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Abstract: The Gibbs distribution of statistical physics is an exponential family of probability

distributions, which has a mathematical basis of duality in the form of the Legendre

transformation. Recent studies of complex systems have found lots of distributions obeying

the power law rather than the standard Gibbs type distributions. The Tsallis q-entropy

is a typical example capturing such phenomena. We treat the q-Gibbs distribution or

the q-exponential family by generalizing the exponential function to the q-family of

power functions, which is useful for studying various complex or non-standard physical

phenomena. We give a new mathematical structure to the q-exponential family different from

those previously given. It has a dually flat geometrical structure derived from the Legendre

transformation and the conformal geometry is useful for understanding it. The q-version of

the maximum entropy theorem is naturally induced from the q-Pythagorean theorem. We

also show that the maximizer of the q-escort distribution is a Bayesian MAP (Maximum A

posteriori Probability) estimator.

Keywords: q-exponential family; q-entropy; information geometry; q-Pythagorean theorem;

q-Max-Ent theorem; conformal transformation
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1. Introduction

Statistical physics is founded on the Gibbs distribution for microstates, which forms an exponential

family of probability distributions known in statistics. Important macro-quantities such as energy,

entropy, free energy, etc. are connected with it. However, recent studies show that there are non-standard

complex systems which are subject to the power law instead of the exponential law of the Gibbs type

distributions. See [1,2] as well as extensive literatures cited in them.

Tsallis [3] defined the q-entropy to elucidate various physical phenomena of this type, followed

by many related research works on this subject (see, [1]). The concept of the q-Gibbs distribution

or q-exponential family of probability distributions is naturally induced from this framework (see

also [4]). However, its mathematical structure has not yet been explored enough [2,5,6], while the

Gibbs type distribution has been studied well as the exponential family of distributions [7]. We need a

mathematical (geometrical) foundation to study the properties of the q-exponential family. This paper

presents a geometrical foundation for the q-exponential family based on information geometry [8], giving

geometrical definitions of the q-potential function, q-entropy and q-divergence in a unified way.

We define the q-geometrical structure consisting of a Riemannian metric and a pair of dual affine

connections. By using this framework, we prove that a family of q-exponential distributions is dually

flat, in which the q-Pythagorean theorem holds. This naturally induces the corresponding q-maximum

entropy theorem similarly to the case of the Tsallis q-entropy [1,9,10]. The q-structure is ubiquitous

since the family Sn of all discrete probability distributions can always be endowed with the structure

of the q-exponential family for arbitrary q. It is possible to generalize the q-structure to any family

of probability distributions. Further, it has a close relation with the α-geometry [8], which is one

of information geometric structure of constant curvature. This new dually flat structure, different

from the old one given rise to from the invariancy in information geometry, can be also obtained

by conformal flattening of the α-geometry [11,12], using a technique in the conformal and projective

geometry [13–15].

The present framework prepares mathematical tools for analyzing physical phenomena subject to the

power law. The Legendre transformation again plays a fundamental role for deriving the geometrical

dual structure. There exist lots of applications of q-geometry to information theory ([16] and others) and

statistics, including Bayes q-statistics.

It is possible to generalize our framework to a more general non-linear family of distributions by

using a positive convex function instead of q-exponential function (See [2,17]). A good example is the

κ-exponential family [18–20], but we do not state it here.

2. q-Gibbs or q-Exponential Family of Distributions

2.1. q-Logarithm and q-Exponential Function

It is the first step to generalize the logarithm and exponential functions to include a family of power

functions, where the logarithm and exponential functions are included as the limiting case [1,5,21]. This
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was also used for defining the α-family of distributions in information geometry [8]. We define the

q-logarithm by

logq(u) =
1

1− q

(
u1−q − 1

)
, u > 0 (1)

and its inverse function, the q-exponential, by

expq(u) = {1 + (1− q)u} 1
1−q , u > −1/(1− q) (2)

for a positive q with q �= 1. The limiting case q → 1 reduces to

log1(u) = log u (3)

exp1(u) = exp u (4)

so that logq and expq are defined for q > 0.

