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Abstract: In studying biological systems, conventional approaches based on the laws of 

physics almost always require introducing appropriate approximations. We argue that a 

comprehensive approach that integrates the laws of physics and principles of inference 

provides a better conceptual framework than these approaches to reveal emergence in such 

systems. The crux of this comprehensive approach hinges on entropy. Entropy is not 

merely a physical quantity. It is also a reasoning tool to process information with the least 

bias. By reviewing three distinctive examples from protein folding dynamics to drug 

design, we demonstrate the developments and applications of this comprehensive approach 

in the area of biological systems. 
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1. Introduction 

The methods of statistical mechanics have been favored by physicists investigating biological 

problems, which involve various emergent properties such as protein folding dynamics and  

protein-protein interactions in drug discovery. However, due to the presence of many-body 

interactions in such systems, applications of these methods made without appropriate approximations 

result in intractable problems [1]. For example, in studying fluid structures in physics, Tseng and 

Caticha [1] discuss this issue and give an example of seeking out optimal hard sphere approximations 
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to properly describe many-body interactions. Similarly, in studying protein structure in biology, the 

lattice model is introduced to approximate complicated atomic interactions within proteins [2,3].  

We argue that an alternative and perhaps more comprehensive solution to introducing 

approximations is that suggested by Wheeler [4], who concluded that all things physical are 

information-theoretic in origin and we live in a participatory universe. This suggests a comprehensive 

route, in which one integrates physics and information to develop reasoning and to create theories 

instead of devising approximations that might be appropriate for biological systems. Because the 

studies of information theory focus on applying principles of inference to consistently, objectively, 

universally, and honestly process information, the key to integrating physics and information is the 

same as that required for integrating the laws of physics and principles of inference. Furthermore, 

because the concept of entropy is not only found to represent irreversibility in thermodynamics but has 

also been shown to be the foundation of information processing [5–9] and is a means for deriving the 

dynamics of statistical systems purely from the principles of inference [10–13], we conclude that the 

key to this type of integration is rooted in entropy.  

Here, we review three distinctive examples in biology and drug discovery to demonstrate the 

developments, applications and advantages of the approach based on this comprehensive route and to 

reveal emergence in these complex systems. In the first example, we will show that the incorporation 

of the laws of physics and principles of inference provides a more comprehensive method to 

investigate and reveal protein folding dynamics compared to conventional approaches [14]. Second, a 

maximum entropy method is developed to predict tubulin isotype expression levels in a cell when the 

cell is exposed to various cytotoxic derivatives of the anti-cancer drug, colchicine [15]. The last 

example discussed here aims to provide a theoretical method based on the maximum entropy approach  

to design short nucleic acid sequences, aptamers that specifically bind to bio-molecular targets of 

interest [16]. These three examples will provide strong evidence that entropy plays a crucial and 

fundamental role in conceptual development rather than being merely involved in either a 

measurement of randomness or a tool for processing information. 

2. A Comprehensive Perspective 

2.1. The Core Aspect: Rules of Probability Theory, the Method of Maximum Entropy and Information 

Geometry 

To formulate a comprehensive approach that integrates physics and information for the study of 

biological systems, we consider a procedure that is different from which that is the conventionally 

used in the past to set up physical theories [6]. Normally one starts by establishing a mathematical 

formalism, and then one tries to append an interpretation to it. The alternative procedure works in the 

opposite direction, one starts by determining what is the object of investigation and the goals that are 

being set, and only afterward one designs an appropriate mathematical formalism.  

An appropriate formalism for this alternative procedure involves the principles of inference, in 

which probability is considered to be the degree of belief or plausibility rather than merely a 

frequency. The principles of inference including consistency, objectivity, universality, and honesty, are 

sufficiently constraining that they lead to a unique set of rules for processing information: rules of 

probability theory [17–19] and the method of maximum entropy [5–9,20]. Furthermore, it was found 
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that information geometry is a convenient tool to manipulate information [21]. A brief illustration of 

three specific methods is given below. 

Rules of probability theory. Cox showed that the Bayesian interpretation of probability and entropy 

can also be manipulated by the rules of subtraction, multiplication and addition of standard probability 

theory [17,18]. Namely, one can quantitatively manipulate propositions regarding systems of interest 

[17,18,19]. 

