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Abstract: Recently the identity of de Bruijn type between the relative entropy and the
relative Fisher information with the reference moving has been unveiled by Verdú via MMSE
in estimation theory. In this paper, we shall give another proof of this identity in more
direct way that the derivative is calculated by applying integrations by part with the heat
equation. We shall also derive an integral representation of the relative entropy, as one of the
applications of which the logarithmic Sobolev inequality for centered Gaussian measures
will be given.
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1. Introduction

Probability measures on Rn treated in this paper are absolutely continuous with respect to the standard
Lebesgue measure and we shall identify them with their densities.

For a probability measure f , the entropy H(f) and the Fisher information J(f) can be introduced,
which play important roles in information theory, probability, and statistics. For more details on these
subjects see the famous book [1].
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Hereafter, for an n-variables function ϕ(x) = ϕ(x1, x2, . . . , xn) on Rn, the integral of ϕ over the
whole Rn by the standard Lebesgue measure dx = dx1 dx2 · · · dxn is abbreviated as∫

Rn

ϕ dx =

∫∫
· · ·

∫
Rn

ϕ(x1, x2, . . . , xn) dx1 dx2 · · · dxn.

that is, we shall leave out (x1, x2, . . . , xn) in the integrand in order to simplify the expressions.

Definition 1.1. Let f be a probability measure on Rn. Then the (differential) entropy of f is defined by

H(f) = −
∫
Rn

f log f dx.

For a random variable X on Rn with the density f , we write the entropy of X by H(X) = H(f).

The Fisher information for a differentiable density f is defined by

J(f) =

∫
Rn

∥∥∇f
∥∥2

f
dx =

∫
Rn

f
∥∥∇(log f)

∥∥2
dx.

When the random variable X on Rn has the differentiable density f , we also write as J(X) = J(f).

The important result for a behavior of the Fisher information on convolution (sum of independent
random variables) is the Stam inequality, which was first stated by Stam in [2] and subsequently proved
by Blachman [3],

1

J(f ∗ g)
≥ 1

J(f)
+

1

J(g)
(1)

where we have the equality if and only if f and g are Gaussian.

The importance of the Stam inequality can be found in its applications, for instance, the entropy power
inequality [2]; the logarithmic Sobolev inequality [4]; Cercignani conjecture [5]; the Shannon conjecture
on entropy and the central limit theorem [6,7].

For t ≥ 0, we denote by Ptf the convolution of f with the n-dimensional Gaussian density with
mean vector 0 and covariance matrix t In, where In is the identity matrix. Namely,

(
Pt

)
t≥0

is the heat
semigroup acting on f and satisfies the partial differential equation

∂

∂t
Ptf =

1

2
∆
(
Ptf

)
(2)

which is called the heat equation. In this paper, we simply denote Ptf by ft and call it the Gaussian
perturbation of f . Namely, letting X be the random variable on Rn with the density f and Z be an
n-dimensional Gaussian random variable independent of X with mean vector 0 and covariance matrix
In, the Gaussian perturbation ft stands the density function f(x, t) of the independent sum X +

√
tZ.

The remarkable relation between the entropy and the Fisher information can be established by a
Gaussian perturbation (see, for instance, [1], [2] or [8]);

d

dt
H(ft) =

1

2
J(ft) for t > 0 (3)

which is known as the de Bruijn identity.
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Let f and g be probability measures on Rn such that f ≪ g (f is absolutely continuous with respect
to g). Setting the probability measure g as a reference, the relative entropy and the relative Fisher
information can be introduced as follows:

Definition 1.2. The relative entropy of f with respect to g, D(f ∥ g) is defined by

D(f ∥ g) =

∫
Rn

f
(
log

f

g

)
dx =

∫
Rn

f log f dx−
∫
Rn

f log g dx,

which takes always a non-negative value.
We also define the relative Fisher information of f with respect to g by

J(f ∥ g) =

∫
Rn

f
∥∥∥∇(

log
f

g

)∥∥∥2

dx =

∫
Rn

f
∥∥∥∇(log f)−∇(log g)

∥∥∥2

dx,

which is also non-negative. When random variables X and Y have the densities f and g, respectively,
the relative entropy and the relative Fisher information of X with respect to Y are defined by
D(X ∥ Y ) = D(f ∥ g) and J(X ∥ Y ) = J(f ∥ g), respectively.

