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Abstract: The discrete Shannon entropy H was formulated only to measure indeterminacy
effected through a set of probabilities, but the indeterminacy in a real-valued discrete
variable depends on both the allowed outcomes x and the corresponding probabilities p.
A fundamental measure that is sensitive to both x and p is derived here from the total
differential entropy of a continuous real variable and its conjugate in the discrete limit,
where the conjugate is universally eliminated. The asymptotic differential entropy recovers
H plus the new measure, named Ξ, which provides a novel probe of intrinsic organization in
sequences of real numbers.
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1. Introduction

Let Y be a discrete variable with n > 1 generic outcomes y = {y1, . . . , yn} and corresponding
probabilities p = {p1, . . . , pn} such that

n∑
j=1

pj = 1 (1)

Expressed in terms of the natural logarithm, the Shannon entropy attributed to Y in connection with p

is [1]

H(p) = −
n∑
j=1

pjlog(pj) (2)

For convenience let

H2(p) ≡ H(p)

log(2)
(3)
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represent the original form defined in terms of the base-2 logarithm. H = H(p) is bound according to

0 ≤ H ≤ log(n) (4)

The maximum is generated only when all outcomes are equally probable. H(p) vanishes in the limit as
some pj ∈ p approaches unity, which represents a completely predetermined outcome.

Because it emerges naturally from the basic principles of encoded compression, the discrete Shannon
entropy is widely recognized as an informatic measure. Specifically, consider a message m consisting
of N � 1 symbols from a generalized alphabet s = {s1, . . . , sa}. Let Nj represent the total number of
occurrences of a particular symbol sj ∈ s within m. In the limit as N becomes infinitely large suppose
that each Nj/N approaches a certain constant wj that is characteristic to the “language” in which m is
composed. For sufficiently largeN we therefore haveNj ' wjN . The total number I of likely messages
of length N is consequently fixed by w = {w1, . . . , wa} according to

I '
n∏
j=1

w
−Nj

j (5)

The right side of Equation (5) is simply the inverse of the probability for finding any one particular
m among all messages of length N subject to w. The inventory of likely messages could be encoded
as I different integers. The number β of bits required to register the encoded inventory is given by
β = dlog2(I)e, and we therefore have the average compression rate

β

N
' H2(w) (6)

Notwithstanding its significance, Equation (6) represents only a particular example of the expansive
utility of the discrete Shannon entropy. Interpreted most broadly, and in accordance with the purpose for
which it was derived, H(p) measures the indeterminacy in a random selection from among n different
options with corresponding probabilities p [1]. It is therefore appropriate to attribute a quantity of
entropy H(p) to a discrete variable with probabilities p.

Consider a variable Y whose n � 1 allowed outcomes y are governed by some p such that H(p)

is near log(n). The nearly maximal entropy implies that Y exhibits no significant statistical preference
toward any particular outcome or group of outcomes among y. Consequently an ideal observer who
studied the behavior of Y could develop a successful model only to predict the most trivial details
about future outcomes. Stated alternatively, the degree to which Y behaves deterministically is minimal.
In contrast suppose that H(p) is much smaller than log(n). The nearly minimal entropy implies a
strong statistical preference for some comparatively small number of yj ∈ y. As such Y would exhibit
an appreciable degree of deterministic behavior. A successful, non-trivial predictive model could be
therefore developed from observations of Y .

It is important to emphasize that H is a rigorous measure of indeterminacy in a variable only insofar
as the indeterminacy depends on p alone. Let X be a discrete variable whose n allowed outcomes
x = {x1, . . . , xn} are D-dimensional real vectors, i.e. xj ∈ <D for j = 1, . . . , n. The elements of every
one-dimensional x are implicitly listed in ascending order throughout the following. Analogously to the
real nature of p, the real nature of x endows the outcomes of X with definite spatial attributes in which
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non-trivial deterministic behaviors could manifest. Consequently, as illustrated in the following two
examples, H is not generally sufficient as a measure of indeterminacy in real-valued discrete variables.