Method of maximum entropy. Following the alternative route to solve statistical problems, entropy is 

just a tool for induction [6]. First, Jaynes showed that the method of maximum entropy (denoted by 

MaxEnt) is a reasoning tool to assign probabilities on the basis of limited information with the least 

bias [5,22]. The preferred probability distribution of the system in a specific state is the one that 

maximizes the entropy of the system subject to the information available. Second, Shore and Johnson, 

Caticha and Giffin followed the same reasoning and proposed that the method of maximum entropy 

(denoted by ME) can also be utilized as a tool for updating probability distributions based on limited 

information [5–9,20]. They showed that the key to updating probability distributions is through 

relative entropy rather than the entropy in MaxEnt. Note that relative entropy is defined as the negative 

Kullback-Leibler distance of two probability distributions and quantifies their difference. Therefore, to 

update from a probability distribution, which we call a prior distribution, based on available new 

information to some probability distributions, defined as posterior distributions, with the least bias, one 

needs to maximize the relative entropy of all possible distributions and the prior distribution subject to 

this new information. Subsequent maximization will then lead to the preferred posterior distribution. 

Information geometry. Based on the method of differential geometry, information geometry introduces 

the concept of manifolds for characterizing and manipulating information [21]. An information 

manifold is constructed based on independent parameters that characterize the system of interest. The 

probability distributions of the system in specific states can then be treated as points in the manifold. 

Fisher and Rao showed a uniquely natural way to quantify changes between the two points, which is 

now recognized as the Fisher-Rao metric [23–25]. Therefore, when a probability is assigned to each 

point, it automatically provides the space of states with a metric structure. Consequently, all 

information regarding the systems of interest is embedded in the corresponding information manifolds. 

2.2. Comments 

In this alternative approach to study biological systems, one first focuses on finding out what the 

“right” questions and goals are and then designs appropriate mathematical formalisms. It is found that 

such mathematical formalisms are based on the rules of probability theory, the method of maximum 

entropy and information geometry. This way of formulating theories provides an advantage that 

conventional approaches lack in investigating biological systems. Namely, we are utilizing information 

relevant to systems and problems of interest that is acquired from the applications of laws of physics to 

make best inferences following the principles of inference in order to answer our questions rather than 

attempting to solve some mathematical equations and appending interpretations to it. Suppose there 

exists an exact formalism to interpret phenomena pertinent to biological systems. Since the principles 
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of inference represent rigorous and objective ways of processing information, the formalism resulting 

from this alternative approach is likely to be closest to such an exact formalism if sufficient 

information and appropriate laws of physics are utilized. In the following section, we demonstrate the 

developments and applications stemming from this approach using three examples to solve problems 

that are difficult to answer using conventional approaches. 

3. From Principles of Inference to Protein Folding Dynamics 

3.1. Introduction 

Protein folding dynamics is one of the major issues investigated in the study of protein functions. 

Because the protein folding process involves complicated many-body interactions, molecular 

dynamics (MD) simulations are a common theoretical/computational approach considered. However, 

one issue hinders the practical usage of MD simulations in studying protein folding processes. Proteins 

may be trapped in one of many local energy minima on the energy surface during simulations. To 

resolve this issue, the replica exchange method (REM) has been proposed [26]. Yet, the introduction of 

the Monte Carlo aspect in REM seems to inevitably lead to the loss of the dynamical information 

about the folding process. In Tseng et al. [14], we proposed to tackle the folding dynamics problem by 

asking the following question: “Can we directly reveal folding dynamics from pure REM-MD 

simulation results? And if so, how?” 

3.2. Theory 

In trying to answer the question: “Can laws of physics be derived from principles of inference?”, 

the work of Caticha and collaborators [10–12] unveils a solution to this problem. They argue that 

information geometry is a convenient tool to utilize in order to proceed. Based on information 

geometry, a natural way to distinguish two macrostates A
α
 and A

α
+dA

α
 is to treat each as a point in the 

space of states, the information manifold with coordinates A
α
. One can then show that the difference 

between the two states is given by the distance dl between p(x| A
α
) and p(x| A

α
+dA

α
), namely: 


 dAdAgdl 2  (1) 

where a general expression of gαβ is given by: 
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which is the Fisher-Rao metric [23–25]. This is the only Riemannian metric that adequately reflects the 

underlying statistical nature of the manifold of distributions p(x|A). This result indicates that when the 

probability p(x|A
α
) is assigned to each point A

α
, it automatically provides the space of states with a 

metric structure. Note that the coordinates of the manifold need not be the expectation values. Because 

we chose the expectation values A
α
 as the coordinates, one can show that an alternative expression for 

the Fisher-Rao metric is: 
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The evolution of probability distributions is then simply represented by a point object that “moves” 

along a trajectory within the manifold. Based on this treatment, Caticha showed that the dynamics of a 

physical system can be derived directly from principles of inference. He, therefore, termed this 

approach the entropic dynamics. In entropic dynamics, dynamical laws follow from recognizing the 

appearance of changes from one point to a neighboring point in the manifold. According to the ME 

principle, the preferred neighboring point is the one corresponding to the state of maximum entropy. 