In view of the de Bruijn identity, one might expect that there is a similar connection between the
relative entropy and the relative Fisher information. Indeed, the gradient formulas for the relative entropy
functionals were obtained in [9–11], where the reference measures would not be changed in their cases.

Recently Verdú in [12], however, investigated the derivative in t of D(ft ∥ gt) for two Gaussian
perturbations ft and gt. Here we should note that the reference measure does move by the same time
parameter in this case. The following identity of de Bruijn type

d

dt
D(ft ∥ gt) = − 1

2
J(ft ∥ gt)

has been derived via MMSE in estimation theory (see also [13], for general perturbations).
The main aim in this paper is that we shall give an alternative proof of this identity by direct calculation

with integrations by part, the method of which is similar to ones in [11,14]. Moreover, it will be easily
found that the above identity yields an integral representation of the relative entropy. We shall also see
the simple proof of the logarithmic Sobolev inequality for centered Gaussian in univariate (n = 1) case
as an application of the integral representation.

2. An Integral Representation of the Relative Entropy

We shall make the Gaussian perturbations ft and gt, respectively, and consider the relative entropy
D(ft ∥ gt), where the absolute continuity ft ≪ gt remains true for t > 0.

Here, we regard D(ft ∥ gt) as a function of t and calculate the derivative,

d

dt
D(ft ∥ gt) =

d

dt

∫
Rn

ft log
ft
gt

dx =
d

dt

∫
Rn

ft log ft dx− d

dt

∫
Rn

ft log gt dx (4)

by integrations by part with help of the heat equation.
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Proposition 2.1. Let f ≪ g be probability measures on Rn with finite Fisher informations J(f) < ∞
and J(g) < ∞, and finite relative entropy D(f ∥ g) < ∞. Then we obtain

d

dt
D(ft ∥ gt) = − 1

2
J(ft ∥ gt) for t > 0.

Proof. First we should notice that the Fisher informations J(ft) and J(gt) are finite at any
t > 0. Because, for instance, if an n-dimensional random variable X has the density f and Z is an
n-dimensional Gaussian random variable independent of X with mean vector 0 and covariance matrix
In, then by applying the Stam inequality (1) to independent random variables X and

√
tZ, we have that

J(ft) = J
(
X +

√
tZ

)
≤

(
1

J(X)
+

1

J(
√
tZ)

)−1

=
J(X)

1 +
t
n J(X)

≤ J(f) < ∞ (5)

where J(Z) = n is by simple calculation. We shall also notice that the function D(ft ∥ gt) is
non-increasing in t, that is, for t > 0,

0 ≤ D(ft ∥ gt) ≤ D(f ∥ g) < ∞,

which can be found in [15] (p. 101). Therefore, D(ft ∥ gt) is finite for t > 0. But by a nonlinear
approximation argument in [11], we can impose a stronger assumption without loss of generality that

“the relative density
ft
gt

is bounded away from 0 and ∞ on Rn ” (6)

Concerning the first term in the most right hand side of (4), it follows immediately that

d

dt

∫
Rn

ft log ft dx = − 1

2

∫
Rn

∥∥∇ft
∥∥2

ft
dx (7)

by the de Bruijn identity (3), hence, we shall concentrate our attention upon the second term.
Since the densities ft and gt satisfy the heat equation (2), the second term can be reformulated as

follows:

d

dt

∫
Rn

ft log gt dx =

∫
Rn

ft
(
∂t log gt

)
dx+

∫
Rn

log gt
(
∂tft

)
dx

=

∫
Rn

ft
∂tgt
gt

dx+

∫
Rn

log gt

( 1

2
∆ft

)
dx

=

∫
Rn

ft
gt

( 1

2
∆gt

)
dx+

∫
Rn

log gt

( 1

2
∆ft

)
dx (8)

In this reformulation, we have changed integration and differentiation at the first equality, which is
justified by a routine argument with the bounded convergence theorem (see, for instance, [16]).

