
Entropy 2012, 14, 1606-1626; doi:10.3390/e14091606
OPEN ACCESS

entropy
ISSN 1099-4300

www.mdpi.com/journal/entropy

Article

Kullback–Leibler Divergence Measure for Multivariate
Skew-Normal Distributions
Javier E. Contreras-Reyes 1,2,* and Reinaldo B. Arellano-Valle 3

1 División de Investigación Pesquera, Instituto de Fomento Pesquero, Almte, Manuel Blanco Encalada
839, Valparaı́so, 2361827, Chile

2 Departamento de Estadı́stica, Universidad de Valparaı́so, Gran Bretaña 1111, Playa Ancha,
Valparaı́so, 2360102, Chile
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Abstract: The aim of this work is to provide the tools to compute the well-known
Kullback–Leibler divergence measure for the flexible family of multivariate skew-normal
distributions. In particular, we use the Jeffreys divergence measure to compare the
multivariate normal distribution with the skew-multivariate normal distribution, showing that
this is equivalent to comparing univariate versions of these distributions. Finally, we applied
our results on a seismological catalogue data set related to the 2010 Maule earthquake.
Specifically, we compare the distributions of the local magnitudes of the regions formed
by the aftershocks.
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1. Introduction

The first notion of entropy of a probability distribution was addressed by [1], thus becoming a
measure widely used to quantify the level of aleatority present on instrumental variables, which has
been commonly used in different engineering areas. Posteriorly, several notions of entropies have been
proposed in order to generalize the Shannon entropy, such as Rényi entropy and Tsallis entropy. At this
time, [2] introduced the so called Kullback–Leibler divergence (KL-divergence) measures, which is a
pseudo-distance (or discriminant function) between two probability distributions and the most common
divergence measures used in practical works.

In a recent application about polarimetric synthetic aperture radar (PolSAR) images, Frery et al. [3]
make use of the complex Wishart distribution (see e.g., [4]) for modeling radar backscatter from forest
and pasture areas. There, they conclude that the KL-divergence measure is the best one with respect to
Bhattacharyya, Chi-square, Hellinger or Rényi’s distances. The studies in [3] and [4] conclude that it
is necessary to have appropriate statistics to compare multivariate distributions such as the Wishart one.
In addition, [5] gives an extended theoretical analysis of the most important aspects on information
theory for the multivariate normal and Student-t distributions, among other distributions commonly
used in the literature. Divergence measures have also been used to examine data influences and model
perturbations; see, e.g., [6] for a unified treatment and [7] for a review and some extensions of previous
works on Bayesian influence measures based on the KL-divergence. In addition, this measure has been
considered in selection model analysis by [8], where the authors recommend this criterion because, in
contrast to other criteria such as AIC (Akaike’s Information Criterion), it does not assume the existence
of the true model. However, [8] considers the AIC as a good approximation of the KL-divergence
for selection model analysis. On the another hand, asymptotic approximations of the KL-divergence
for the multivariate linear model are given in [9], whereas asymptotic approximations of the Jeffreys
divergence or simply J-divergence for the multivariate linear model are given in [10]. Another example
is the Rényi’s divergence and its special case, where the KL-divergence has been recently successfully
applied to region-of-interest tracking in video sequences [11], independent subspace analysis [12], image
registration [13], and guessing moments [14].

On the other hand, extensive literature has been developed on non-symmetric families of multivariate
distributions as the multivariate skew-normal distribution [15–18]. More recently, a study due to [19]
computes the mutual information index of the multivariate skew-normal distribution in terms of an
infinite series. Next, this work was extended for the full class of multivariate skew-elliptical distributions
by [20], where a real application for optimizing an atmospheric monitoring network is presented using
the entropy and mutual information indexes of the multivariate skew-normal, among other related
family distributions. Several statistical applications to real problems using multivariate skew-normal
distributions and others related families can be found in [21].