Following the studies of Caticha [10–12], we have argued that protein folding dynamics can also be 

derived from entropic dynamics given REM-MD simulation results of a target protein, which forms a 

statistical system of possible protein structures, and have proposed entropic folding dynamics [14]. 

The first step in entropic folding dynamics is to construct the information manifold of the statistical 

system that codifies structural and dynamical information of a protein. Specifically, some quantities 

such as energy or the root-mean-square deviation (RMSD) of two structures from the same REM-MD 

results that characterize protein structures and the properties of slow folding process can be considered 

to be fundamental quantities used to construct coordinates of the information manifold. Next, suppose 

all possible folding trajectories of that protein can be described by those quantities. We can then treat a 

transition state along the folding trajectories as an average structure of all possible structures in the 

phase space with specific probabilities, P(i), where “I” denotes the i
th

 microstate of this protein’s 

statistical system which represents a protein structure at a specific time and temperature in  

the simulations. 

In Tseng et al. [14], a well-studied Trp-cage peptide, the native structure is shown in Figure 1 

generated by the software package, visual molecular dynamics (VMD) [27], which illustrates the 

applicability of the entropic folding dynamics. 

Figure 1. The NMR structure of the Trp cage (PDB id: 1L2Y). The structure shows Trp
6
 is 

caged inside the hydrophobic pocket formed by three proline residues. 

 

 

Details of the REM-MD simulations to generate Trp-cage statistical system are given in [14]. To 

construct the information manifold, we consider two quantities. The first quantity is the reachability 
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distance ii rb ˆ1   that quantifies structural differences through ranking proteins in the order of similarity, 

which is defined by RMSD of two structures, without introducing any reference structures using a 

density-based clustering analysis method, Ordering Points to Identify the Clustering Structure 

(OPTICS) [28]. The second quantity is the smoothed potential energy ii ub 2  that characterizes slow 

folding processes, which is obtained by removing an energy component corresponding to fast atomic 

motions. Therefore, we define two macrostates: 

 



N

i

ibiPB
1



 
(4) 

where N is the total number of protein structures, B¹ denotes the expectation reachability distance and 

B² is the expectation smoothed potential energy as the two coordinates for the information manifold. 

Note that ideally, all possible structures in the folding process are expected to be equally generated 

from the REM-MD simulations. When there are no constraints provided, the most honest choice is to 

assign an equal probability to each structure as a prior. Furthermore, even though one of the 

constraints, smoothed potential energy, refers to a quasi-static equilibrium state, Jaynes proved that the 

method of maximum entropy is still applicable [29]. Therefore, given a uniform prior probability and 

the constraint equation, Equation (4), the ME probability distribution function is given by: 
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where the partition function is  
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The Lagrangian multipliers γα are determined numerically. Furthermore, the entropy of the Trp-cage 

statistical system in state B
α
 is given by: 

      



2

11

loglog
n

nn

N

i

BZBiPBiPBS 
 

(6) 

Finally, according to information geometry, when a probability distribution is defined, a metric 

space for the information manifold is created naturally. Therefore, the action of choosing the 

expectation reachability-distance and smoothed potential energy as the coordinate system defines the 

metric tensor, shown in Equation (3). 

3.3. Folding Trajectories of Trp-Cage 

After the metric space is determined, the evolution of the Trp-cage from a given initial macrostate 

to the final macrostate in the information manifold is determined by the ME principle. The Trp-cage 

statistical system will evolve from the j
th

 macrostate B
α
(j) to a neighboring state B

α
(j + 1) via: 

     jdBjBjB  1  (7) 

The change, dB
α
(j) calculated from Equation (1), is: 
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where γ
α
(j) = g

αβ
(j)γβ(j) is the Lagrangian multiplier γα at j

th
 step and g

αβ
(j)gαβ(j) = 1. However, 

Equation (7) is not yet a physical law without introducing dynamical information to constrain dl, the 

minimum distance between two macrostates. To constrain dl, as is recognized in many studies, 

proteins tend to fold in a direction that globally decreases the reachability distance and potential 

energy. Therefore, we propose to constrain the “direction” of changes with regard to the potential 

energy and reachability distance by setting a negative absolute speed dl/dt when the rate of the j
th

 

macrostate change dB
α
(j)/dl is positive [14]. 

