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Abstract: In the background of Friedmann–Robertson–Walker Universe, there exists
Hawking radiation which comes from the cosmic apparent horizon due to quantum effect.
Although the Hawking radiation on the late time evolution of the universe could be safely
neglected, it plays an important role in the very early stage of the universe. In view
of this point, we identify the temperature in the scalar field potential with the Hawking
temperature of cosmic apparent horizon. Then we find a nonsingular universe sourced by
the temperature-dependent scalar field. We find that the universe could be created from a de
Sitter phase which has the Planck energy density. Thus the Big-Bang singularity is avoided.
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1. Introduction

The standard model of cosmology claims that the primordial Universe was in a hot, dense, and
highly curved state which is very close to the Big-Bang singularity [1]. The cosmic energy density, the
temperature and other physical quantities become infinite at the singularity. Thus the presence of infinity
of physical quantities indicates that the Einstein’s General Relativity breaks down at the singularity.
General Relativity must be modified at high densities. In other words, some other aspects of physics
should be taken into account in the gravity theory.

It is usually believed that the Big-Bang singularity might be regularized in the quantum version
of gravity theory. Actually, the absence of the Big-Bang singularity in a quantum setting could be
expected on qualitative grounds although a completely self-consistent quantum theory of gravity is still
not yet available so far. As is well known, there are only four fundamental constants in the theories
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describing space, time, matter and thermodynamics. They are the Newton’s constant G (related to
General Relativity), the speed of light c (related to Special Relativity), the Planck’s constant ~ (related
to quantum mechanics) and the Boltzmann’s constant k (related to thermodynamics). Consequently, one
could have only four quantities that can be constructed from these four fundamental constants. They are
Planck time tp, Planck length lp, Planck density ρp and Planck temperature Tp [2],

tp =

√
~G
c5

= 5.4× 10−44 s

lp =

√
~G
c3

= 1.6× 10−35 m

ρp =
c5

~G2
= 5.2× 1096 kg · m−3

Tp =
lpc

4

Gk
= 1.4× 1032 K (1)

These quantities are expected to play important role in the quantum theory of gravity. It is generally
assumed that they set the scale for the quantum gravity effects. The time, length, energy density and
temperature beyond these scales are highly impossible. In view of this point, the quantum effect should
be considered in General Relativity and the Universe should not be singular.

The first attempt of taking quantum effect into account in gravity theory is the elegant work of
Hawking [3]. According to General Relativity, the temperature of a black hole is absolutely zero. This
violates the third law of thermodynamics which states that one can never approach the temperature
of zero with finite operations. However, Hawking found that a black hole behaves like a black body,
emitting thermal radiation, with a temperature inversely proportional to its mass M ,

TH =
1

8πM
· ~c

3

Gk
(2)

In the formulae, four theories of physics, Special Relativity (c), General Relativity (G), quantum
mechanics (~) and thermodynamics (k) are present. Then the third law of thermodynamics is not
violated. Motivated by this point, one expect the Big-Bang singularity may be eliminated by taking
into account the quantum effect. On the other hand, in the background of Friedmann–Robertson–Walker
(FRW) Universe, it is also found that the universe is filled with the Hawking radiation which comes from
the apparent horizon due to quantum effect. The temperature of Hawking radiation is give by [4–7]

TH =
1

2πrA
· ~c
k

(3)

where rA is the radius of cosmic apparent horizon. This temperature could be observed by the comoving
observers in the universe. We see that not only Special relativity and thermodynamics but also quantum
mechanics are present in the formulae.

The purpose of this paper is to investigate whether the Big-Bang singularity could be smoothed by
simply taking account of the cosmic Hawking radiation. The answer is yes. We find that the universe
could be created from a de Sitter phase which has the Planck energy density. Thus the Big-Bang
singularity is avoided.

Actually, many solutions of nonsingular universe have been presented in the literature. These
solutions are based on various approaches to quantum gravity such as modified gravity models [8–11],
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Lagrangian multiplier gravity actions (see e.g., [12–14]), non-relativistic gravitational actions [15–17],
brane world scenarios [18,19] an so on. Here we shall not produce an exhaustive list of references, but we
prefer the readers to read the nice review paper by Novello and Bergliaffa [20] and the references therein.

The paper is organized as follows. In Section 2, we shall derive the Friedmann equation and the
acceleration equation sourced by the temperature-dependent scalar field. In Section 3, we present a
nonsingular universe by simply considering the scalar potential for the oscillators. Section 4 gives the
conclusion and discussion. In the following, we shall use the system of units in which G = c = ~ =

k = 1 and the metric signature (−, +, +, +) until the end of the paper.