2.2. q-Exponential Family

The standard form of an exponential family of distributions is written as

p(x,θ) = exp
{∑

θixi − ψ(θ)
}

(5)

with respect to an adequate measure μ(x), where x = (x1, · · · , xn) is a set of random variables and

θ = (θ1, · · · , θn) are the canonical parameters to describe the underlying system. The Gibbs distribution

is of this type. Here, ψ(θ) is called the free energy, which is the cumulant generating function.

The power version of the Gibbs distribution is written as

p(x,θ) = expq {θ · x− ψq(θ)} (6)

logq {p(x,θ)} = θ · x− ψq(θ) (7)

where θ · x =
∑

θixi. This is the q-Gibbs distribution or q-exponential family [4], which we denote by

S, where the domain of x is restricted such that p(x,θ) > 0 holds. The function ψq(θ), called the q-free

energy or q-potential function, is determined from the normalization condition:∫
expq {θ · x− ψq(θ)} dx = 1 (8)

where we replaced dμ(x) by dx for brevity’s sake. The function ψq depends on q, but we hereafter

neglect suffix q in most cases. Research on the q-exponential family can be found, for example, in

[2,4,19]. The q-Gaussian distribution is given by

p(x, μ, σ) = expq

{
−(x− μ)2

2σ2
− ψ(μ, σ)

}
(9)

and is studied in [22–25] in detail. Here, we need to introduce a vector random variable x = (x, x2) and

a new parameter θ, which is a vector-valued function of μ and σ, to represent it in the standard form (7).

It is an interesting observation that the domain of x in the q-Gaussian case depends on q if 0 < q < 1.

Hence, that q- and q′-Gaussian are in general not absolutely continuous when q �= q′.
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It should be remarked that the q-exponential family itself is the same as the α-family of distributions

in information geometry [8]. Here, we introduce a different geometrical structure, generalizing the result

of [24].

We mainly use the family Sn of discrete distributions over (n + 1) elements X = {x0, x1, · · · , xn},

although we can easily extend the results to the case of continuous random variables. Here, random

variable x takes values over X . We also treat the case of 0 < q < 1, and the limiting cases of q = 0 or 1

give the well-known ones.

Let us put pi = Prob {x = xi} and denote the probability distribution by vector p = (p0, p1, · · · , pn),
where

n∑
i=1

pi = 1 (10)

The probability of x is also written as

p(x) =
n∑

i=0

piδi(x) (11)

where

δi(x) =

{
1, x = xi,

0, otherwise.
(12)

Theorem 1 The family Sn of discrete probability distributions has the structure of a q-exponential

family for any q.

Proof We take logq of distribution p(x) of (11). For any function f(u), we have

f

{
n∑

i=1

piδi(x)

}
=

n∑
i=0

f (pi) δi(x) (13)

By taking

δ0(x) = 1−
n∑

i=1

δi(x) (14)

into account, discrete distribution (11) can be rewritten in the form (8) as

logq p(x) =
1

1− q

{
n∑

i=1

(
p1−q
i − p1−q

0

)
δi(x) + p1−q

0 − 1

}
(15)

where

p0 = 1−
n∑

i=1

pi (16)

is treated as a function of (p1, · · · , pn). Hence, Sn is q-exponential family (6) for any q, with the following

q-canonical parameters, random variables and q-potential function:

θi =
1

1− q

(
p1−q
i − p1−q

0

)
, i = 1, · · · , n (17)

xi = δi(x) (18)

ψ(θ) = − logq p0 (19)
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This completes the proof. �

Note that the q-potential ψ(θ) and the canonical parameter θ depend on q as is seen in (17) and (19).