Consider two variables Xee and Xer whose outcomes are confined to the real axis. Let the allowed
outcomes of Xee be equally probable and equally spaced, hence the subscript “ee”, and let the allowed
outcomes of Xer be equally probable but randomly spaced, hence the subscript “er”. More formally, the
allowed outcomes of Xee are of the form xe, which is defined for D = 1 to be a set of n equally spaced
points on the real axis. Let γ represent the arbitrary spacing in a given xe. For convenience we also define
pe ≡ {1/n, . . . , 1/n} for a given n to represent a set of equal probabilities. The allowed outcomes of
Xer are of the form xr, which is defined for D = 1 to be indistinguishable from a set of n points
distributed randomly over some simple finite segment X1 of the real axis. The intrinsic spatial structure
of xe effects a commensurate degree of deterministic behavior in Xee. For instance, the difference
between successive outcomes of Xee is always an integer multiple of γ, and is therefore significantly
more predictable than the difference between successive outcomes of Xer. Because Xee and Xer differ
only in the spatial arrangement of their allowed outcomes, Xee would behave more deterministically.
By definition a smaller quantity of entropy should be therefore attributed to Xee. The discrete Shannon
entropy attributed to both variables, however, would be identically maximal.

Consider next a complementary scenario in which the allowed outcomes are identically valued but
the respective probabilities differ. Let Xre and Xae be two variables with n � 1 one-dimensional
allowed outcomes of the form xe. The set of probabilities governing Xre is of the form pr, which is
defined generally to be indistinguishable from n randomly selected positive real numbers, subsequently
normalized to unity and listed in random order. The spatial assignment of pr through xe would be
globally isotropic but locally irregular, despite the intrinsic structure of xe. The outcomes of Xae are
matched to a set of probabilities of the form pa, which is defined generally to be indistinguishable from
n randomly selected positive real numbers, subsequently normalized to unity and listed in ascending
order. The ordered arrangement of pa effects a non-trivial deterministic bias favoring progressively
larger outcomes in Xae. Note that the specific form of pa in this example could be constructed simply
by sorting the elements of pr, in which case Xae would behave more deterministically but H(pr) and
H(pa) would be identical.

The problems raised in the previous two paragraphs do not imply any flaw in H . The discrete
Shannon entropy was formulated only to measure indeterminacy effected by a given p in a generic
discrete variable. The net indeterminacy in a real-valued discrete variable, however, depends on the
respective intrinsic characteristics of x and p, and on the manner in which x and p are matched. A
special measure is therefore required for discrete real variables. Note that Equation (6) is insensitive
to the nature of s, and the present considerations are therefore irrelevant in the context of the coding
theorems. To be precise, the role of H2 in Equation (6) is not truly as a measure of indeterminacy.

Although it included no special provisions for discrete real variables, Shannon’s seminal paper
introduced a separate formulation for the entropy of a continuous real variable. Let X be a
probabilistically determined variable whose allowed outcomes span a continuum of real vectors within
some region X ∈ <D. Let the probability density ρ(x) be defined such that ρ(x)dx gives the probability
for an outcome of X to lie within an infinitesimal element dx centered on x, where x ∈ <D is an
independent variable and dx=dx(1) . . . dx(D) represents implicitly the product of the differentials of each
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vector component of x= (x(1), . . . , x(D)). We therefore require ρ= ρ(x) to vanish for all x /∈ X. The
normalization of ρ is accordingly ∫

<D

ρdx =

∫
X

ρdx = 1 (7)

Henceforth any integration is understood to span <D in the absence of explicit limits. The entropy
H = H(ρ) attributed to X in connection with ρ is [1]

H = −
∫
ρlog (ρ) dx (8)

where ρlog(ρ) is defined to vanish for ρ = 0. The measure in Equation (8) is known as the differential
(Shannon) entropy.

In contrast to H a single quantity of H is subject to no finite bounds. Consequently a simple
comparison between H and H is not meaningful. For instance, the differential entropy of a normalized
Gaussian

ρG = ρG(ν, x) ≡
(

ν√
π

)D
e−ν

2x2 (9)

is Dlog(
√
πe/ν). For ν equal to

√
πe the entropy vanishes, which signifies a predetermined outcome in

the context of discrete real variables. Furthermore in the limit as ν becomes infinitely large ρG behaves as
a D-dimensional delta-distribution δ(x), which describes a single predetermined real outcome. H(ρG),
however, decreases without bound as ν approaches infinity.