Applying integration by part to the first term in the last expression of (8), it becomes∫
Rn

ft
gt

( 1

2
∆gt

)
dx = − 1

2

∫
Rn

∇
( ft
gt

)
·∇gt dx (9)
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which can be asserted by the observation below. As gt has finite Fisher information J(gt) < ∞,
∇gt√
gt

has finite 2-norm in L2
(
Rn

)
and must be bounded at infinity. Furthermore, from our technical

assumption (6),
√

ft
gt

is also bounded. Hence if we factorize as

ft
gt

(
∇gt

)
=

√
ft

√
ft
gt

∇gt√
gt
,

then it can be found that
ft
gt

(
∇gt

)
will vanish at infinity.

Applying integration by part to the second term in the last expression of (8), it becomes∫
Rn

log gt

( 1

2
∆ft

)
dx = − 1

2

∫
Rn

∇gt
gt

·∇ft dx (10)

Here it should be noted that log gt (∇ft) will vanish at infinity by the following observation. Similarly,
we factorize it as

log gt (∇ft) = 2
(√

gt log
√
gt
)√ft

gt

(∇ft√
ft

)
.

Then the boundedness of ∇ft√
ft

comes from that J(ft) < ∞, and one of
√

ft
gt

is by the assumption (6)

same as before. Furthermore, the limit formula lim
ξ→0

ξ log ξ = 0 ensures that
(√

gt log
√
gt
)

will vanish

at infinity.
Substitute the Equations (9) and (10) into (8), it follows that

d

dt

∫
Rn

ft log gt dx = − 1

2

∫
Rn

∇
( ft
gt

)
·∇gt dx− 1

2

∫
Rn

∇gt
gt

·∇ft dx

= − 1

2

∫
Rn

(∇ft
gt

− ft
∇gt
g2t

)
·∇gt dx− 1

2

∫
Rn

ft
∇gt
gt

· ∇ft
ft

dx

= −
∫
Rn

ft
∇gt
gt

· ∇ft
ft

dx+
1

2

∫
Rn

ft
∇gt
gt

· ∇gt
gt

dx (11)

Combining the Equations (7) and (11), we have that

d

dt

∫
Rn

ft log ft dx− d

dt

∫
Rn

ft log gt dx

= − 1

2

∫
Rn

ft
∇ft
ft

· ∇ft
ft

dx+

∫
Rn

ft
∇gt
gt

· ∇ft
ft

dx− 1

2

∫
Rn

ft
∇gt
gt

· ∇gt
gt

dx

= − 1

2

∫
Rn

ft

∥∥∥∥∇ft
ft

− ∇gt
gt

∥∥∥∥2

dx

which means

d

dt
D(ft ∥ gt) = − 1

2

∫
Rn

ft
∥∥∇(log ft)−∇(log gt)

∥∥2
dx = − 1

2
J(ft ∥ gt).

�
Let X and Y be n-dimensional random variables with the densities f and g, respectively, and Z be an

n-dimensional Gaussian random variable independent of X and Y with mean vector 0 and covariance
matrix In.
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Since the relative entropy is scale invariant, it follows that

D(X +
√

tZ ∥ Y +
√
tZ) = D

( 1√
t
X +Z ∥ 1√

t
Y +Z

)
.

We know that both of 1√
t
X +Z and 1√

t
Y +Z, as t → ∞ converge to Z in distribution. Thus, we have

lim
t→∞

D(ft ∥ gt) = 0,

and the following integral representation for the relative entropy can be obtained:

Theorem 2.2. Let f ≪ g be probability measures with finite Fisher informations and finite relative
entropy D(f ∥ g). Then we have the integral representation,

D(f ∥ g) =
1

2

∫ ∞

0

J(ft ∥ gt) dt.