We investigate the properties of the folding trajectories when the initial states are given differently with 

dl/dt = 0.01. The three initial states are: (A) B¹ = 2.2Å; B² = −312 kcal/mole, (B), B¹ = 2.5 Å; B² = −318, 

and (C) B¹ = 1.5 Å; B² = −316 kcal/mole. The initial state (B) has the lowest smoothed potential energy, 

and yet has the largest reachability distance. In contrast, the initial state (C) has the shortest 

reachability distance. Both initial states are in the vicinity of the upper and lower boundaries, 

respectively, of the sampling space generated from the REM-MD simulation results. Figure 2 shows 

how the Trp-cage evolves toward the maximum entropy state on the three-dimensional entropy surface 

through three trajectories. It also shows the steepness of this entropy surface. Furthermore, we project 

the same trajectories onto the two-dimensional entropy contour map in the bottom to show the 

differences between the trajectories in terms of the smoothed potential energy and reachability 

distance. Six cartoon representations of the averaged Trp-cage structure at initial and final steps are 

presented in the same figure. The entropy of the system is calculated from Equation (6) for each state 

B
α
 and its magnitudes are denoted by the color scale. Note that the entropy contour map is plotted to 

roughly cover the region of the sampling space. It takes 57, 29 and 48 steps for state (A), (B) and (C) 

to reach the maximum entropy state, respectively. 

The figure shows two features of folding trajectories. The first feature, revealed by either trajectory 

(B) or (C), is that the system likely evolves through a straight route. There is a linear relation between 

the smoothed potential energy and reachability distance. The second feature, revealed by trajectory 

(A), shows a curved type route. This type of route first shows that the system evolves with the 

reachability distance having a decreasing rate which is faster than the smoothed potential energy rate. 

After around B¹ = 1.75 Å; B² = −316 kcal/mole, the system evolves with the decreasing rate for the 

reachability distance being slower than the decreasing rate for the smoothed potential energy. In 

general, when the initial state of the system is in the vicinity of the sampling space, the system tends to 

evolve through a straight route. Otherwise, a curved type route will be expected. 

To quantitatively analyze the structural changes along the trajectories, we calculate the RMSD of 

the Cα-atoms of the average structures at each step of the three trajectories and the NMR structure of 

the Trp-cage. The results are shown in Figure 3. The RMSD of the final structures and the NMR 

structure are 2.17, 2.17, and 2.26 Å, respectively. For both trajectories A and B, the RMSD values 

gradually decrease to around 2.13 Å ~after 45 and 20 steps and climb back a little to 2.17 Å, 

respectively. This suggests that when the system evolves to the lower left region in Figure 2, the 

corresponding average structure is likely to be equilibrated and approaches the native structure. 
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Figure 2. Entropic folding trajectories of the Trp-cage given three various initial 

structures. The three trajectories are plotted in the three-dimensional entropy space. In the 

bottom part of the figure, the same trajectories are projected on the two-dimensional 

entropy contour map. The averaged initial (bottom) and final (top) structures generated by 

VMD [27] are also presented for comparison. 
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Figure 3. The RMSD values of averaged structures along the three trajectories and the 

NMR structure of the Trp-cage. The lines with hollow squares, circles and triangles are 

from trajectories (A), (B) and (C), respectively. Note that we only label the data points by 

symbols at every 4 steps. 

 

 

3.4. Discussion 

The entropic folding process qualitatively agrees with the results of other studies such as Juraszek 

and Bolhuis [30], in which the transition pathway sampling technique [31–33] is integrated in MD 

simulations, to solve the sampling issue in order to study the folding dynamics. Our studies also 

present one advantage and give an insight with regard to the folding dynamics. The advantage is that 

there is no need to modify the current REM-MD simulation protocol, such as by integrating it with 

some sampling techniques. Instead, one can directly apply the proposed approach to the systems that 

have been investigated using either REM-MD or Monte Carlo simulations as long as the “right” 

coordinate systems are defined to construct the information manifold. Regarding the new insight, our 

results show that the folding dynamics is driven by the ME principle. One may dismiss this conclusion 

by arguing that this is merely a consequence of the second law of thermodynamics. However, one 

cannot talk about these folding trajectories without mapping the systems into information manifolds to 

begin with. 