The apparent inconsistencies between H and H are reconciled in the following manner. As a
generalization of ρG let ρ0 = ρ0(ν, x) be some well-behaved, unity-normalized function that becomes δ(x)

in the limit as the positive, real parameter ν becomes infinitely large. In association with an arbitrary X ,
with n allowed outcomes x and corresponding probabilities p, let the probability density ρX = ρX(ν, x)

be defined such that

ρX(ν, x) ∼ B
n∑
j=1

pjρ0(ν, x−xj) (10)

and thus

lim
ν→∞

ρX =
n∑
j=1

pjδ(x− xj) (11)

where B = B(ν) is the appropriate normalization coefficient for a given ν, and xj and pj span x and
p respectively. The symbol “∼” is used in Equation (10) and throughout, where convenient, to signify
asymptotic equality as ν approaches infinity. The right side of Equation (11) describes the probabilistic
behavior of X . Consider an originally continuous test variable XX whose outcomes are governed by ρX.
The entropy attributed to XX isH(ρX), which behaves asymptotically as

H(ρX) ∼ −B
n∑
j=1

pj

∫
ρ0log

(
Bpjρ0

)
dx (12)

When ν is finite but very large the behavior of XX is a hybrid of the continuous traits of ρ0 and the discrete
traits of x and p. In the limit as ν → ∞ the two sets of traits become completely disassociated from
one another, and XX = X is characterized only by x and p. The entropy associated with the probabilistic
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behavior of X should be therefore given by the asymptote of H(ρX) − H(ρ0). From Equation (12) we
readily obtain

lim
ν→∞

(
H(ρX)−H(ρ0)

)
= −

n∑
j=1

pjlog(pj) (13)

thereby recovering H fromH.
Although the analysis leading to Equation (13) may be instructive, H(ρX) is asymptotically

independent of x and could not produce the desired new measure for discrete real variables. It is
reasonable to suspect that some additional quantity of the form H could be considered in conjunction
with H(ρX) to provide the required asymptotic sensitivity to both x and p. In order to be meaningful,
however, the additional measure should be intrinsically related to ρX.

Within the paradigm of wave mechanics two distinct quantities of differential entropy are naturally
associated with a given ρ. More precisely, two separate probability density functions are naturally
associated with a given probability amplitude ψ = ψ(x), namely ρ = |ψ|2 and the spectral density

ρ̂(k) =
∣∣∣ψ̂(k)

∣∣∣2 (14)

where

ψ̂ = ψ̂(k) =

(
1√
2π

)D ∫
ψe−ik·xdx (15)

is the Fourier-conjugate of ψ and k ∈ <D is an independent variable. We may interpret ρ̂ = ρ̂(k) as
the probability density governing the outcomes of a variable K that is the conjugate of the variable X
governed by ρ. The entropy attributed to K in connection with ρ̂ is H(ρ̂). The total differential entropy
attributed to the conjugated pair is therefore

S(ψ) ≡ H(|ψ|2) +H(|ψ̂|2) (16)

A more formal derivation of S = S(ψ) follows from the total phase-space distribution [9]

f = f(x, k) ≡ ρρ̂ (17)

which is subject to the normalization ∫
fdr = 1, (18)

where r≡
(
x(1), . . . , x(D), k(1), . . . , k(D)

)
for any given x and k. Because f is simply a probability density

in a 2D-dimensional vector space, it is appropriate to attribute a quantity of differential entropy

−
∫
f log(f) dr = S (19)

to the conjugated pair.
The total differential entropy S has been the subject of extensive research. (See, for instance, [2–8]). It

is worthwhile to mention here two general characteristics that distinguish S as a fundamentally important
measure. Because f is dimensionless S, like the relative entropy, is free from a potentially serious flaw
to which the differential Shannon entropy is otherwise vulnerable [10]. Furthermore, whereasH(ρ) and
H(ρ̂) may become infinitely negative, S is subject to the lower bound [2]

S ≥ Dlog(πe) (20)
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Perhaps uniquely, a Gaussian amplitude generates the minimal S allowed by Equation (20) [2].
The purpose of this article is to demonstrate that a measure of indeterminacy for discrete real variables

that is sensitive to both x and p emerges from the total differential entropy of XX and its conjugate in the
limit as ν diverges. Specifically, the conjugated analogue of Equation (13) includes an additional measure
Ξ = Ξ(p,x), expressed most generally in terms of an integral, that behaves naturally as a measure
of indeterminacy in the spatial configuration of x and p. Furthermore the conjugate is universally
eliminated in the limit asXX becomes discrete and the entire residual entropyH+Ξ, named η, is therefore
attributed to X . Section 2 contains a derivation of η. The general characteristics of η are examined in
Section 3. Section 4 presents a quantitative study demonstrating the basic behaviors of η as a measure
of indeterminacy for discrete real variables. The primary conclusions are summarized and interpreted in
Section 5.

