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Abstract: We consider the Robin Hood model of dry friction to study entropy transfer 

during sliding. For the polished surface (steady state) we study the probability distribution 

of slips and find an exponential behavior for all the physically relevant asperity  

interaction-distance thresholds. In addition, we characterize the time evolution of the 

sample by its spatial fractal dimension and by its entropy content. Starting from an 

unpolished surface, the entropy decreases during the Robin Hood process, until it reaches a 

plateau; thereafter the system fluctuates above the critical height. This validates the notion 

that friction increases information in the neighborhood of the contacting surface at the 

expense of losing information in remote regions. We explain the practical relevance of 

these results for engineering surface processing such as honing. 
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1. Introduction 

The idea of using entropy as a way to characterize surface healing during friction due to self 

organization was already put forward by Nosonovsky and Bhushan [1]. In such cases, the entropy of 

the surface decreases with time at the expense of producing entropy somewhere else, like in the bulk 
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of the sliding materials. Entropy quantifies the degree of (dis) order of the system. The Second Law of 

Thermodynamics establishes the increase of entropy in closed systems, a consequence of global 

deterioration. However, in systems that self-organize, entropy can decrease in the (open) subsystem of 

interest. Such is the case with friction, where the system of interest consists of interacting surfaces, 

which comprise an open system. 

In this paper we consider that idea to characterize the dry friction between macroscopically smooth 

surfaces, as well as to describe the time-dependent smoothing process itself. Specifically, we consider 

the industrial process of honing [2], either mechanical or electrochemical. In honing, a somewhat 

rough surface is smoothed by, for example, scrubbing it against a whetstone. Engineering parts, during 

manufacturing, are processed in different ways. For example, they can be milled, grinded, turned, or 

honed. Each process has a signature height probability distribution, most being somewhat symmetric 

with respect to the mean. Honing is different in that the height distribution is significantly asymmetric 

with respect to the mean. This is of interest to us since the Robin Hood model studied by us in the 

context of dry friction [3] generates surfaces with height distribution belonging to the honing class. As 

expected in this process of self-organization, many power laws were found, such as in the power 

spectra and avalanche sizes [4]. 

Here we extend that study by introducing other measures of both the steady state surface and the 

process of reaching that steady state. Specifically, we first study the generation of negentropy at the 

friction surface as the shape of the surface approaches its attractor. Second, we study the distribution 

of slips as function of the asperity interaction ranges between the sliding surfaces. Third, we 

characterize the attractor by its fractal length. 

The paper is organized as follows. In section II, we present a brief review of the Robin Hood model 

and its connection to honing. In section III, we study the negentropy generation during friction. In 

section IV, we show the jump distributions. Section V shows the fractal length of the attractor. Section 

VI presents conclusions. 

2. The Model 

We consider sites i  in one dimension ( Ni 1 ) and consider "heights" ih  at each site. The Robin 

Hood algorithm [5] searches for the maximum height, subtracts a random amount (we chose a uniform 
distribution  1,0 ) from that location, and distributes this amount evenly between the next near 

neighbors. Starting from a randomly distributed collection of heights (with zero mean), the previous 

rules are applied sequentially for an infinite number of steps, but in practice it is enough to apply 

enough steps until the steady state has been reached. A typical snapshot of the steady state is shown in 

figure 1. The maximum height and its "rich" neighborhood are clearly seen at around site 650 and are 

characteristic of the model. To be specific, the model consists of an array. Each site i on this array at 
any time step t is characterized by the height )(thi  which we assume to be the height of an atomic 

scale asperity at a given point of the interface between two bodies in contact. As the bodies slide 

against each other, the asperity with the maximal height is destroyed and some random number of 

atoms from this asperity is distributed among the neighboring asperities. Concretely, at each time step 
the site m with maximal height )}(max{)( thth im   is found and the new heights are determined 

according to the following rule: 
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)()()1( trthth mm   and 
2

)(
)()1(1

tr
thth mm   

where )(tr  are independent random variables uniformly distributed between 0 and 1. Robin Hood 

determines the tallest asperity, reduces it by a random amount )(tr , and distributes it equally among 

the neighbors. Assuming periodic boundary conditions so that the sites with i=0 and i=L are 
equivalent, the total amount of matter 

i
i th )(  is conserved and we normalize it to zero. 

Figure 1. A typical Robin Hood landscape of heights. This corresponds to a small system 

of 1,000 sites and was done for illustration purposes. 

 

Besides this unique singularity, the heights are drastically cut off at heights above 1.0ch , the 

critical height. This can be seen better in figure 2, where the height distribution is shown. 