4. The Relative Importance of Tubulin Isotypes Unveiled by the Maximum Entropy Approach 

4.1. Introduction 

The ultimate goal of our work in the field of anti-cancer drug discovery is to investigate the relative 

importance of tubulin isotypes in eliciting a response of cancer cells to cytotoxic stress since tubulin is 

the target of some of the most successful anti-tumor drugs, such as taxanes and vinca alkaloids [34,35] 

used in cancer chemotherapy. In order to understand the complex behavior of various cancer cells 

exposed to a novel family of tubulin-binding compounds created as derivatives of colchicine, we 

propose to apply the ME approach to predict the expression levels of specific isotypes of tubulin in 
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response to cytotoxic agents [15]. Six cancer cell lines as listed in Table 1, A549, MCF7, CEM, HeLa, 

M006X, and M010B, were used in this study and they were subjected to colchicine and 20 of its novel 

derivatives with significantly different binding affinities for each tubulin isotype, particularly, αβI, 

αβII, αβIII, and αβIV. Specifically, based on the assumption that cytotoxicity is correlated with drug 

affinity for the molecular target, we ask: “Given the information regarding the binding free energy 

between individual tubulin isotypes and colchicine derivatives and the IC50 values (effective 

concentration at which 50% of the cells are seen to experience drug-induced apoptosis) from cytotoxic 

measurements on the cell lines exposed to these drugs, what are the most likely expression levels of 

specific tubulin isotypes?”. 

Table 1. Origins and growth conditions of common cancer cell lines used in MTS cytotoxicity assays. 

Cell 

Line 

Origin Media 

A549 Human lung carcinoma RPMI with 10% fetal bovine serum 

(FBS) 

MCF-7 Human mammary gland adenocarcinoma RPMI with 10% FBS 

CEM Human T-lymphoblastoid from ALL RPMI with 10% FBS 

HeLa Human cervical carcinoma DMEM with 10% FBS 

M006X Human glioma cells DMEM-F12 with 10% FBS and 1% 

Glutamine 

M010B Human glioma cells DMEM-F12 with 10% FBS and 1% 

Glutamine 

 

4.2. Method 

Again, this is exactly the type of question that the method of maximum entropy is designed to 

answer. The crux is then to determine the constraints relevant to tubulin isotype expression levels in 

cytotoxic measurements. The constraint equation that relates the cytotoxicity of colchicine derivatives 

given by the values of log IC50 and the binding free energy between tubulin isotype i and colchicine 

derivatives ΔGi
α
 as: 





M

i

ii GPGRT
1

50IClog   (9) 

where we use the superscript α = C or C' to denote the cell line exposed to colchicine or colchicine 

derivatives, respectively. Here, R = 8.314 J/K mol is the gas constant, T is the absolute temperature 

and M is the total number of tubulin isotypes. The ME method gives the probability distribution that is 

updated from a prior distribution i  with the information given by Equation (9) as: 
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where the partition function  
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   and the Largrangian multiplier β
α
 are determined 

from Equation (9). 
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However, for binding free energy calculations, the thermodynamic cycle perturbation approach was 

proposed to overcome the difficulties related to the computational complexity of the problem [36]. 

Therefore, it is the relative binding free energy of C and C' to the α-tubulin dimer (ABT), ΔΔGbind 

which is calculated. By taking this into account and supposing that the tubulin isotype expression level 

when a cell line is exposed to colchicine is considered as a prior i  and given by eC

i

C

ii PP  , we 

can rewrite Equation (10) as: 

 

'

/

'

'
_bind

'

C

gG

eC

i

C

i
Z

e
PP

C
i

C
i

C  

  (11) 

where gi = −β
C
ΔGi

C
 = log(Z

C
Pi

eC
). Therefore, we can determine the expression level of each tubulin 

isotype i in the cell lines exposed to colcichine-based derivatives through this equation. 

4.3. Results and Discussion 

All six cell lines were studied given the tubulin isotypes expression levels in each cell line exposed 

to colchicine compounds as a prior. When the ME predicted expression level for a given colchicine 

derivative cannot be determined, zero expression levels are assigned. One can attribute it to the fact 

that relative binding free energy given such a derivative is ill defined. There is no analytical solution to 

Equation (9). The results of our numerical analysis are plotted in Figure 4. We further summarize and 

illustrate the tubulin isotype distribution with the highest expression levels in cell lines exposed to the 

twenty colchicine derivatives in Figure 5 to investigate the effects of the colchicine derivatives on the 

expression levels of tubulin. Note that the colchicine derivatives are plotted in the order of potency 

from weak at the bottom toward strong at the top based on the corresponding IC50 values. The 

remaining labels show the same order of tubulin isotype expression. 