2. Derivation of η

The terms defined in Section 1 retain their definitions throughout the following. Let KX be the
conjugate of a givenXX. The probability density ρ̂X = ρ̂X(ν, k) governing the outcomes ofKX is formulated
presently. Let ψX = ψX(ν, x) be defined such that ρX = |ψX|2. The total differential entropy of the
conjugated pair is thus S(ψX) = H(ρX) + H(ρ̂X). This section contains a derivation of the asymptotic
form of S(ψX) expressed analogously to Equation (13).

The first step is to formulate ψX. Following the standard wave-mechanical prescription, and in
accordance with natural law, we attribute to each allowed outcome a separate amplitude [11]. The
total amplitude is simply the sum of the individual amplitude waveforms multiplied by an appropriate
normalization coefficient. Let the probability amplitude φ0 = φ0(ν, x) be therefore defined such that
|φ0|2 = ρ0, i.e.,

lim
ν→∞
|φ0|2 = δ(x) (21)

The waveform assigned to each xj ∈ x is

φj = φj(ν, x) ≡ √pj φ0(ν, x−xj) (22)

and the total amplitude is accordingly

ψX = A
n∑
j=1

φj (23)

where A = A(ν) is defined such that ρX is unity-normalized for all ν. Because the real part of φ0

becomes ever more sharply peaked with increasing ν, the cross terms |A|2φjφ∗l in |ψX|2 are negligible for
sufficiently large ν and vanish asymptotically. We therefore have

ρX ∼ |A|2
n∑
j=1

|φj|2 (24)

which is equivalent to Equation (10). Note that

lim
ν→∞
|A|2 = lim

ν→∞
B = 1 (25)
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The next step is to determine the respective forms of the conjugate amplitude ψ̂X = ψ̂X(ν, k) and
density ρ̂X = |ψ̂X|2. Let φ̂0 = φ̂0(ν, k) represent the conjugate of φ0, and let the associated density |φ̂0|2 be
defined as ρ̂0 = ρ̂0(ν, k). It follows from Equation (15), with x− xj substituted for x, that

φ̂j =
√
pj e

−ık·xj φ̂0 (26)

where φ̂j = φ̂j(ν, k) is the conjugate of a given φj . We therefore have

ψ̂X = Aφ̂0

n∑
j=1

√
pj e

−ık·xj (27)

and thus
ρ̂X = |A|2 τ ρ̂0 (28)

where

τ ≡

∣∣∣∣∣
n∑
j=1

√
pje
−ık·xj

∣∣∣∣∣
2

(29)

An equivalent expression for τ = τ(k) following from the Euler identity is

τ = 1 + 2
n−1∑
j=1

{
n∑

l=j+1

√
pjpl cos

(
(xl − xj) · k

)}
(30)

For convenience we define ζ = ζ(k) such that τ = 1 + 2ζ .
The asymptotic behavior of ρ̂X is ascertained readily from the explicit form of φ̂0 in Equation (15) with

φ0 expressed as ρ0/φ
∗
0 for all non-vanishing φ∗0 . It follows from the behavior ascribed to ρ0 that

φ̂0 ∼
(

1√
2π

)D
1

φ∗0 (0)
(31)

which is independent of k. Because
∫
ρ0dk must remain unity-normalized φ̂0 must vanish everywhere

asymptotically. As ρ0 increasingly resembles δ(x) the real part of φ∗0 (0) must either increase or decrease
without bound, which ensures that the right side of Equation (31) vanishes. Consequently ψ̂X and ρ̂X

vanish asymptotically for all k.
It is also worthwhile to note that, because ρ̂X and ρ̂0 are both unity-normalized for all ν, Equations (28)

and (30) imply
lim
ν→∞

〈
ζ
〉
0

= 0 (32)

where 〈
ε
〉
0
≡
∫
ρ̂0εdk (33)

is the expected value of any ε = ε(k) averaged against ρ̂0. Equation (32) may be understood as a
consequence of the asymptotic uniformity of ρ̂0 in conjunction with the usual trigonometric property

lim
b→∞

∫ b

−b
cos(k)dk = 0 (34)
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In the limit as ν diverges
〈
ζ
〉
0

becomes simply the average of ζ over all space, which we denote by ζ ,
and thus vanishes term-by-term in accordance with Equation (34). Expressed more generally,

lim
ν→∞

〈
ε
〉
0

= ε. (35)

Returning to the derivation proper, the next step is to evaluate H(ρ̂X) in the limit as ν approaches
infinity. It follows from Equations (25) and (28) that

H(ρ̂X) ∼ −
〈
τ log(ρ̂0)

〉
0
−
〈
τ log(τ)

〉
0

(36)

Substituting 1 + 2ζ for τ in the left-most term on the right side of Equation (36) produces