It should also be remarked that Theorem 1 does not contradict to the theorem 1 in [19] stating that a

parametrized family of probability distributions can belong to at most one q-exponential family. The

author considers an m-dimensional parametrized submanifold in Sn with m < n where the canonical

parameter depending on q is given via the variational principle. Therefore, by denoting the q-canonical

parameter by θq ∈ Rm, we can restate his theorem in terms of geometry that a linear submanifold

parametrized by θq ∈ Rm is not a linear submanifold parametrized by θq′ ∈ Rm when q′ �= q. On the

other hand, the present theorem states that there exists the q-canonical parameter θq ∈ Rn on whole Sn

for any q and the manifold has linear structure with respect to any θq. This is a surprising new finding.

2.3. q-Potential Function

We study the q-geometrical structure of S. The q-log-likelihood is a linear form defined by

lq(x,θ) = logq p(x,θ) =
n∑

i=1

θixi − ψ(θ) (20)

By differentiating it with respect to θi, with the abbreviated notation ∂i =
∂
∂θi

, we have

∂ilq(x,θ) = xi − ∂iψ(θ) (21)

∂i∂jlq(x,θ) = −∂i∂jψ(θ) (22)

From this we have the following important theorem.

Theorem 2 The q-free energy or q-potential ψq(θ) is a convex function of θq.

Proof We omit the suffix q for simplicity’s sake. We have

∂ip(x,θ) = p(x,θ)q (xi − ∂iψ) (23)

∂i∂jp(x,θ) = qp(x,θ)2q−1 (xi − ∂iψ) (xj − ∂jψ)− p(x,θ)q∂i∂jψ (24)

The following identities hold: ∫
∂ip(x,θ)dx = ∂i

∫
p(x,θ)dx = 0 (25)∫

∂i∂jp(x,θ)dx = ∂i∂j

∫
p(x,θ)dx = 0 (26)

Here, we define an important functional

hq(θ) = hq[p(x,θ)] =

∫
p(x,θ)qdx (27)

in particular for discrete Sn,

hq(p) =
n∑

i=0

pqi (28)
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for 0 < q < 1. This function plays a key role in the following. From (25) and (26), by using (23) and

(24), we have

∂iψ(θ) =
1

hq(θ)

∫
xip(x,θ)

qdx (29)

∂i∂jψ(θ) =
q

hq(θ)

∫
(xi − ∂iψ) (xj − ∂jψ) p(x,θ)

2q−1dx (30)

The latter shows that ∂i∂jψ(θ) is positive-definite, and hence ψ is convex. �

2.4. q-Divergence

A convex function ψ(θ) makes it possible to define a divergence of the Bregman-type between two

probability distributions p (x,θ1) and p (x,θ2) [8,26,27]. It is given by using the gradient ∇ = ∂/∂θ,

Dq [p (x,θ1) : p (x,θ2)] =

ψ (θ2)− ψ (θ1)−∇ψ (θ1) · (θ2 − θ1) (31)

satisfying the non-negativity condition

Dq [p (x,θ1) : p (x,θ2)] ≥ 0 (32)

with equality when and only when θ1 = θ2. This gives a q-divergence in Sn different from the

invariant divergence of Sn [28]. The divergence is canonical in the sense that it is uniquely determined

in accordance with dually flat structure of q-exponential family in Sections 3 and 4. The canonical

divergence is different from the α-divergence or conventional Tsallis relative entropy used in information

geometry (See the discussion in the end of this subsection). Note that it is used in [16].

Theorem 3 For two discrete distributions p(x) = p and r(x) = r, the q-divergence is given by

Dq[p : r] =
1

(1− q)hq(p)

(
1−

n∑
i=0

pqi r
1−q
i

)
(33)

Proof The potentials are, from (19),

ψ(p) = − logq p0, ψ(r) = − logq r0 (34)

for p and r. We need to calculate ∇ψ(θ) given in (29). In our case, xi = δi(x) and hence

∂iψ =
pqi

hq(p)
(35)

