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Abstract: The socio-thermodynamics of a population of two competing species exhibits 

strong analogies with the thermodynamics of solutions and alloys of two constituents. In 

particular we may construct strategy diagrams akin to the phase diagrams of chemical 

thermodynamics, complete with regions of homogeneous mixing and miscibility gaps. 
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1. Introduction  

Random thermal motion and forces of interaction compete to determine the behaviour of 

thermodynamic systems of molecules. The former finds its formal expression in the entropy s, which 

probabilistically tends to a maximum, and the latter in the energy e, which deterministically tends to a 

minimum. The relative strength of the entropic and energetic effects is determined by the temperature 

T, which reflects the strength of the random motion. Thus a thermodynamic system tends to a 

minimum by making the free energy e-Ts minimal. 

Analogous dichotomies of entropic and energetic contributions to the overall comportment may be 

identified in other fields of study, like economics, ecology, biology and sociology, provided that their 

models are suitably simplified. In the present paper a sociological analogy is described and exploited. 

The system is a population of two species of birds, who compete for the same resource. The random 

element is introduced by the stochastic nature of inheritance between successive generations, while the 

deterministic element stems from the striving of the birds toward higher gain; this dictates evolutionary 

changes over the generations. The relative significance of the two traits is determined by the price of 

the resource.  
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The thermodynamic treatment of the population suggests that the species segregate when the price 

of the resource is high, while they form a homogeneously mixed society for a small price level. There 

exists a close analogy between the segregation of species into colonies at large price and the separation 

of constituents of a solution or an alloy into nearly pure phases at small temperatures. 

The contest strategy of the birds is adapted from a model of game theory, which was invented by 

Maynard-Smith and Price [1] in order to show that two species can coexist in a population, even when 

they compete for the same resource (see also Straffin [2] and Dawkins [3]). I have used that game 

before in [4–6]. However, the present work differs from my previous efforts in that here I adopt the 

statistical definition of entropy rather than the entropy of phenomenological thermodynamics based on 

the second law. The present version has the advantage of simplicity and enhanced plausibility. The 

suitability and effectiveness of phase diagrams for the segregation and integration of human 

populations donsisting of different ethnic or religious groups has previously been pointed out by 

Mimkes [7]. 

2. Evolutionary Equilibria 

2.1. Evolutionary Entropic Drift toward an Equi-Distribution 

We consider a population of N birds, NH = zHN hawks and ND = (1 − zH)N doves. Generally the 

distribution {NH,ND} changes from one generation to the next one, and we assume a priori that—by 

the stochastic character of inheritance—every one of the 
!!

!

DH NN

N  realizations of the new distribution 

is equally probable [8]. The maximum number of realizations occurs with the distribution  

{NH,ND} = {½,½} so that statistically it is inevitable that any given initial distribution will be shifted 

toward that equi-distribution. The shift occurs unless, of course, there is a bias for a particular value of 

zH other than ½. The shift may be expressed as the tendency of the population entropy S to grow [9]: 

!
ln ( ln (1 ) ln(1 ))

! ! H H H H
H D

N
S N z z z z

N N
       (1) 

The growth ends when the maximum of S is reached at zH = ½. Figure 1a provides a plot of this 

function.  

Analysis shows that the slopes of the function at zH = 0 and at zH = 1 are infinite. Therefore the 

probability for a shift away from a pure population of either doves or hawks is overwhelming. On the 

other hand, the equi-distribution zH = ½ is probabilistically unchanged. Thus we may say that the 

population is pushed toward the equi-distribution with an entropic driving force which we define as:  

entropic driving force
H

H

H z

z
ln

z

s








1

 (2) 

where s = S/N is the specific population entropy. 
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Figure 1. (a) Specific entropy 
S

s
N


 
as function of zH; (b) Specific gain expectation as 

function of zH for τ = 2. 

 

2.2. Gain-Driven Drift toward an Evolutionarily Stable Distribution 

However, a bias may exist for a hawk fraction different from zH = ½, if hawks and doves compete 

for the same resource. We consider a particularly simple contest strategy which, in view of a 

subsequent alternative, we call strategy A. 

Strategy A 

If two hawks meet over the resource, they fight until one is injured. The winner gains the value τ, 

while the loser, being injured, needs time for healing his wounds. Let that time be such that the hawk 

must buy two resources, worth 2τ, to feed himself during convalescence. Two doves do not fight; they 

merely engage in a symbolic conflict, posturing and threatening, but not actually fighting. One of them 

will eventually win the resource—always with the value τ—but on average both lose time such that 

after every dove-dove encounter they need to catch up by buying part of a resource, worth 0.2τ. When 

a hawk meets a dove, the dove walks away, while the hawk wins the resource; there is no injury, nor is 

any time lost. 