2. Temperature-dependent Scalar Field

We consider the Lagrangian density as follows

L =
1

2
∇µϕ∇µϕ+ V (ϕ, T ) (4)

where V (ϕ, T ) is the temperature-dependent scalar potential. The theory has been widely studied in the
phase transitions of very early universe [21]. In the background of Friedmann–Robertson–Walker (FRW)
Universe, T could be taken as the temperature of cosmic microwave background (CMB) radiation. The
evolution of the temperature is given by

TCMB ∝ 1

a
(5)

where a is the scale factor of the universe. The observations of CMB gives the present-day cosmic
temperature [22]

TCMB ≃ 2.73 K (6)

On the other hand, in the background of the spatially-flat FRW Universe, it is found that the universe
is filled with the Hawking radiation which comes from the apparent horizon due to quantum effect. The
temperature of Hawking radiation is given by [4–7]

TH =
H

2π
(7)

where H is the Hubble parameter. This temperature could be observed by the comoving observers in the
universe. For the present-day universe, it is approximately

TH ≃ 10−29 K (8)

It is very much smaller than the temperature of CMB. So it is very safe to neglect the quantum effect
for the present-day Universe. Using the Friedmann equation, the temperature of CMB at the radiation
dominated epoch can be rewritten as

TCMB ∝
√
H (9)

Thus, with the increasing of redshifts, the Hawking temperature TH increases faster than the CMB
temperature TCMB . In other words, the quantum effect would become significant in the very early
universe. In particular, the Hawking temperature at the Planck time may be as high as

TH ≃ 1032 K (10)
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Since the Hawking temperature becomes very important in the very early universe, we identify
the temperature in the Lagrangian, Equation (4), with not the CMB temperature but the Hawking
temperature.

Taking into account gravity, we have the action as follows

S =

∫
d4x

√
−g

[
R

16π
+

1

2
∇µϕ∇µϕ+ V (ϕ, T )

]
(11)

where R is the Ricci scalar. The metric for the spatially flat FRW Universe is given by

ds2 = −dt2 + a (t)2
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
(12)

where a(t) is the scale factor of the Universe. Then the action becomes

S =

∫
4πr2dr

∫
dt

[
1

16π

(
−6äa2 − 6ȧ2a

)
−1

2
a3ϕ̇2 + a3V (ϕ, H)

]
(13)

where dot denotes the derivative with respect to cosmic time t. Here we have replaced the Hawking
temperature with the Hubble parameter in the scalar potential. Variation of the action with respect to the
scale factor a gives the acceleration equation

2Ḣ + 3H2 = −8π

[
1

2
ϕ̇2 − V +H

∂V

∂H
+

1

3

(
∂V

∂H

)·]
(14)

On the other hand, variation of the action with respect to the scalar field ϕ gives the equation of motion
for ϕ

ϕ̈+ 3Hϕ̇+
∂V

∂ϕ
= 0 (15)

Equation (14) tells us the scalar field contributes a pressure as the following

p =
1

2
ϕ̇2 − V +H

∂V

∂H
+

1

3

(
∂V

∂H

)·

(16)

Compared to the pressure of quintessence,

p =
1

2
ϕ̇2 − V (17)

the last two terms on the right hand side of Equation (16) come from the variation of scalar potential
with respect to the Hawking temperature.

In order to find the energy density ρ contributed by the scalar field, we put

ρ =
1

2
ϕ̇2 + V + F (18)

where F is a function to be determined. Substituting Equation (16) and Equation (18) into the energy
conservation equation

ρ̇+ 3H (ρ+ p) = 0 (19)
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and taking into account Equation (15), we obtain(
F +H

∂V

∂H

)·

+ 3H

(
F +H

∂V

∂H

)
= 0 (20)

So we get

F = −H
∂V

∂H
+

F0

a3
(21)

where F0 is an integration constant. Since there is no constant in the Lagrangian density, Equation (4),
we expect F0 should be zero. So the energy density is given by

ρ =
1

2
ϕ̇2 + V −H

∂V

∂H
(22)

The last term comes from the variation of the scalar potential with respect to the Hawking temperature.
Now we can write the Friedmann equation as the following

3H2 = 8π

(
1

2
ϕ̇2 + V −H

∂V

∂H

)
(23)

Equations (14), (15) and (23) constitute the main equations which govern the evolution of the universe.
Among the three equations, only two of them are independent. But we have three unknown functions,
a(t), ϕ(t) and V (ϕ, T ). So we are left with one degree of freedom. For simplicity, we may fix the
expression of the scalar potential.

3. A Nonsingular Universe

We consider one of the simplest scalar potentials given by

V (ϕ, T ) = 2π2η2T 2ϕ2 (24)

with η a positive dimensionless constant. This form of temperature-dependent potential comes from the
high-temperature expansion of the finite-temperature effective potential [23]:

VT (ϕ, T ) = V (ϕ) +
λ

8
T 2ϕ2 − π2

90
T 4 + · · · (25)

where λ is a constant. For simplicity and to the first order of temperature corrections, we are only
interested in the second term in the right hand of the equation.