Figure 2. Height probability density. The dots are frequencies of occurrence as obtained 

from the data in figure 1. The continuous line is to aid the eye.  
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Figure 2 shows explicitly what is already seen in Figure 1, that there is a wide distribution of 
heights below ch , while above ch  the distribution drops rapidly, being dominated by heights close to 

ch . Moreover, the steady state consists of small fluctuations of the heights around ch . This is 

completely analogous to what happens in the honing process: a somewhat rough surface is honed and 

reaches a steady state of the kind given by the distribution in figure 2 [6]. 

We interpret this model in the context of dry friction as follows: First, we imagine a second, 

perfectly flat surface above that of figure 1, lying exactly at height H . Then, at each site i , we 
consider the difference ihH  , always positive. This difference is the local separation between the 

asperities of the two surfaces. Whether a particular site participates in friction or not is controlled by 
whether or not dhH i  , where d is the range of the interaction, typically controlled by the 

exponential tails of the atomic electron densities. Of course, for the interpretation presented here, it is 

immaterial whether the two surfaces are random or just one of them is, and we choose the second 

option for simplicity. Subsequently, instead of unnecessarily using 2 parameters H and d , we lump 
them together into ThdH  , where Th is a threshold height, and the asperity interaction range is 

controlled by whether or not Ti hh  . 

In what follows, except when stated otherwise, we use N = 8192 sites. In this case the typical 

(‘thermalization’) time scale to reach the stable state is around 108 iterations. 

3. Negentropy Generation at the Surface 

We use the Shannon entropy [7] as a measure of information gain during the time series of the 

surface landscape as generated by Robin Hood: 





B

j
jj pogpS

1

][       (1) 

where jp  is the probability of appearance of a height in the bin j , and B is the total number of bins. 

For example, for the steady-state situation, equation (1) can be evaluated with the probabilities from 

the data in figure 2. To compute the probabilities pj we proceed as follows. We take a fixed range of 

heights in an interval [hT, 1] (which remains fixed throughout all the iterations) and divide this interval 

in B bins. We numerically verified that for B between 100 and 1000 there are no major differences and 

thus we subsequently chose B = 100. The pj are approximated by jN /N, the number of heights in 

bin j , divided by the total number of N points. 

We present the change in entropy S  with respect to the initial uniformly random surface: 
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The minimum and maximum heights, and the widths of the bins remain fixed throughout all 
810 iterations. In figure 3 we show the evolution of the entropy produced by the Robin Hood algorithm 

for different values of hT. In order to evaluate the probabilities jp  of equation (1) a large statistics is 

required, thus we restrict the computation of the entropy to thresholds hT  hc since for hT  hc there are 
too few points. In particular, ‘no threshold’ is equivalent to Th , although in practice it is  

enough 2.0Th . 
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To generate Figure 3, starting from a random configuration, the Robin Hood algorithm evolves and 

the system is analyzed every thousand steps. In each of those configurations, the entropy is computed 

from (2). A clear downward trend is seen; saturation at steady state is found after a transient of about 

70 million time steps, showing the self-organization during friction produced by Robin Hood. The 

steady state negentropy depends on the threshold hT,: from around S  -2.37 for hT = 0.1 to S -1.35 

for hT = 0.  
Figure 3. S for 100B  and different thresholds hT . 

 

To recall, the entropy without threshold (i.e., the entropy of the complete profile) is computed not 

for hT = 0 but including negative thresholds. Therefore, the steady state negentropy decreases with 

threshold up to S  –1 for hT  –0.2, while if we further decrease the threshold height below –0.2, S 

does not change anymore. 

4. Influence of Load on Slip Distribution 

In this section, we model the distribution of slips of an atomic force microscope (AFM) tip [8] as it 

raster-scans over the Robin Hood landscape. AFM friction experiments [9] measure time-dependent 

tangential force traces for different normal loads. In our system, we tune the load through the 

parameter H introduced above–the mean separation between the two surfaces. As was already 
explained, this is equivalent to varying Th . Thus, we consider the following picture: as the AFM tip is 

scanned over the sample surface, it will pin to a large asperity and remain there until a large enough 

tangential force detaches it from that site. At that point, the tip slips until it reaches another large 

asperity. The distance between large asperities should decrease as the load increases, meaning 

Th decreases. Nonetheless, we ask whether there is a universal behavior regarding these slips. To 

answer this, we look at the distribution of slip sizes. 

Figure 4 shows three different behaviors for the distribution of slip sizes. First, for small values of 

hT, for example 0.05, the histograms N(s) for the number of slips vs. size s are Gaussians, i.e, 
2

0 )()( ssaesN  (in linear-log scales they are parabolas). Second, for larger sizes of the height 
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threshold, 0.08 < hT < hc = 0.1, the histograms for the number of slips vs. size are exponentials 
basesN )(  (in linear-log scales they are straight lines). Third, for hT > hc = 0.1, the histograms for 

slips vs. size are no longer exponentials for small sizes (we checked that they can be fitted with 

lognormal distributions; see Figure 5). 