Assuming that winning and losing the fights or the posturing game is equally probable, we conclude 

that the elementary expectation values for the gain per encounter are given by the arithmetic mean 

values of the gains in winning and losing, i.e., 

 0.5 2 0.5HH
Ae        

HD
Ae   

0DH
Ae   

0.5 0.2 0.3DD
Ae       (3) 

for the four possible encounters HH,HD,DH, and DD [10]. The price is out of control for the 

population, but it has to adjust to it. 
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Thus the gain expectations H
Ae  and D

Ae  for a hawk or dove per encounter with any other bird are 

given by: 

(1 )H HH HD
A H A H Ae z e z e    and (1 )D DH DD

A H A H Ae z e z e    (4) 

The specific gain expectation eA per bird—hawk or dove—and per encounter reads: 

(1 )H D
A H A H Ae z e z e    or more explicitly, by (4) 

2 ( ) ( 2 )HH DD HD DH HD DH DD DD
A H A A A A H A A A Ae z e e e e z e e e e        , or by (3) (5) 

21.2 0.4 0.3A H He z z       (6) 

This gain is graphically represented by a concave parabola as a function of zH with a maximum at 

zH
max = 1/6, see Figure 1b. 

We assume that a population profits evolutionarily from a higher gain, so that—in the course of 

evolution, i.e., over many generations—the distribution tends to the value zH
max, because, in a manner 

of speaking, the population with that value of zH is fitter than any other one. We may thus say that 

there is a gain-driven force toward zH
max. It is defined as the increase of the gain with changing zH: 

Gain-driven force= A

H

e

z




 (7) 

2.3. Combined Entropic and Gain Driven Trends 

Thus we have identified two evolutionary forces for an adjustment of the hawk fraction zH: A 

probabilistic entropic one and a deterministic gain-driven one. Obviously in the interval ¹/6 < zH < ½ the 

forces point into different directions. In general both forces are active, and we speak of an evolutionary 

equilibrium when they are equal in size and opposite to each other: 

Equilibrium condition A

H H

es

z z


 

 
 or 0

( )A

H

e s

z

 



 or 1

A

s

e


 


 (8) 

We call pA = eA + s the evolutionary potential and conclude that in equilibrium it has a maximum. 

Figure 2 represents the evolutionary potential graphically for several prices τ. The maxima 

determine the hawk fractions of evolutionary equilibrium. Inspection shows that the equilibrium hawk 

fraction shifts from 1/6 to 1/2 for increasing values of τ. 

It is useful for a comparison with thermodynamics to make the price explicit in the equilibrium 

condition by defining a unit gain, i.e., a gain per price unit, viz.: 

unit gain = A
A

e
e


 . 

Thus the equilibrium condition reads: 

A

H H

es

z z
 

 
 

, or 0
( )A

H

e s

z

 



, or 

A

s

e


 


 (9) 

In terms of Ae  the evolutionary potential reads pA = Ae  + s. 
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Figure 2. Evolutionary potential pA = eA + s for increasing price τ = 1,2,3. 

 

2.4. Analogy with Thermodynamics of Mixtures 

In thermodynamic language we should consider the population of hawks and doves with hawk 

fraction zH as a binary mixture of two constituents with the mol fraction X of constituent 1 (say). The 

entropy s would be the entropy of mixing of the constituents, while the price τ obviously is reciprocal 

to the thermodynamic temperature T; we have to set τ = 1/T. The unit gain Ae  represents the 

thermodynamic specific energy to within sign, and the potential pA = Ae  + s in evolutionary 

thermodynamics plays the role of the thermodynamic free energy of a binary mixture,—again to within 

sign. Due to the sign difference the free energy of thermodynamics becomes minimal in equilibrium, 

while the evolutionary potential Ae  + s tends to a maximum.  

Thus there is a far-reaching formal analogy between the present consideration of evolution in a 

population of hawks and doves and thermodynamics of binary mixtures. We proceed to show that the 

analogy can be expanded when we consider a different contest strategy of the birds and the possibility 

of segregation of hawks and doves into colonies.  

3. Segregation of Hawks and Doves  

3.1. Non-Convex Potentials. Concavification 

Evolution is a slow process. It takes several generations to make its effect shown. During times 

which are short on an evolutionary time scale the hawk fraction in the population is constant and there 

is no way—in the short run—to increase the evolutionary potential pA = Ae  + s, at least not, if 

strategy A of Section 2.2 is employed by the birds. This is not an interesting case, and therefore we 

look at an alternative strategy, which is more interesting even without evolution. 