3. An Application to the Logarithmic Sobolev Inequality

In this section, we shall give a proof of the logarithmic Sobolev inequality for a centered Gaussian
measure in case of n = 1. Although several proofs of the logarithmic Sobolev inequality have already
been given in many literatures (see, for instance, [10,17]), we shall give it here again as an application
of the integral representation in Theorem 2.2.

Theorem 3.1. Let g be the centered Gaussian measure of variance σ2. Then for any probability measure
f on R of finite moment of order 2 with finite Fisher information J(f) < ∞, the following inequality
holds:

D(f ∥ g) ≤ σ2

2
J(f ∥ g).

Proof. It is clear that the perturbed measure gt is the centered Gaussian of variance σ2 + t and the score
of which is given by (

∂x log gt
)
= − x

σ2 + t
.

Then using the Stein relation (see, for instance, [15]), the relative Fisher information J(ft ∥ gt) can be
expanded as follows:

J(ft ∥ gt) =

∫
R

{(
∂x log ft

)
−

(
∂x log gt

)}2
ft dx

= J(ft) + 2

∫
R

{
∂x

(
− x

σ2 + t

)}
ft dx+

∫
R

(
− x

σ2 + t

)2

ft dx

= J(ft)−
2

σ2 + t

∫
R
ft dx+

1

(σ2 + t)2

∫
R
x2 ft dx (12)

As it was seen in (5), by Stam inequality, we have that

J
(
ft
)
≤

(
1

J(f)
+ t

)−1

=
1

(1/α) + t
(13)
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where we put α = J(f) < ∞.
Since f has finite moment of order 2, if we put the second moment of f as β = m2(f) < ∞, then it

is easy to see that the second moment of ft is given by

m2(ft) =

∫
x2 ft dx = β + t (14)

Substitute (13) and (14) into (12) and we obtain that

J(ft ∥ gt) ≤
1

(1/α) + t
− 2

σ2 + t
+

β + t

(σ2 + t)2
=

1

(1/α) + t
− 1

σ2 + t
+

β − σ2

(σ2 + t)2
.

Integrating for t ≥ 0, we have

1

2

∫ ∞

0

J(ft ∥ gt) dt ≤
1

2

∫ ∞

0

(
1

(1/α) + t
− 1

σ2 + t
+

β − σ2

(σ2 + t)2

)
dt

=
1

2

[
log

((1/α) + t

σ2 + t

)
− β − σ2

σ2 + t

]∞
0

=
1

2

(
log(σ2α) +

β

σ2
− 1

)
.

Since log y is dominated as log y ≤ y − 1 for y > 0, it follows that

1

2

∫ ∞

0

J(ft ∥ gt) dt ≤
1

2

(
σ2α− 2 +

β

σ2

)
(15)

On the other hand, the relative Fisher information J(f ∥ g) can be given as

J(f ∥ g) =

∫
R

(
∂x log f −

(
− x

σ2

))2

f dx

=

∫
R

(
∂x log f

)2
f dx− 2

σ2

∫
R
f dx+

1

(σ2)2

∫
R
x2 f dx

= J(f)− 2

σ2
+

m2(f)

(σ2)2
= α− 2

σ2
+

β

(σ2)2
(16)

Combining (15) and (16), we have

1

2

∫ ∞

0

J(ft ∥ gt) dt ≤
σ2

2
J(f ∥ g),

which means our desired inequality by Theorem 2.2.
�

Remark 3.2. Similar way to the proof of Theorem 3.1 can be found in the paper by Stam [2], where
it is not for relative case. Namely, based on convolution inequalities and the de Bruijn identity, the
isoperimetric inequality on entropy for a standardized random variable X on R,

(2πe)e−2H(X) ≤ J(X) (17)

was shown. This inequality is essentially the same as the logarithmic Sobolev inequality for the standard
Gaussian measure, where the left hand side in (17) is the reciprocal of the entropy power.
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