By using this and (17), we obtain (33). �

It is useful to consider a related probability distribution,

p̂q(x) =
1

hq[p(x)]
p(x)q (36)
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for defining the q-expectation. This is called the q-escort probability distribution [1,4,29]. Introducing

the q-expectation of random variable f(x) by

Ep̂[f(x)] =
1

hq[p(x)]

∫
p(x)qf(x)dx (37)

we can rewrite the q-divergence (31) for p(x), r(x) ∈ S as

Dq [p(x) : r(x)] = Ep̂

[
logq p(x)− logq r(x)

]
(38)

because of the relations (20) and (29). The expression (38) is also valid on the exterior of S × S when it

is integrable. This is different from the definition of the Tsallis relative entropy [30,31]

D̃q[p(x) : r(x)] =
1

1− q

(
1−

∫
p(x)qr(x)1−qdx

)
(39)

which is equal to the well-known α-divergence up to a constant factor where α = 1 − 2q (see [8,28]),

satisfying the invariance criterion. We have

Dq[p(x) : r(x)] =
1

hq[p(x)]
D̃q[p(x) : r(x)] (40)

This is a conformal transformation of divergence, as we see in the following. See also the derivation

based on affine differential geometry [12].

2.5. q-Riemannian Metric

When θ2 is infinitesimally close to θ1, by putting θ1 = θ, θ2 = θ+dθ and using the Taylor expansion,

we have

Dq [p(x,θ) : p(x,θ + dθ)] =
∑

gqij(θ)dθ
idθj (41)

where

g
(q)
ij = ∂i∂jψ(θ) (42)

is a positive-definite matrix. We call
[
g
(q)
ij (θ)

]
the q-Fisher information matrix. When q = 1, this reduces

to the ordinary Fisher information matrix given by

g
(1)
ij (θ) = gFij(θ) = E [∂i log p(x,θ)∂j log p(x,θ)] (43)

The positive-definite matrix g
(q)
ij (θ) defines a Riemannian metric on Sn, giving it the q-Riemannian

structure.

When a metric tensor gij(θ) is transformed to

g̃ij(θ) = σ(θ)gij(θ) (44)

by a positive function σ(θ), we call it a conformal transformation. See, e.g., [13–15,32]. The conformal

transformation of divergence induces that of the Riemannian metric.
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Theorem 4 The q-Fisher information metric is given by a conformal transformation of the Fisher

information metric gFij as

g
(q)
ij (θ) =

q

hq(θ)
gFij(θ) (45)

Proof The q-metric is derived from the Taylor expansion of Dq [p : p+ dp]. We have

Dq [p(x,θ) : p(x,θ + dθ)] =
1

(1− q)hq(θ)

{
1−

∫
p(x,θ)qp(x,θ + dθ)1−qdx

}

=
q

hq(θ)

{∫
1

p(x,θ)
∂ip(x,θ)∂jp(x,θ)dx

}
dθidθj (46)

using the identities (25) and (26). When q = 1, this is the Fisher information given by (43). Hence, the

q-Fisher information is given by (45). �

A Riemannian metric defines the length of a tangent vector X = (X1, · · · , Xn) at θ by

‖X‖2 =
∑

gij(θ)X
iXj (47)

Similarly, for two tangent vectors X and Y , their inner product is defined by

〈X,Y 〉 =
∑

gijX
iY j (48)

When 〈X,Y 〉 vanishes, X and Y are said to be orthogonal. The orthogonality, or more generally

the angle, of two vectors X and Y does not change by a conformal transformation, although their

magnitudes change.

3. Dually Flat Structure of q-Exponential Family

3.1. Legendre Transformation and q-Entropy

Given a convex function ψ(θ), the Legendre transformation is defined by

η = ∇ψ(θ) (49)

where ∇ = (∂/∂θi) is the gradient. Since the correspondence between θ and η is one-to-one, we may

consider η as another coordinate system of S.