Strategy B 

The hawks adjust the severity of the fighting—and thus the gravity of an injury—to the prevailing 

price τ of the resource. If the price is higher than 1, they fight less, so that the mean time of 

convalescence in case of a defeat is shorter and the value to be bought during convalescence is reduced 

from 2 τ to 2τ [1 − 0.2(τ − 1)]. Likewise the doves adjust the duration of the posturing, so that the 

payment for lost time is reduced from 0.2 τ to 0.2 τ[1 − 0.3(τ − 1)] But that is not all: To be sure, in 
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strategy B the doves will still not fight when they find themselves competing with a hawk, but they 

will try to grab the resource and run. Let them be successful 4 out of 10 times. However, if 

unsuccessful, they risk injury from the enraged hawk and may need a period of recovery at the cost of 

2τ[1 + 0.5(τ − 1)] [11]. Thus the elementary expectation values for gains under strategy B may be 

written as:  

0.5( 2 (1 0.2( 1))) (0.2 0.7)HH
Be            

0.6HD
Be   

0.4 0.6 2 (1 0.5( 1)) (0.6 0.2)DH
Be              

0.5 0.2 (1 0.3( 1)) (0.06 0.24)DD
Be            (10) 

And therefore, by (5) the specific gain is given by: 
20.86 ( 1) (0.72 0.08) (0.06 0.24)B H He z z            (11) 

Obviously for τ > 1 this function is convex. The entropy is unchanged from the previous case,—a 

concave function of zH, see Figure 1a—and therefore the graph of the evolutionary potential  

pB = τ Be  + s may result—for a proper value of τ as a plot with variable curvature, see Figure 3a. Once 

again, if there is no evolution, zH is fixed. There is a single value of pB in that case and the population 

seems to have no choice: It should be stuck with that value [12]. 
However, there is an alternative. For a given Hz  under the convex range of pB(zH) the population 

can assume a higher potential than ( )Hp z  by forsaking homogeneity. Indeed, let the population 

segregate into dove-rich and hawk-rich colonies ′ and ″ with Hz   and Hz   respectively, and with 
N

N
x


  

and 1
N

x
N


   as bird fractions in the respective colonies. Obviously, the population must then have 

the potential: 

( , , ) ( ) (1 ) ( )B H H B H B Hp x z z xp z x p z       (12) 

which is the weighed sum of the potentials in the colonies with weighing factors x and 1 − x. This is a 
function of three variables, viz. x, Hz , and Hz  which, however, are constrained by the condition: 

(1 )H H Hz xz x z     (13) 

Since the population strives for a maximal potential, it will effect the segregation in such a way that 
the function ( , , )B H Hp x z z   has a maximum. Necessary condition for that to be the case is that the 

derivatives of the function: 

( ) (1 ) ( ) ( (1 ) )B H B H H H Hxp z x p z z xz x z          

vanish. λ is the Lagrange multiplier that takes care of the constraint (13). Thus necessary conditions for 

a maximum may be written as: 

( ) ( ) ( ) ( )B H B H B H B H

H H H H

p z p z p z p z

z z z z


     
  

     
 (14) 
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These are two conditions for the calculation of Hz , and Hz   which imply that Hz , and Hz  are  

the abscissae of the points of contact of the common tangent to the concave parts of pB(zH), see  

Figure 3a [13]. The colonial fractions of birds and the potential of the two-colony population follow 

from the constraint (13) and from (12). They read: 

H H

H H

z z
x

z z

 


 
 and ( , , ) ( ) ( ( ( ))H H

B H H B H B H B H
H H

z z
p x z z p z p z p z

z z

       
 

 (15) 

so that ( , , )B H Hp x z z   is a linear function of Hz . In Figure 3a the position of the colonies are marked by 

open rectangles and the position of the segregated population as a whole is marked by a black 

rectangle. The above-described graphical method for the determination of Hz  and Hz  may be called 

the concavification of the graph of the potential function pB(zH). 

Figure 3. (a) Evolutionary potential for strategy B; (b) Strategy diagram with areas of 

integration and segregation. 

 
 

We conclude that a population which employs strategy B can segregate into colonies with definite 

but different hawk fraction and thereby achieve a higher potential than a homogeneously mixed 

population of hawks and doves. This possibility exists only for potentials with a convex branch. That 

branch vanishes for the model, if τ is too small, see Figure 3b. We may construct a strategy diagram, 

in which the area of segregation lies within the curve: 

1 1 1

2 4 1.72 (1 )H Hz z
   


 (16) 
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That diagram is shown in Figure 3b. We conclude that integration for all values of zH is only 

possible for small prices. For high prices integration can only happen for values of zH which are either 

close to 0 or close to 1: The conclusion is that minorities can be integrated. 