We have found by using our analysis that αβI and αβIII tubulin isoforms are the most important 

isoforms in establishing predictive response of cancer cell sensitivity to colchicine derivatives. 

However, since αβI tubulin is widely distributed in the human body, targeting it would lead to severe 

adverse side effects. Consequently, we have identified tubulin isotype αβIII as the most important 

molecular target for inhibition of microtubule polymerization and hence cancer cell cytotoxicity. 

Tubulin isotypes αβI and αβII are concluded to be secondary targets. 

We have demonstrated the applicability of the maximum entropy approach in predicting cytotoxic 

effects based on limited information such as the relative binding energy values for the cytotoxic agents 

used. Specifically, given the relative binding free energy of tubulin isotype and colchicine derivatives, 

the proposed approach predicts the tubulin isotype expression levels in various cancer cell lines 

exposed to colchicine derivatives. Our studies also provide a better-defined molecular target for the 

action of these anti-mitotic drugs, namely, tubulin isotype αβIII, for optimized chemotherapy drug 

design as compared to earlier efforts in this area. By narrowing down the focus of tubulin targets to 

this isotype, which is most dramatically regulated by cancer cells when exposed to the colchicine 

derivatives, both the efficacy and specificity of treatment will hopefully be improved. 
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Figure 4. The ME expression levels of four tubulin isotypes in six cell lines exposed to 

twenty colchicine derivatives. Color labels the cell lines. Note that D14 is removed since 

there is no sufficient data for the calculations. 

 

 

Figure 5. The distribution of tubulin isotypes with the highest expression levels in six cell 

lines, where they are exposed to 20 colchicine derivatives. The color map level 1 to 5 

indicates the types of tubulin isotypes. Label “U” denotes that there are multiple isotypes 

that have the same highest expression level. Label “0” denotes no ME prediction can be 

made. All the colchicine derivatives are sorted in the order of potency (logIC50 value). 
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5. Entropic Fragment Based Aptamer Design 

5.1. Introduction 

In this last example, we show the role of entropy in de novo drug design. Particularly, we have 

developed an information-driven approach to design short DNA or RNA aptamer templates using the 

structural information of their intended targets [16]. Aptamers can bind to specific molecular targets 

including small molecules, proteins, nucleic acids, phospholipids and can also be targeted to complex 

structures such as cells, tissues, bacteria and other organisms. Because of their strong and specific 

binding through molecular recognition, aptamers are promising tools in molecular biology and have 

both therapeutic and diagnostic clinical applications [37–40]. They are designed through an 

experimental technique known as the Systematic Evolution of Ligands by EXponential enrichment 

(SELEX) [37,39]. SELEX consists of a number of rounds in which a RNA or DNA pool is incubated 

with the binding target and the non-binding or loosely binding sequences are discarded. The binding 

sequences are then amplified by polymerase chain reaction (PCR) to provide a pool of sequences for 

the next round. In practice, multiple rounds of selection and expansion are required before unique 

tightly binding sequences can be identified. Additionally, isolated aptamers will often need to be 

re-engineered to reduce their sequence length and impart additional favorable biological properties. In 

the past, there were two general directions to take in developing in silico approaches. The first 

direction focuses on developing a computational approach to design structured random pools such as 

RagPools [41,42]. The second direction is to apply a virtual screening process [43]. However, several 

issues including the design of a screening library with reasonably good starting sequences and 

structural prediction tools to arrive at candidate structures and the associated structural distributions 

hinder the applicability of these approaches. We propose an information-driven theoretical approach to 

be free from these complications. This is expected to have a profoundly positive impact on aptamer 

design and increase the implementation of aptamer structures in various fields. 

5.2. Theory 

The concept of the proposed approach is to ask the question: “Given the structural information of 

the target, what is the preferred probability distribution of having an aptamer that is most likely to 

interact with the target?” instead of asking: “Given the structural information of the target and a 

customized library consisting of 10
15

 to 10
16

 different DNA or RNA sequences with the same initial 

lengths, what is the best binding mode?” in the virtual screening approach. Once we tackle the aptamer 

problem by asking the former question, the problem can be solved using information theory. By 

integrating the method of maximum entropy with the seed-and-grow strategy, we have proposed an 

entropic fragment based approach (EFBA). The proposed approach consists of three steps:  

(1) determine the probability distribution of the preferred first nucleotide based on the total energy of 

single nucleotide-target complex; (2) given the probability distribution of the preferred nucleotide 

obtained in the previous step, determine the probability distribution of preferred neighboring 

nucleotides based on the total energy of the dimer-target complex. By repeating this same procedure, 

one can obtain the joint probability distribution of an L-mer nucleotide sequence; (3) apply the 
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entropic criterion [44,45] to determine the preferred sequence length L (the reader is referred to [16] 

for further details). 