In this article, we explore further properties of the multivariate skew-normal distribution. This
distribution provides a parametric class of multivariate probability distributions that extends the
multivariate normal distribution by an extra vector of parameters that regulates the skewness, allowing for
a continuous variation from normality to skew-normality [21]. In an applied context, this multivariate
family appears to be very important, since in the multivariate case there are not many distributions



Entropy 2012, 14 1608

available for dealing with non-normal data, primarily when the skewness of the marginals is quite
moderate. Considering the multivariate skew-normal distribution as a generalization of the multivariate
normal law is a natural choice in all practical situations in which there is some skewness present. For
this reason, the main motivation of this article is to analyze some information measures in multivariate
observations under the presence of skewness.

Specifically, we propose a theory based on divergence measures for the flexible family of multivariate
skew-normal distributions, thus extending the respective theory based on the multivariate normal
distribution. For this, we start with the computation of the entropy, cross-entropy, KL-divergence and
J-divergence for the multivariate skew-normal distribution. As a byproduct, we use the J-divergence to
compare the multivariate skew-normal distribution with the multivariate normal one. Posteriorly, we
apply our findings on a seismic catalogue analyzed by [22]. They estimate regions using nonparametric
clustering (NPC) methods based on kernel distribution fittings [23], where the spatial location of
aftershock events produced by the well-known 2010 earthquake in Maule, Chile is considered. Hence,
we compare the skew-distributed local magnitudes among these clusters using KL-divergence and
J-divergence; then, we test for significant differences between MLE’s parameter vectors [17].

The organization of this paper is as follows. Section 2 presents general concepts of information
theory as entropy, cross-entropy and divergence. Section 3 presents the computation of these concepts
for multivariate skew-normal distributions, including the special case of the J-divergence between
multivariate skew-normal versus multivariate normal distribution. Section 4 reports numerical results
of a real application of seismic events mentioned before and finally, this paper ends with a discussion in
Section 5. Some proofs are presented in Appendix A.

2. Entropy and Divergence Measures

Let Z ∈ Rk be a random vector with probability density function (pdf) fZ(z). The Shannon
entropy—also named differential entropy—which was proposed earlier by [1] is

H(Z) = −E[log fZ(Z)] = −
∫
Rk

fZ(z) log fZ(z)dz (1)

Here E[g(Z)] denotes the expected information in Z of the random function g(Z). Hence, the Shannon’s
entropy is the expected value of g(Z) = − log fZ(Z), which satisfies g(1) = 0 and g(0) =∞.

Suppose now that X, Y ∈ Rk are two random vectors with pdf’s fX(x) and fY(y), respectively,
which are assumed to have the same support. Under these conditions, the cross-entropy—also called
relative entropy—associated to Shannon entropy (1) is related to compare the information measure of Y

with respect to X, and is defined as follows

CH(X,Y) = −E[log fY(X)] = −
∫
Rk

fX(x) log fY(x)dx (2)

where the expectation is defined with respect to the pdf fX(x) of the random vector X. It is clear from (2)
that CH(X,X) = H(X). However, CH(X,Y) 6= CH(Y,X) at least that X

d
= Y, i.e., X and Y have

the same distribution.
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Related to the entropy and cross-entropy concepts we can also find divergence measures between the
distributions of X and Y. The most well-known of these measures is the so called Kullback–Leibler
(KL) divergence proposed by [2] as

DKL(X,Y) = E

[
log

{
fX(X)

fY(X)

}]
=

∫
Rk

fX(x) log

{
fX(x)

fY(x)

}
dx (3)

which measures the divergence of fY from fX and where the expectation is defined with respect to the pdf
fX(x) of the random vector X. We note that (3) comes from (2) as DKL(X,Y) = CH(X,Y)−H(X).
Thus, we have DKL(X,X) = 0, but again DKL(X,Y) 6= DKL(X,Y) at least that X

d
= Y, i.e., the

KL-divergence is not symmetric. Also, it is easy to see that it does not satisfy the triangular inequality,
which is another condition of a proper distance measure (see [24]). Hence it must be interpreted as a
pseudo-distance measure only.