3.2. Thermodynamic Analogy 

In thermodynamics of mixtures there is an analogy to the above-described phenomenon of 

segregation in a population. Indeed, a solution like phenol (C6H5OH) in water has a miscibility gap, 

i.e., it decompose into two phases at low temperature which are phenol-rich and water-rich 

respectively. By the analogy discussed in Section 2.4 high price corresponds to low temperature. 

Therefore phase diagrams are “upside-down” in comparison with strategy diagrams. In that case the 

equilibrium mol fractions X of the phases are obtained by convexification of the free energy function 

rather than concavification of the evolutionary potential. 

4. Segregation in a Population with a Choice of Strategies 

4.1. Intersecting Graphs pA and pB 

We continue to consider the population of N hawks and doves. So far we have discussed the case 

that the birds could adopt only one contest strategy, either A or B. But now we let them choose: They 

may adopt either strategy depending on which one provides them with a higher value of the 

evolutionary potential at the extant price level. Therefore we must be interested in the tableau shown in 

Figure 4. The individual graphs shown in Figure 4a–e represent evolutionary potentials as functions of 

zH appropriate to different values of τ. The dashed ones refer to Strategy A, while the solid ones refer 

to Strategy B. 

It is obvious that for τ = 1 strategy A will be adopted by the birds, because it provides a higher 

potential and it does that for all values of zH between 0 and 1. For higher values of τ the graphs of 

pA(zH) and pB(zH) intersect each other so that there is the possibility of concavification which was 

explained in Section 3.1. For τ = 2, 2.4, and 3.2 there are two common tangents to concave parts of the 

potential functions, one each for small and large values of zH,, see Figure 4. The states on those 

tangents represent populations that are segregated in colonies in which the birds employ different 

strategies. Thus for τ = 2.4 and for zH ≈ 0.1 there will be a colony with zH << 1 which employs strategy 

B and another colony with zH ≈ 0.2 which employs strategy A. On the other hand, again for τ = 2.4, but 

for zH ≈ 0.7 there will be a hawk-rich colony with zH ≈ 1 employing strategy B and another colony with 

strategy A which has zH ≈ 0.6. Eventually, for τ > 3.6 or thereabout the colonies will either be  

dove-rich or hawk-rich and both types employ strategy B. That is the high-price strategy. 

Note that the graph max[pA,pB] is non-concave even for values of τ for which both pA and pB are 

concave. We may therefore use concavification of that graph as shown in Figure 4a–e and then 

construct a strategy diagram for the population by projecting the common tangents onto the 

appropriate horizontal lines in a (τ, zH)-diagram, and by connecting the end points of those projections. 

In this manner we obtain Figure 4f in which six regions may be identified: 
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I. Homogeneous population employing Strategy A for all hawk fractions. 

II. Segregated population with two types of colonies: Dove-rich colonies employing Strategy B and 

colonies with moderate hawk fractions and Strategy A. 

III. Segregated population with two types of colonies: Hawk-rich ones with Strategy B and colonies 

with moderate hawk fractions and Strategy A. 

IV. Segregated population with hawk-rich and dove-rich colonies both employing Strategy B. 

V. Homogeneous dove-rich populations with Strategy B. (This region is not visible in Figure 4f, 

because on the scale of the figure it lies virtually on the τ-axis.) 

VI. Homogeneous hawk-rich populations with Strategy B. 

The horizontal line separating the regions IV from II and III is called the eutectic line and the  

point E, in which three types of colonies can exist, is called the eutectic point. Both namings are in 

analogy with thermodynamics of alloys, see below. 

Figure 4. (a) through (e): Evolutionary potentials for strategies A (dashed) and B (solid) 

for different prices. Concavification by common tangents. 4f Strategy diagram. 
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4.2. Analogy with Thermodynamics of Solutions and Alloys 

Chemical engineers and metallurgists are familiar with phase diagrams in thermodynamics of 

solutions and alloys that look much like the strategy diagram of Figure 4f, e.g., the phase diagram for a 

(Pb,Sb)-alloy, or a (Pb,Sn)-alloy; except that phase diagrams are (temperatureT,mol-fractionX)-

diagrams so that they are upside down compared to the (priceτ,hawk-fractionzH)-diagram of the figure. 

This inversion is due to the fact that the price τ corresponds to the reciprocal of the temperature T, see 

Section 2.4. 

The terms eutectic line and eutectic point used above come from metallurgy. Eutectic essentially 

means easy-melting and the eutectic point is the state (T,X) for which melting of an alloy is achieved at 

the lowest temperature. In the analogy to populations the eutectic line is the lower boundary of the 

region of segregation,—or miscibility gap. And the eutectic point marks the state (τ, zH) where 

integration can be maintained up to the highest price level. 
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