions of the
cubic equation is physically meaningful. The other solutions are complex or result in values for some of
the transition probabilities outside the interval [0, 1].
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