H(ρ̂X) ∼ H(ρ̂0)− 2
〈
ζlog(ρ̂0)

〉
0
−
〈
τ log(τ)

〉
0

(37)

Although log(ρ̂0) decreases without bound it does so with asymptotic uniformity, hence〈
ζlog(ρ̂0)

〉
0
∼
〈
ζ
〉
0

log
(
ρ̂0(k0)

)
(38)

for any k0 ∈ <D. The middle term on the right side of Equation (37) is therefore asymptotically
proportional to ζ and thus vanishes. Equation (37) accordingly becomes

H(ρ̂X) ∼ H(ρ̂0)−
〈
τ log(τ)

〉
0

(39)

The asymptotic form of the right-most term in Equation (39) is

Ξ(p,x) ≡ −τ log(τ) (40)

Because τ is periodic Ξ = Ξ(p,x) is identical to the average value of −τ log(τ) taken over some finite
region K0 ∈ <D spanning one period in each dimension. We therefore have

Ξ = − 1

κ0

∫
K0

τ log(τ)dk (41)

where
κ0 ≡

∫
K0

dk (42)

An analytical expression for
∫
τ log(τ)dk is possible only for a few rudimentary configurations of x and

p, and Equation (41) is thus critical for quantifying Ξ.
Finally, Equation (39) may be expressed in terms of a proper limit as

lim
ν→∞

(
H(ρ̂X)−H(ρ̂0)

)
= Ξ (43)

analogously to Equation (13). Combining Equations (13) and (43) produces the central result

lim
ν→∞

(
S(ψX)− S(φ0)

)
= η(p,x) (44)

where
η(p,x) ≡ H(p) + Ξ(p,x) (45)

The nature and behavior of η = η(p,x) are examined in the following Sections.
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3. General Characteristics of η

By definition S(ψX) measures the net indeterminacy in the conjugated pair XX and KX. In the limit as
ν becomes infinitely large, however, the pair is characterized completely by x and p, independently of
φ0. The entropy attributed asymptotically to the pair is therefore η. Furthermore as XX becomes discrete
ρ̂X vanishes everywhere and KX becomes therefore a “ghost” variable, doomed to exist without ever
generating an outcome. The indeterminacy measured by η must be therefore evident in the probabilistic
behaviors of X . Because X and its ghost conjugate together are indistinguishable from X alone we
conclude that η is a generally valid measure of indeterminacy in discrete real variables.

Given that Ξ is the asymptotic form ofH(ρ̂X)−H(ρ̂0) its attribution to X is perhaps counterintuitive,
despite the elimination of the conjugate. In particularH(ρ) andH(ρ̂) are typically anti-correlated among
different ρ of a given generalized form. Recall, however, thatH(ρX) is asymptotically insensitive to x and
therefore is not generally correlated to H(ρ̂X) in any appreciable manner among different ρX. Not only is
H(ρ̂X) sensitive to both x and p, it is also naturally correlated to the intrinsic indeterminacy effected by
the definite spatial attributes of x. Stated most generally, greater spatial regularity in the configuration
of x and p effects greater harmonic regularity in the spatial arrangement of the peaks in ρX, for ν � 1.
Greater harmonic regularity in ρX implies greater localization in the associated Fourier spectrum, which
accordingly generates a smaller H(ρ̂X), for a given φ0. In order to isolate the effects associated with x

and p we exclude the contribution from H(ρ̂0). In that manner Ξ measures the deterministic effects of
real allowed outcomes.

Lower bounds on η and Ξ follow directly from the universal lower bound on S. Specifically, both
S(ψX) and S(φ0) are subject to Equation (20) for all ν. We therefore have

η ≥ 0 (46)

and thus
Ξ ≥ −H (47)

Regardless of the degree of spatial structure in the configuration of x and p, no variable could behave
more deterministically than a fixed real number. Equation (46) is therefore consistent with the attribution
of zero entropy to a predetermined outcome.