Figure 4. Size distribution of slips for different thresholds. 

 

The filled squares correspond to measures taken every 100.000 iterations instead of 1000 and they 

also show the same exponential behavior. Note that the measures are strictly not independent, since 

thermalization takes 1,000 times more iterations, but certainly the system is beyond the transient. 

Figure 5 shows lognormal fits 
22
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for slips of small size s for 0.12 and 0.13.  

Figure 5. Blue curves are lognormal fits for data corresponding to hT = 0.12 with   = 1.78 

and  = 1.2 (dashed line) and 0.13 with  = 1.78 and   = 1.0 (solid line). 
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5. Fractal Length of the Steady State Surface 

In accordance with the computation of the entropy, we should discard all the heights below Th . 

Hence, we replace them either by hi = hT, i.e. drawing horizontal lines at height hT, or by first-order 

interpolation, i.e. by drawing lines between all points remaining (as expected, we found no appreciable 

differences between these two procedures). Then, using the box counting method, we compute the 

fractal dimension of the resulting “effective” profile. Specifically, we cover the profile with boxes of 

side s, and find how the number of boxes N changes with s. For a power law change, as is the case here: 

dr
N

1
       (3), 

and d is the fractal dimension reported here. In figure 6 we show this profile for the case of linear 

interpolation (purple line). 

Figure 6. Linear Interpolation of Surface Profile. 

 

To test the algorithms of fractal length and area (box-counting method), we used them on a straight 

line of constant height 0.1234567. This line had a dimension of 0.9998 and the area under it had a 

dimension of 1.986. 

We then determined the fractal length dimension of the Robin Hood profile (threshold of 0) as a 

function of time for every one million iterations. That is, in figure 7, one unit on the x-axis marks 

1,000,000 Robin Hood iterations on an array of 8,192 sites. 

The fractal dimension Df rapidly decreases from its initial value around 1.7 for a completely random 

profile [10,11], and then fluctuates around an asymptotic value, which in this specific case is 

approximately 1.56 (with a mode of 1.57). Similar patterns were found for other threshold values 

greater than 0. 



Entropy 2010, 12                            

 

 

487

Figure 7. Fractal dimension measured for Th = 0 vs. time  

 

Finally, we computed the fractal length dimension of the Robin Hood profile as a function of the 

threshold height for the asymptotic state (reached after 108 iterations). We get this by averaging 100 

simulations (each starting from a different random profile). As is apparent from figure 8, the fractal 

dimension is a near-perfect quadratic curve, ranging from about 1.563 at a threshold of 0 to 

approximately 1.27 at the critical height. 

Figure 8 shows the dependence of the fractal dimension on height threshold It also shows a curve fit 
271.215697.0563.1 TTf hhD   , with adjusted R-squared of 0.997. The error bars correspond to the 

standard deviation from 100 different simulations per threshold. 

Figure 8. Fractal dimension as a function of height threshold. 
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6. Conclusion 

In this paper we studied numerically the approach to steady state in dry friction. Starting from a 

randomly generated surface profile corresponding to random local separations between the rubbing 

surfaces, we introduced dynamics based on the Robin Hood algorithm. Thus, a time-dependent surface 

profile is generated. That profile was further analyzed by studying its entropy content, distribution of 

slips, and fractal dimension. All these measures were studied both as functions of time and threshold 
height Th . The threshold height is in a one-to-one relationship to the external load; the larger the load 

the smaller the threshold. Thus, by studying the above mentioned measures as functions of Th , we 

intend to gain insight into their dependence on external load, a most relevant factor in dry friction. The 

entropy content was studied to assess the claim that friction reduces entropy. We found this to be the 
case in our model for all Th ; that is, regardless of external load, our model suggests a self-healing 

through friction. In addition, we found that the steady state value of the entropy decreases with Th , or 

equivalently, increases with external load. This is due to the fact that as the load increases, the two 

surfaces become more intimately in contact and smaller imperfections become detectable. The 

distribution of slips is important to understand the relevant dependence on load of the stick-slip 
behavior. The size of slips s obeys different distributions )(sN , depending on the threshold Th . For 

small values of Th , say 0.05, )(sN is Gaussian. At intermediate values, 08.0Th , )(sN  becomes an 

exponential. Finally, for cT hh  a lognormal distribution replaces the exponential at small s . We have 

no explanation for these transitions. Fractal dimension was studied because it can provide insight into 

self organized systems, such as the one studied here. Like the entropy, Df converges to a definite value 

that, of course, depends on hT. We also made the connection between Robin Hood surface profiles and 

honing, namely that among all the surface polishing treatments, honing, like the Robin Hood profile, 

renders asymmetric profile height distributions. 
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