The dual potential function is defined by

ϕ(η) = max
θ

{θ · η − ψ(θ)} (50)

which is convex with respect to η. The original coordinates are recovered from the inverse transformation

given by

θ = ∇ϕ(η) (51)

where ∇ = (∂/∂ηi), so that θ and η are in dual correspondence.

The following theorem gives explicit relations among these quantities.
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Theorem 5 The dual coordinates η are given by

η = Ep̂[x] (52)

and the dual potential is given by

ϕ(η) =
1

1− q

{
1

hq(p)
− 1

}
(53)

Proof The relation (52) is immediate from (29). From the Legendre duality, the dual potential satisfies

ϕ(η) + ψ(θ)− θ · η = 0 (54)

when θ and η correspond to each other by η = ∇ψ(θ). Therefore,

ϕ(η) =
n∑

i=1

θiηi − ψ(θ) (55)

= Ep̂

[
logq p(x,θ)

]
(56)

=
1

(1− q)hq(θ)

(
1−

∫
pq(x,θ)dx

)
(57)

=
1

1− q

(
1

hq(θ)
− 1

)
(58)

This is a convex function of η. �

We call the q-dual potential

ϕ(η) = E
[
logq p(x,θ)

]
=

1

1− q

{
1

hq

− 1

}
(59)

the negative q-entropy, because it is the Legendre-dual of the q-free energy ψ(θ). There are various

definitions of q-entropy. The Tsallis q-entropy [3] is originally defined by

HTsallis =
1

1− q
(hq − 1) (60)

while the Rényi q-entropy [33] is

HRényi =
1

1− q
log hq (61)

They are mutually related by monotone functions. When q → 1, all of them reduce to the Shannon

entropy.

Our definition of

Hq =
1

1− q

(
1− 1

hq

)
=

HTsallis

hq

(62)

is also monotonically connected with the previous ones, but is more natural from the point of view

of q-geometry. The entropy Hq has been known as the normalized q-entropy, which was studied in

[16,34–37].
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3.2. q-Dually Flat Structure

There are two dually coupled coordinate systems θ and η in q-exponential family S with two potential

functions ψ(θ) and ϕ(η) for each q. Two affine structures are introduced by the two convex functions ψ

and ϕ. See information geometry of dually flat space [8]. Although S is a Riemannian manifold given by

the q-Fisher information matrix (45), we may nevertheless regard S as an affine manifold where θ is an

affine coordinate system. They represent intensive quantities of a physical system. Dually, we introduce

a dual affine structure to S, where η is another affine coordinate system. They represent extensive

quantities. We can define two types of straight lines or geodesics in S due to the q-affine structures.

For two distributions p (x,θ1) and p (x,θ2) in S, a curve p (x,θ(t)) is said to be a q-geodesic

connecting them, when

θ(t) = tθ1 + (1− t)θ2 (63)

where t is the parameter of the curve. Dually, in terms of dual coordinates η, when

η(t) = tη1 + (1− t)η2 (64)

holds, the curve is said to be a dual q-geodesic.

More generally, the q-geodesic connecting two distribution p1(x) and p2(x) is given by

logq p(x, t) = t logq p1(x) + (1− t) logq p2(x)− c(t) (65)

where c(t) is a normalizing term. This is rewritten as

p(x, t)1−q = tp1(x)
1−q + (1− t)p2(x)

1−q − c(t) (66)

Dually, the dual q-geodesic connecting p1(x) and p2(x) is given by using the escort distributions as

p̂(x, t) = tp̂1(x) + (1− t)p̂2(x) (67)

Since the manifold S has a q-Riemannian structure, the orthogonality of two tangent vectors is

defined by the Riemannian metric. We rewrite the orthogonality of two geodesics in terms of the affine

coordinates. Let us consider two small deviations d1p(x) and d2p(x) of p(x), that is, from p(x) to

p(x)+d1p(x) and p(x)+d2p(x), which are regarded as two (infinitesimal) tangent vectors of S at p(x).