Upper bounds on η and Ξ may be obtained by writing Equation (41) as

Ξ = −
∫
K0

τ

κ0

log

(
τ

κ0

)
dk − log(κ0) (48)

where the right-most term has been reduced using

τ =
1

κ0

∫
K0

τdk = 1, (49)

which is a consequence of Equation (34). The integral on the right side of Equation (48) is simply the
differential Shannon entropy associated with a normalized density τ/κ0 defined over K0. Furthermore
log(κ0) is the maximal differential Shannon entropy that could be associated with K0. Equation (48)
therefore implies

Ξ ≤ 0 (50)
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hence
η ≤ H (51)

The upper bound on η is consistent with the basic expectations about the predictive utility of real
outcomes. Consider some X that has been “disguised” by mapping the n allowed outcomes in x to a
set of n generic outcomes, while keeping the corresponding probabilities p fixed. An ideal observer
who studied only the generic outcomes could form a predictive model only to the extent allowed by
p. Suppose that such an observer were subsequently allowed to study the real outcomes. The numeric
details could never detract from the observer’s capability to develop a predictive model because, at
very least, the outcomes from any x could be interpreted simply as non-numeric symbols. The entropy
attributed to X , therefore, should not be greater than the entropy attributed to the generic analogue,
which is precisely what Equation (51) ensures.

For any p,H and η should be similar when the degree of deterministic structure within x is negligible.
We therefore expect

η(p,xr) ' H(p) (52)

which is validated in the following section. Among variables with spatially randomized outcomes,
indeterminacy depends primarily on the intrinsic characteristics of p, hence Equation (52). Conversely,
among variables with equally probable outcomes, indeterminacy depends only on x. In that manner
η(pe,x) measures the intrinsic indeterminacy in the spatial configuration of x. It is therefore fitting, as
explicitly evident in Equation (30), that τ is sensitive to each of the n(n−1)/2 uniquely defined positive
intervals xl − xj within a given x.

Because there is no preferred region within <D, any meaningful measure of indeterminacy for discrete
real variables must be invariant under spatial transformations of the form x+∆x ≡ {x1+∆x, . . . , xn+∆x}
for any finite ∆x ∈ <D. By inspecting either Equation (29) or Equation (30) we readily find that τ is
translationally invariant, hence

η(p,x+∆x) = η(p,x) (53)

Similarly transformations of the form Rx ≡ {Rx1, . . . ,Rxn}, where R is a D-dimensional unitary
rotation matrix, could not change the indeterminacy in any X . Consequently the entropy attributed to X
must be rotationally invariant as well. The effects of such a rotation would be equivalent to replacing the
original τ(k) with τ ′(k) = τ(kR), which we may write as τ ′(k) = τ(k′) after the variable substitution
k′ = kR. The rotation therefore amounts to nothing more than a cosmetic change of variables, which
does not affect the average value of τ log(τ)—whether taken over all space or taken over a finite region
spanning a period in each dimension of k′. We therefore have

η(p,Rx) = η(p,x) (54)

For the same reasons we also have
η(p, αx) = η(p,x) (55)

for any non-vanishing α ∈ <, where αx ≡ {αx1, . . . , αxn}. Contrary to Equation (55), suppose
that the entropy of a real discrete variable were to increase under transformations of the form αx

for |α| > 1. Consider applying such transformations successively to the allowed outcomes of some
non-trivial X . Given that the entropy must never exceed H the effects of the transformations must
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become negligible at some point, which would imply the existence of some preferred spatial scale for a
given x and p. The indeterminacy, however, could not be sensitive to such a scale. The scale-invariance
expressed in Equation (55) is therefore necessary for any meaningful measure of indeterminacy in
discrete real variables.

4. Quantitative Study

This section presents the results of numerical calculations of η chosen to validate the identification of
η as the entropy of a discrete real variable and to demonstrate the utility of Ξ as a probe of deterministic
structure in sequences of real numbers or non-numeric symbols. For convenience this introductory study
is restricted to scenarios where D = 1; the conclusions are readily generalized to higher-dimensional
spaces. In each calculation of η reported here the period-averaged value of −τ log(τ) was obtained from
25bκ0/κ∗c samples, where κ∗ = 2π/(xn − x1) represents the finest periodicity in τ . Note that xn − x1
is always the largest positive interval within a one-dimensional x. All computations were precise to 15

significant figures. The accuracy, in comparison to the “true” value of η produced by an infinite number
of samples, is always better than 10−6η.

The first sets of calculations examined below involve the basic types of x and p introduced in
Section 1, matched in various instructive combinations. Each pr was constructed from n different real
numbers with 15 significant figures selected randomly from (0, 1), and subsequently normalized. Each xr

was constructed by randomly selecting n different integers from [1, 100n]. This produces approximately
the same effect as using the full range available with 15 significant figures, but dramatically reduces
processing requirements. For each calculation involving pr a corresponding calculation involving pa

is performed, and each pa is constructed by sorting the elements of the corresponding pr. Finally,
each reported quantity of η involving a randomly generated parameter is the average of 100 separate
calculations with different randomizations.