5.3. Results and Discussions 

We chose the phospholipid phosphatidylserine (PS) as our target to examine the validity of the 

proposed approach. This was dictated by our interest in apoptosis where PS externalization is an early 

indication that this process is operational in the cell [46], which may be indicative of cytotoxic effects 

of chemotherapy drugs. To our knowledge, no aptamer has been described yet that targets PS and thus 

there is no benchmark for computational comparisons. We have, however, developed a model system 

to assess binding to PS using liposome technology and can therefore directly test the binding behavior 

of computationally derived sequences. In addition, we conducted four in silico experiments to provide 

theoretical insights into the experimental results. 

ME prediction. To design aptamers for PS, we utilize the total energy of PS and nucleotide fragments 

as information required for the design. However, since we are interested in studying apoptosis by 

investigating PS externalization, we have only considered the head group of PS for the design since the 

lipid portion of the molecule remains embedded in the cell lipid membrane. Figure 6 shows the relative 

entropy at each step of the growing process when the Largrangian multiplier is set to 1. The relative 

entropy value at each step indicates the effect of the corresponding nucleotide on the interactions of 

the complex when it is at a minimum. As a consequence, the portion grown in the aptamer after the 

step of saturation does not play an important role in the interactions and the preferred length L is the 

number of nucleotides grown before the step of reaching saturation. In this example, the saturation of 

relative entropy after the fifth step indicates that 6-mers (5'-AAAAGA-3', denoted by PS-aptamer I) 

are likely to be the best length for aptamers to interact with PS lipid head group. Two of the top four 

sequences, namely 5'-AAAAGA-3' (PS-aptamer I) and AAAGAC (PS-aptamer II), were selected for 

experimental assays and for in silico experiments intended as validation of the design method.  

PS aptamer II binds specifically to PS in liposome assays and in simulations. Figure 7 indicates the 

fluorescence level from bound DNA aptamers using various concentrations of DNA aptamers with the 

two types of liposomes. We used mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine 

(DPPC) and cholesterol with 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DPPS). 

Two compositions were investigated DPPC:Chol:DPPS 10:5:1 and DPPC:Chol 10:5. The latter served 

as a control without PS available for binding. Two specific features are revealed here. First, both DNA 

aptamers bind with lipid liposomes. The poor or almost no binding with DPPC (see the right panel in 

the figure) suggests that the DNA aptamers bind specifically with DPPS (see the left panel in the 

figure). Thus, this indicates that the binding of the aptamers is specific to the lipid containing the 

serine headgroup. Second, although both DNA aptamers bind with DPPS, the results show PS-aptamer 

II has a higher fluorescence level than PS-aptamer I when the concentrations of DNA aptamers are 

increased beyond 0.165 nmol. This suggests that PS-aptamer II has a relatively stronger binding 

affinity than PS-aptamer I. 
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Figure 6. The relative entropy of the calculation at each growing step for the case where 

= 1 is shown. The figure shows that the relative entropy fluctuates around −400 after the 

5th step. The relative entropy is shown along the Y-axis. The preferred nucleotide type at 

each step is labeled inside the open sqaure. The numbering beside each nucleotide denotes 

the connection end. For example, the phosphate at 5’ end of nucleotide A3 is connected 

with the oxygen atom at the 3’ end of G1 in second growing step. Then the oxygen atom at 

3’ end of nucleotide A2 is connected with the phosphate at the 5’ end of G1 in third 

growing step. After the third step, the nucleotide with even numbering is connected with 

the phosphate of the 5’ end of the nucleotide with even numbering at previous growing 

step. The resulting sequence is 5’-A8-p-A6-p-A4-p-A2-p-G1-p-A3-3’ where p is 

phosphate. 