A familiar symmetric variant of the KL-divergence is the J-divergence (e.g., [7]), which is defined by

J(X,Y) = E

[{
fX(X)

fY(X)
− 1

}
log

{
fX(X)

fY(X)

}]
,

where the expectation is defined with respect to the pdf fX(x) of the random vector X. It could be
expressed in terms of the KL-divergence dKL [25] as J(X,Y) = 2dKL(X,Y) and the KL-divergence as

J(X,Y) = DKL(X,Y) +DKL(Y,X) (4)

As is pointed out in [24], this measure does not satisfy the triangular inequality of distance and hence it
is a pseudo-distance measure. The J-divergence has several practical uses in statistics, e.g., for detecting
influential data in regression analysis and model comparisons (see [7]).

3. The Multivariate Skew-Normal Distribution

The multivariate skew-normal distribution has been introduced by [18]. This model and its variants
have focalized the attention of an increasing number of research. For simplicity of exposition, we
consider here a slight variant of the original definition (see [16]). We say that a random vector Z ∈ Rk

has a skew-normal distribution with location vector ξ ∈ Rk, dispersion matrix Ω ∈ Rk×k, which is
considered to be symmetric and positive definite, and shape/skewness parameter η ∈ Rk, denoted by
Z ∼ SNk(ξ,Ω,η), if its pdf is

fZ(z) = 2φk(z; ξ,Ω)Φ[η>Ω−1/2(z− ξ)], z ∈ Rk (5)

where φk(z; ξ,Ω) = |Ω|−1/2φk(z0), with z0 = Ω−1/2(z − ξ), is the pdf of the k-variate Nk(ξ,Ω)

distribution, φk(z0) is the Nk(0, Ik) pdf, and Φ is the univariate N1(0, 1) cumulative distribution
function. Here Ω−1/2 represents the inverse of the square root Ω1/2 of Ω.

To simplify the computation of the KL-divergence, the following properties of the multivariate
skew-normal distribution are useful.
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Lemma 1 Let Z ∼ SNk(ξ,Ω,η), and consider the vector δ = Ωη/
√

1 + η>Ωη. Then:

(i) Z
d
= ξ + δ|U0|+ U, where U0 ∼ N(0, 1) and U ∼ Nk(0,Ω− δδ>) and they are independent;

(ii) E(Z) = ξ +
√

2
π
δ, var(Z) = Ω− 2

π
δδ>;

(iii) For every vector a ∈ Rk and symmetric matrix B ∈ Rk×k,

E{(Z− a)>B(Z− a)} = tr(BΩ) + (ξ − a)>B(ξ − a) + 2

√
2

π
(ξ − a)>Bδ;

(iv) For every vectors η̃, ξ̃ ∈ Rk,

η̃>(Z− ξ̃) ∼ SN1

η̃>(ξ − ξ̃), η̃>Ωη̃,
η̃>δ√

η̃>Ωη̃ − (η̃>δ)2

 .

For a proof of Property (i) in Lemma 1, see, e.g., [15,16]. The results in (ii) are straightforward from
property (i). Property (iii) comes from (ii) and the well-known fact that E{(Z − a)>B(Z − a)} =

tr{BE(ZZ>)} − 2a>BE(Z) + a>Ba, see also [26]. For a sketch of the proof of part (iv), see
Appendix A.

The calculus of the cross-entropyCH(X,Y) when X ∼ SNk(ξ1,Ω1,η1) and Y ∼ SNk(ξ2,Ω2,η2),
requires of the expectation of the functions (X−ξ2)>Ω−12 (X−ξ2) and log[Φ{η>2 (X−ξ2)}]. Therefore,
the properties (iii) and (iv) in Lemma 1 allow the simplification of the computations of these expected
values as is shown in the proof of the lemma given next, and where the following skew-normal random
variables will be considered:

Wij ∼ SN1

(
η>i (ξj − ξi),η>i Ωjηi,

η>i δj√
η>i Ωjηi − (η>i δj)

2

)
(6)

where δj = Ωjηj/
√

1 + η>j Ωjηj for j = 1, 2. Note for i = j that Wii ∼

SN1

(
0,η>i Ωiηi, (η

>
i Ωiηi

)1/2
), with i = 1, 2. Also, we note that (6) can be expressed as Wij

d
=

η>i (ξj − ξi) + (η>i Ωjηi)
1/2Uij, where Uij ∼ SN1(0, 1, τij), with τij = η>i δj/

√
η>i Ωjηi − (η>i δj)

2.