Let us begin by examining how η measures indeterminacy effected through different types of p.
Figure 1 displays calculations of η(pe,xe), η(pa,xe) and η(pr,xe) plotted as functions of n. Recall that
η(pr,xe) and η(pa,xe) should behave respectively as quantities of entropy attributed to the variables
Xre and Xae examined in Section 1. We find that η(pr,xe) is appreciably greater than η(pa,xe) for all
but trivially small n, which is consistent with the expected result. Because the only difference between
each pa and pr is the order of their respective terms, the differences between the associated quantities of
entropy are entirely due to the contribution from Ξ.

Perhaps more importantly, and in opposition to the behavior of H alone, we find that η(pr,xe)

is also appreciably greater than η(pe,xe) for all non-trivial n. Among generic discrete variables any
non-uniformity in p is a benefit to predictability, hence H(pr) ≤ H(pe). Among real-valued discrete
variables, however, the predictive benefit of non-uniformities in p depends on the manner in which
the probabilities are spatially assigned. In the case of Xre the indeterminacy effected by the irregular
spatial assignment of pr evidently outweighs the intrinsic predictive benefit of pr, which implies that
Xee behaves more deterministically than Xre. Though not necessarily expected a priori, that implication
is not surprising.
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Figure 1. Plots of η(pe,xe), η(pa,xe) and η(pr,xe) using the respective symbols “•” , “/”
and “+”.

As a complement to the previous scenario it is instructive to compare the effects of the three
types of probabilities when matched to spatially randomized outcomes. Figure 2 displays calculations
of η(pe,xr), η(pa,xr) and η(pr,xr) plotted as functions of n. Note that η(pa,xr) and η(pr,xr)

nearly coincide for each n, and the symbols “�” and “∗” are always superimposed in Figure 2. The
entropy-difference η(pr,xr) − η(pa,xr) is shown in Figure 3. In contrast to the previous scenario pe

consistently effects the largest entropy among the three, which is expected from Equation (52) given that
H(pe) is maximal. Note that η(pe,xr) would be even closer to H(pe) had the randomness of xr not
been restricted for the sake of computational feasibility. The similarity between η(pr,xr) and η(pa,xr)

is also expected from Equation (52) given that H(pr) = H(pa). Furthermore insofar as η(pr,xr) and
η(pa,xr) differ the former should be typically greater for sufficiently large n, which is confirmed in
Figure 3.

Let us next examine calculations demonstrating how η measures indeterminacy effected through x,
which is perhaps the most significant attribute of η. The most basic comparison corresponds to the
scenario involvingXee andXer in Section 1. It is immediately evident from Figures 1 and 2 that η(pe,xr)

is considerably larger than η(pe,xe) for all n, which is expected.
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Figure 2. Plots of η(pe,xr), η(pa,xr) and η(pr,xr), using the respective symbols “×”, “�”
and “∗”. The solid line follows a plot of log(n) for reference.

Figure 3. The entropy difference ∆η plotted here is η(pr,xr)− η(pa,xr).
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In order to test the sensitivity of η to more subtle differences in spatial structure the following
additional sets of type x are defined. For a given n let xp consist of the first n prime numbers. It
follows from the Prime Number Theorem (PNT) that the local average gap in the vicinity of a given
xj ∈ xp varies as log(j) for sufficiently large j. The term gap is used throughout in reference to a
positive interval between consecutive terms in any given one-dimensional x and is defined such that the
j-th gap is

gj ≡ xj+1 − xj (56)

The global anisotropy associated with the PNT constitutes an intrinsic deterministic spatial characteristic.
For a more pronounced anisotropy of the same kind, let x́p = {2, 3, . . . } be defined for a given n such
that its sequence of gaps consists of the first n − 1 prime gaps arranged in ascending order. As an
example, for n = 6 we have x́p = {2, 3, 5, 7, 9, 13}. Let x̃p = {2, 3, . . . } be defined for a given n such
that its sequence of gaps consists of the first n − 1 prime gaps ordered randomly, with the exception
that the first gap in x̃p is always 1. Finally let x̆p = {2, 3, . . . } be defined such that its sequence of
gaps is {g′1, g′3, g′2, g′5, g′4, . . . }, where g′j is the j-th prime gap. In other words, the sequence of gaps in
x̆p is constructed simply by alternating the order of g′i and g′i+1 for all even i no greater than n − 2.
Consequently every even-numbered element of x̆p is guaranteed to be identical to the corresponding
prime. As an example we have x̆p = {2, 3, 5, 7, 9, 13, 15, 19} for n = 8. Note that the average gap in the
vicinity of some xj ∈ x̆p differs only negligibly from the corresponding average gap in the primes, and
x̆p therefore exhibits the same global anisotropy inherent to xp.