Using the formulae of temperature, Equation (7), we can rewrite the scalar potential as follows

V (ϕ, T ) =
1

2
η2H2ϕ2 (26)

Now the Friedmann equation, Equation (23), is reduced to

3 = 4π

[(
dϕ

dx

)2

− η2ϕ2

]
(27)

where x is defined by

x ≡ ln a (28)
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Solving the differential equation, we find

ϕ =

√
3

4π

aη − a−η

2η
(29)

Without the loss of the generality, we set the integration constant to be zero.
Substituting it into the equation of motion, Equation (15), and using Equation (22) we obtain the

energy density

ρ =
ρpa

4η

a6 (1 + a2η)4
(30)

where ρp is the integration constant. We will shortly find that it is the Planck energy density. Substituting
the energy density into the energy conservation equation, Equation (19) we obtain the equation of state w

w ≡ p

ρ
= 1− 4

3
η · 1− a2η

1 + a2η
(31)

In order that the energy density is not divergent when a = 0, we should require that

η ≥ 3

2
(32)

On the other hand, in order that the equation of state parameter is not less than minus one when a = 0,
we should require that

η ≤ 3

2
(33)

So η is forced to be

η =
3

2
(34)

Then the energy density is given by

ρ =
ρp

(1 + a3)4
(35)

So the energy density increases with the increasing of redshifts. When a = 0, we have the maximum
energy density

ρ = ρp (36)

It is generally believed that the Planck energy density may be the maximum density in the universe. So
the integration constant ρp is actually the Planck density. The evolution of the scale factor is found to be

ln a+
1

6
a6 +

2

3
a3 =

√
8π

3
· t

tp
(37)

where tp is the Planck time.
In Figure 1, we plot the evolution of the scale factor with respect to the cosmic time. It shows that

the scale factor approaches zero when t = −∞. The scale factor is actually physically meaningless. So
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we do not worry about its vanishing at t = −∞. It is the radius s of Hubble horizon that describes the
physical size of the universe

s ≡ 1

H
(38)

Figure 1. The evolution of the scale factor a with respect to the cosmic time t. It shows that
the scale factor approaches zero when t = −∞. The unite of time is the Planck time tp.
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In Figure 2, we plot the evolution of the Hubble horizon s with respect to the cosmic time t. It
shows that the Hubble horizon approaches a finite constant when t = −∞. Therefore, the universe is
nonsingular. In Figure 3, we plot the evolution of the energy density ρ with respect to the cosmic time
t. It shows that the energy density approaches the Planck density when t = −∞. Since the universe is
created with the finite Hubble scale and finite energy density, it is a nonsingular universe. We note that
the cosmic time t is real and physical. So the minus infinity t = −∞ is real and geodesic one.

Figure 2. The evolution of the Hubble radius s with respect to the cosmic time t. It shows
that the Hubble horizon approaches a finite constant when t = −∞. In other words, the
physical size of the universe is bounded below. The unit of time and length are the Planck
time tp and Planck length lp, respectively.
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Figure 3. The evolution of energy density ρ with respect to the cosmic time t. It shows
that the energy density approaches the Planck density when t = −∞. The unit of time and
energy density are the Planck time tp and the Planck density ρp, respectively.
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4. Conclusion and Discussion

Although the Hawking radiation on the late time evolution of the universe could be safely neglected,
it plays an important role in the very early stage of the universe. In view of this point, we identify the
temperature in the scalar field potential with the Hawking temperature of cosmic apparent horizon. Then
we find a nonsingular universe sourced by the Hawking-temperature-dependent scalar field. We had
better point out that the analysis of singularity here needs more attentions. For example, we need to
modify gravity in a non-perturbation fashion to really make sense [24,25].

The extension of the idea to the general scalar-tensor theories is straightforward:

L = f

(
R,

1

2
∇µϕ∇µϕ, ϕ, T

)
(39)

with f being an arbitrary function of the variables. But we note that the whole approach of this paper can
be applied only to the FRW universe, because for a general geometry the Hawking temperature has to be
defined separately. As another example, we may take ϕ as a constant and take the potential as follows

V ∝ T 4 (40)

Then we would have the Friedmann equation as follows

3H2 = 16πρp

(
1−

√
1− ρ

ρp

)
(41)

where ρ may be the energy density of radiation, dark matter and dark energy. It is apparent the maximum
of ρ is the Planck density. It reveals a nonsingular universe. When ρ ≪ ρp, it goes back the usual
Friedmann equation.

On the other hand, if we take the potential as

V ∝ 1

T 2
(42)
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we would have the Friedmann equation as follows

3H2 = 4πρ

1 +

√
1− ρ2X

ρ2

 (43)

where ρX is some constant. It is apparent the minimum of ρ is ρX . It reveals a nonsingular but future
universe. When ρX ≤ ρ, it restores to the usual Friedmann equation. Of course, when T = const, it is
the quintessence.
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