Lemma 2 The cross-entropy between X ∼ SNk(ξ1,Ω1,η1) and Y ∼ SNk(ξ2,Ω2,η2) is given by

CH(X,Y) = CH(X0,Y0) +

√
2

π
(ξ1 − ξ2)>Ω−12 δ1 − E[log {2Φ(W21)}],

where

CH(X0,Y0) =
1

2

{
k log(2π) + log |Ω2|+ tr(Ω2

−1Ω1) + (ξ1 − ξ2)>Ω−12 (ξ1 − ξ2)
}

is the cross-entropy between Y0 ∼ SNk(ξ2,Ω2,0) and X0 ∼ SNk(ξ1,Ω1,0), and by (6)

W21 ∼ SN1

(
η>2 (ξ1 − ξ2),η>2 Ω1η2,

η>2 δ1√
η>2 Ω1η2 − (η>2 δ1)

2

)
.
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Proposition 1 The KL-divergence between X ∼ SNk(ξ1,Ω1,η1) and Y ∼ SNk(ξ2,Ω2,η2) is given by

DKL(X,Y) = DKL(X0,Y0) +

√
2

π
(ξ1 − ξ2)>Ω−12 δ1 + E[log {2Φ(W11)}]− E[log {2Φ(W21)}],

where

DKL(X0,Y0) =
1

2

{
log

(
|Ω2|
|Ω1|

)
+ tr(Ω−12 Ω1) + (ξ1 − ξ2)>Ω−12 (ξ1 − ξ2)− k

}
is the KL-divergence between X0 ∼ SNk(ξ1,Ω1,0) and Y0 ∼ SNk(ξ2,Ω2,0), and the Wij defined as
in (6).

The proofs of Lemma 2 and Proposition 1 are included in Appendix A. In the following proposition,
we give the J-divergence between two multivariate skew-normal distributions. Its proof is immediate
from (4) and Proposition 1.

Proposition 2 Let X ∼ SNk(ξ1,Ω1,η1) and Y ∼ SNk(ξ2,Ω2,η2). Then,

J(X,Y) = J(X0,Y0) +

√
2

π
(ξ1 − ξ2)>(Ω−12 δ1 −Ω−11 δ2)

+E[log {2Φ(W11)}]− E[log {2Φ(W12)}]
+E[log {2Φ(W22)}]− E[log {2Φ(W21)}],

where

J(X0,Y0) =
1

2
{tr(Ω1Ω

−1
2 ) + tr(Ω−11 Ω2) + 2(ξ1 − ξ2)>(Ω−11 + Ω−12 )(ξ1 − ξ2)− 2k}

is the J-divergence between the normal random vectors X0 ∼ SNk(ξ1,Ω1,0) and Y0 ∼
SNk(ξ2,Ω2,0), and by (6) we have that

W11 ∼ SN1

(
0,η>1 Ω1η1, (η

>
1 Ω1η1)

1/2
)
,

W21 ∼ SN1

(
η>2 (ξ1 − ξ2),η>2 Ω1η2,

η>2 δ1√
η>2 Ω1η2 − (η>2 δ1)

2

)
,

W12 ∼ SN1

(
η>1 (ξ2 − ξ1),η>1 Ω2η1,

η>1 δ2√
η>1 Ω2η1 − (η>1 δ2)

2

)
,

W22 ∼ SN1

(
0,η>2 Ω2η2, (η

>
2 Ω2η2)

1/2
)
.