Consider four variables with n � 1 allowed outcomes xp, x́p, x̃p and x̆p, respectively, all of which
are equally probable. As x̃p is the least deterministically configured among the four, η(pe, x̃p) should be
largest. Furthermore, given that the sequence of gaps in x́p ascends uniformly, the deterministic nature
of the associated anisotropy is significantly greater than in xp and x̆p. We therefore expect η(pe, x́p) to
be the smallest entropy among the four. Figure 4 shows η(pe,xp), η(pe, x́p), η(pe, x̃p) and η(pe, x̆p)

plotted as functions of n. Although η(pe, x̃p) and η(pe, x̆p) differ only negligibly for n smaller than
approximately 200, for all larger n the entropy due to x̃p is the greatest among the four. The small
but non-negligible difference between η(pe, x̃p) and η(pe, x̆p) for large n is attributed to the global
anisotropy in x̆p. The entropy due to x́p is the smallest among the four. The behavior of η in these
calculations is therefore consistent with the stated expectations.

The dramatic difference between η(pe,xp) and η(pe, x̆p) is noteworthy and unexpected. The smaller
entropy due to xp implies a greater degree of intrinsic determinacy in the arrangement of xp along
the real axis. Note that the implied deterministic structure could not be associated with the PNT. A
detailed analysis of this finding is beyond the present scope and has become the subject of a separate
investigation [12]. For the present purposes it is sufficient to mention, as the reader may verify readily,
that the number of positive intervals of a given size d among the first n� 1 primes is strongly correlated
to the largest primordial factor of d [12]. That regularity could represent the deterministic property
intimated by η(pe,xp).
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Figure 4. Plots of η(pe,xp), η(pe, x́p), η(pe, x̆p) and η(pe, x̃p), shown with “•”, “/”, “�”
and “∗”, respectively, measuring intrinsic structure in the primes xp and in three variants
constructed by changing the order of the first n− 2 even prime gaps.

5. Summary and Conclusions

For finite ν the entropy attributed to the variable XX governed by ρX(ν, x) is simplyH(ρX). In the limit
as ν → ∞, however, XX becomes a discrete variable X whose behavior is insensitive to the function ρ0

from which ρX is constructed. The entropy attributed asymptotically to X is therefore H(ρX) − H(ρ0),
which recovers the discrete Shannon entropy. Similarly when ν is finite a quantity of entropy S(ψX) is
attributed to the conjugated pair XX and KX. The nature of the pair, however, is asymptotically insensitive
to φ0. The entropy attributed to the pair in the limit as ν diverges is therefore S(ψX) − S(φ0), whose
asymptotic form H + Ξ is defined as η. Furthermore because the conjugate is asymptotically eliminated
η must be attributed to X alone.

As H is a function only of p, the existence of some x-dependent contribution to the entropy of
a discrete real variable is expected independently of the introduction of Ξ. Whereas the form of H
uniquely exhibits the properties required for a self-consistent measure of indeterminacy effected by
p [1], the complete set of requirements for a measure of indeterminacy effected by x and p is not
readily ascertained a priori. Among those required properties are certainly translational invariance,
scale-invariance, rotational invariance, non-negativity and being bound from above by H , all of which
were proven for η in Section 3. Furthermore the calculations presented in Section 4 demonstrate that η
behaves in the expected manner over a broad range of different configurations of x and p.
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The somewhat counterintuitive role of Ξ is a natural consequence of the relationship between a given
wave-mechanical probability density and the corresponding spectral density. More broadly interpreted,
the wave-mechanical origin of η may be understood as a natural consequence of a fundamental unity
between information theory and quantum theory. Such an interpretation is well-motivated given the
profound connections already known. For instance, the bounds on S lead to an uncertainty relation that
is stronger than the most general form of the Heisenberg Uncertainty Principle [2]. Even more striking,
the basic precepts of quantum theory have been derived from informatic principles [13]. It is important
to specify, however, that the validity of η is contingent upon no quantum-mechanical premise.

The distinctive feature of η is its dependence on x, which is necessary for a complete measure
of indeterminacy in discrete real variables. Because of the generality of its form, η can be readily
manipulated to probe intrinsic organization in sequences of real numbers. Section 4 presented
calculations demonstrating the novel capability of η in such applications. Future investigations will
explore additional applications of η.
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