 

 

Figure 7. Fluorescence (FL) measured in relative fluorescence units (RFU) versus aptamer 

concentration. Left panel: selective binding of two designed DNA aptamers with liposomes 

containing PS. Right panel: low non-specific binding of designed DNA aptamer with 

liposome containing only PC. DNA concentration shown here is the actual concentration 

used in lipids/cholesterol in HEPES buffer. 
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Based on in silico experiments, Figure 8 showed two types of interactions, hydrogen bond (H-bond) 

in the upper panel and non-bonded contacts in the lower panel identified during the four 5 ns MD 

simulations. The figure indicates that there are more hydrogen bonds constantly formed between PS 

and PS-aptamer II than between PS and PS-aptamer I after the 4th ns. Even though there are some 

non-bonded interactions between PS-aptamer I and PS formed, the PS-aptamer II is still considered to 

have stronger binding affinity than PS-aptamer I due to the hydrogen bond which provides a strong 

and direct interaction. Since no hydrogen bonds are observed between either PS-aptamer I or II and 

phosphatidylcholine (PC), which is another type of lipid that forms membranes, this suggests that both 

ME aptamers have stronger interactions with PS than with PC. Hence, the ME aptamers bind 

specifically to PS. The structures of the three complexes shown in Figure 9 at 5 ns highlight the 

binding modes of the ME aptamers. Panel (A) and (C) of Figure 9 show that only PS-aptamer I and II 

have close contacts with PS and PC, respectively. Panel (B), however, shows that PS-aptamer II forms 

a claw-shaped structure and PS is likely to be captured within the middle of the claw. Note that since 

PS-aptamer I drifts away from PC during simulations the corresponding structure is not presented in 

Figure 9. Furthermore, the ME aptamers are plotted using a surface representation, in which nucleotide 

A is represented by green, C by pink and G by green. Both results are not only consistent with our 

experimental results but also suggest a theoretical basis for the interactions of the ME aptamers with 

either PS or PC. 

Figure 8. The upper panel shows the number of hydrogen bonds formed between two ME 

aptamers and either PS or PC during simulations. The lower panel shows the number of 

non-bonded contacts. 
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Figure 9. The surface representations of the two ME aptamer structures at the 5
th

 ns are 

presented, in which A is represented by green, C by pink and G by white. Panel (A) and 

(B) show the binding modes between two ME aptamers and PS, respectively. Panel (C) 

shows the binding mode between the PS-aptamer II and PC. 

 

 

5.4. Comments 

The EFBA is based on the method of maximum entropy and the structural information on the 

targets of interest. Since the method of maximum entropy is a universal and objective tool to process 

information with the least bias, one can expect the outcome to be preferred over others if sufficient 

information relevant to the problem posed is provided. In the case of designing PS aptamers, our 

computational and experimental results show a strong binding affinity and selectivity of the  

PS-aptamer II. It suggests that the PS-aptamer II is a potential imaging tool for detecting apoptosis in 

cancer cells subjected to chemotherapy treatments. This result is undergoing further investigation. 

6. Conclusions 

Traditional theoretical approaches to study biological systems have been developed based on laws 

of physics and chemistry. Although those approaches have shown great success, complicated  

many-body interactions still remain a challenge that often prevents one from obtaining exact solutions 

using these traditional approaches. Hence, one solution is to introduce appropriate approximations. 

The pioneering body work of Jaynes and Caticha suggests an alternative novel approach, which hinges 

on the use of entropy. The concept of entropy allows us to integrate laws of physics (energy and matter) 

and principles of inference (information) to formulate a comprehensive approach based on the statistical 

problems of interest such as those frequently encountered when quantifying biological effects. 

In this article we have reviewed three distinctive biological examples that illustrate the role of 

entropy in various subjects stemming from fundamental issues arising in the applications involving 

drug design. The first example demonstrates that given REM-MD simulations, protein folding 

dynamics can be directly derived from principles of inference. The crux of the matter is to 

appropriately codify information relevant to the dynamics of many-body systems into an information 
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manifold. The second example predicts tubulin isotype expression levels in cancer cell line studies 

when anti-cancer drugs, namely colchicine derivatives, are applied. This example is based on the 

integration of the method of ME, binding free energy estimates, and cytotoxicity measurements. By 

narrowing down the range of specific tubulin isotypes identified in this approach to those which are 

most dramatically regulated by cancer cells when exposed to the colchicine derivatives, both the 

efficacy and specificity of treatment will hopefully be improved. Such crucial causes of treatment 

failure as severe side effects can now be successfully mitigated with the information gained by our 

analysis. Finally, the third example presented shows a maximum entropy based approach for aptamer 

design. We have both experimentally and computationally shown that by providing the structural 

information concerning PS only, a PS aptamer obtained from this approach demonstrates a strong 

binding affinity and selectivity. This is a desired feature in the applications involving testing the 

efficacy of cancer chemotherapy. 
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