Lemma 1 The inner product of two deviations d1p and d2p is given by

〈d1p(x), d2p(x)〉 =
∫

d1p̂(x)d2 logq p(x)dx (68)

Proof By simple calculations, we have∫
d1p̂(x)d2 logq p(x)dx =

q

hq

∫
d1p(x)d2p(x)

p(x)
dx (69)

of which the right-hand side is the Riemannian inner product in the form of (46). �

Corollary. Two curves θ1(t) and η2(t), intersecting at t = 0, are orthogonal when 〈θ̇1(0), η̇2(0)〉 = 0.

Here, θ̇1(t) and η̇2(t) denote derivatives of θ1(t) and η2(t) by t, respectively.

The two geodesics and the orthogonality play a fundamental role in S as will be seen in the following.
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4. q-Pythagorean and q-Max-Ent Theorems

A dually flat Riemannian manifold admits the generalized Pythagorean theorem and the related

projection theorem [8]. We state them in our case.

q-Pythagorean Theorem. For three distributions p1(x), p2(x) and p3(x) in S, it holds that

Dq [p1 : p2] +Dq [p2 : p3] = Dq [p1 : p3] (70)

when the dual geodesic connecting p1(x) and p2(x) is orthogonal at p2(x) to the geodesic connecting

p2(x) and p3(x) (see Figure 1).

Figure 1. q-Pythagorean theorem.

1
p

2
p

3
p

q

q

Given a distribution p(x) ∈ S and a submanifold M ⊂ S, a distribution r(x) ∈ M is said to be the

q-projection (dual q-projection) of p(x) to M , when the q-geodesic (dual q-geodesic) connecting p(x)

and r(x) is orthogonal to M at r(x) (Figure 2).

Figure 2. q-projection of p to M.

p

S

M

r

q

q-Projection Theorem. Let M be a submanifold of S. Given p(x) ∈ S, the point r(x) ∈ M that

minimizes Dq[p(x) : r(x)] is given by the dual q-projection of p(x) to M . The point r(x) ∈ M that

minimizes Dq[r(x) : p(x)] is given by the q-projection of p(x) to M .
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We show that the well-known q-max-ent theorem in the case of Tsallis q-entropy [1,4,9,11] is a direct

consequence of the above q-Pythagorean and q-projection theorems.

q-Max-Ent Theorem. Probability distributions maximizing the q-entropies HTsallis, HRényi and Hq

under q-linear constraints for m random variables ck(x) and various values of ak

Ep̂ [ck(x)] = ak, k = 1, · · · ,m (71)

form a q-exponential family

logq p(x,θ) =
m∑
i=1

θici(x)− ψ(θ) (72)

The proof is easily obtained by the standard analytical method. Here, we give a geometrical proof.

Let us consider the subspace M∗ ⊂ S whose member p(x) satisfies the m constraints

Ep̂ [ck(x)] =

∫
p̂(x)ck(x)dx = ak, k = 1, · · · ,m. (73)

Since the constraints are linear in the dual affine coordinates η or p̂(x), M∗ is a linear subspace of S

with respect to the dual affine connection. Let p0(x,θ0) be the uniform distribution defined by θ0 = 0,

which implies p0(x,θ0) = const from (6). Let p̄(x) ∈ M∗ be the q-projection of p0(x) to M∗ (Figure 3).

Then, the divergence Dq [p : p0] from p(x) ∈ M∗ to p0(x) is decomposed as

Dq [p : p0] = Dq [p : p̄] +Dq [p̄ : p0] (74)

Let ηp be the dual coordinates of p(x). Since the divergence is written as

Dq [p : p0] = ψ (θ0) + ϕ
(
ηp

)− θ0 · ηp (75)

the minimizer of Dq [p : p0] among p(x) ∈ M∗ is just p̄(x), which is also the maximizer of the entropy

−ϕ
(
ηp

)
.

The trajectories of p̄(x) for various values of ak form a flat subspace orthogonal to M∗, implying that

they form a q-exponential family of the form (6) (see Figure 3). The tangent directions dp̂(x) of M∗

satisfies ∫
dp̂(x)ck(x)dx = 0, k = 1, · · · ,m. (76)

Hence, a q-exponential family of the form

logq p(x, ξ) =
m∑
i=1

ξidi(x)− ψ(ξ) (77)

is orthogonal to M∗, when ∫
dp̂(x)d logq p(x, ξ)dx = 0 (78)

This implies that di(x) = ci(x). Hence, we have the q-exponential family (72) that maximizes the

q-entropies.
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Figure 3. q-Max-Ent theorem.
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5. q-Bayesian MAP Estimator

Given N iid observations x1, · · · ,xN from a statistical model M = {p(x, ξ)}, we have

p (x1, · · · ,xN , ξ) =
N∏
i=1

p (xi, ξ) (79)

Since logq u is a monotonically increasing function, the maximizer of the q-likelihood

lq(x1, · · · ,xN , ξ) = logq p(x1, · · · ,xN , ξ) (80)

is the same as the ordinary maximum likelihood estimator (mle). However, the maximizer of the q-escort

distribution that maximizes the q-escort log-likelihood,

1

q
l̂(x1, · · · ,xN , ξ) = log p(x1, · · · ,xN , ξ)− 1

q
log hq(ξ) (81)

is different from this. We show that the q-mle is a Bayesian MAP (maximum a posteriori probability)

estimator. This clarifies the meaning of the q-escort mle.

The q-escort mle is the maximizer of the q-escort distribution,

ξ̂q = argmax p̂ (x1, · · · ,xN , ξ) (82)

Theorem 6 The q-escort mle ξ̂q is the Bayesian MAP estimator with the prior distribution

π(ξ) = hq(ξ)
−N/q (83)

Proof The Bayesian MAP is the maximizer of the posterior distribution with prior π(ξ)

p (ξ|x1, · · · ,xN) =
π(ξ)p (x1, · · · ,xN , ξ)

p (x1, · · · ,xN)
(84)
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which also maximizes

(π(ξ)p (x1, · · · ,xN , ξ))
q , for q > 0 (85)

On the other hand, the q-escort mle is the maximizer of

p̂ (x1, · · · ,xN , ξ) =
N∏
i=1

p̂(xi, ξ) =
N∏
i=1

p (xi, ξ)
q

hq(ξ)
(86)

Hence, when

π(ξ) = hq(ξ)
−N/q (87)

the two estimators are identical. �

The theorem shows that the Bayesian prior has a peak at the maximizer of our q-entropy Hq.

6. Conclusions

Much attention has been recently paid to the probability distributions subject to the power law, instead

of the exponential law, since Tsallis proposed the q-entropy and related theories. The power law is also

found in various communication networks. It is now a hot topic of research.

However, we do not have a geometrical foundation while that for the ordinary family of probability

distributions is given by information geometry [8]. The present paper tried to give a geometrical

foundation to the q-family of probability distributions. We introduced a new notion of the q-geometry.

The q-structure is ubiquitous in the sense that the family of all the discrete probability distributions (and

the family of all the continuous probability distributions, if we neglect delicate problems involved in

the infinite dimensionality) belongs to the q-exponential family of distributions for any q. That is, we

can introduce the q-geometrical structure to an arbitrary family of probability distributions, because any

parametrized family of probability distributions forms a submanifold embedded in the entire manifold.

The q-structure consists of a Riemannian metric together with a pair of dually coupled affine

connections, which sits in the framework of the standard information geometry. However, the q-structure

is essentially different from the standard one derived by the invariance criterion of the manifold of

probability distributions. We have a novel look on the theory related to the q-entropy from a viewpoint of

conformal transformation. This leads us to unified definitions of various quantities such as the q-entropy,

q-divergence, q-potential function and their duals, as well as new interpretations of known quantities.

This is a geometrical foundation and we expect that the paper contributes to provide further

developments in this field.
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