In what follows we present the KL-divergence and J-divergence for some particular cases only. We
start by considering the case where Ω1 = Ω2 and η1 = η2. Hence, the KL and J divergences compares
the location vectors of two multivariate skew-normal distributions, which is essentially equivalent to
comparing their mean vectors. For this case we also have that δ1 = δ2, Wii

d
= (η>Ωη)1/2W ,

W12
d
= −η>(ξ1 − ξ2) + (η>Ωη)1/2W and W21

d
= η>(ξ1 − ξ2) + (η>Ωη)1/2W , where W ∼

SN1(0, 1, (η
>Ωη)1/2). With this notation, the results in Propositions 1 and 2 are simplified in this

case as follows.
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Corollary 1 Let X ∼ SNk(ξ1,Ω,η) and Y ∼ SNk(ξ2,Ω,η). Then,

DKL(X,Y) = DKL(X0,Y0) +

√
2

π
(ξ1 − ξ2)>Ω−1δ + E[log {2Φ(τW )}]− E[log {2Φ(γ + τW )}],

J(X,Y) = J(X0,Y0) + 2E[log {2Φ(τW )}]− E[log {2Φ(τW − γ)}]− E[log {2Φ(τW + γ)}],

where DKL(X0,Y0) = 1
2

{
(ξ1 − ξ2)>Ω−1(ξ1 − ξ2)− k + 1

}
and J(X0,Y0) = 2(ξ1 − ξ2)>Ω−1(ξ1 −

ξ2) are, respectively, the KL and J divergences between X0 ∼ SNk(ξ1,Ω,0) and Y0 ∼ SNk(ξ2,Ω,0),
τ = (η>Ωη)1/2, γ = η>(ξ1 − ξ2) and W ∼ SN1(0, 1, τ).

When ξ1 = ξ2 and η1 = η2, the KL and J divergence measures compare the dispersion matrices of
two multivariate skew-normal distributions. For this case we have also that W11

d
= W21 and W12

d
= W22.

Consequently, the KL and J divergences does not depend on the skewness/shape vector η, i.e., it reduces
to the respective KL-divergence and J-divergence between two multivariate normal distribution with the
same mean vector but different covariance matrices, as is established next.

Corollary 2 Let X ∼ SNk(ξ,Ω1,η) and Y ∼ SNk(ξ,Ω2,η). Then,

DKL(X,Y) = DKL(X0,Y0) =
1

2

{
log

(
|Ω2|
|Ω1|

)
+ tr(Ω−12 Ω1)− k

}
,

J(X,Y) = J(X0,Y0) =
1

2
{tr(Ω1Ω

−1
2 ) + tr(Ω−11 Ω2)− 2k},

where X0 ∼ SNk(ξ,Ω1,0) and Y0 ∼ SNk(ξ,Ω2,0).

Finally, if ξ1 = ξ2 and Ω1 = Ω2, then the KL-divergence and J-divergence compares the skewness
vectors of two multivariate skew-normal distributions.

Corollary 3 Let X ∼ SNk(ξ,Ω,η1) and Y ∼ SNk(ξ,Ω,η2). Then,

DKL(X,Y) = E[log {2Φ(W11)}]− E[log {2Φ(W21)}],
J(X,Y) = E[log {2Φ(W11)}]− E[log {2Φ(W12)}] + E[log {2Φ(W22)}]− E[log {2Φ(W21)}],

where

W11 ∼ SN1

(
0,η>1 Ωη1, (η

>
1 Ωη1)

1/2
)
,

W21 ∼ SN1

(
0,η>2 Ωη2,

η>2 δ1√
η>2 Ωη2 − (η>2 δ1)

2

)
,

W12 ∼ SN1

(
0,η>1 Ωη1,

η>1 δ2√
η>1 Ωη1 − (η>1 δ2)

2

)
,

W22 ∼ SN1

(
0,η>2 Ωη2, (η

>
2 Ωη2)

1/2
)
.

Figure 1 illustrates the numerical behavior of the KL-divergence between two univariate skew-normal
distributions under different scenarios for the model parameters. More specifically, we can observe from
there the behavior of the KL-divergence and J-divergence given in Proposition 1 and Corollaries 1–3 for
the univariate special cases described below.
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Figure 1. Plots of KL-divergence between X ∼ SN1(ξ1, ω
2
1, η1) and Y ∼ SN1(ξ2, ω

2
2, η2).

The panels (a), (b) and (c) show that this J-divergence increases mainly with the distance
between the location parameters ξ1 and ξ2. In the panel (c), we can observe that larger values
of ω2 produce the smallest values of KL-divergence, independently of the values of η. In the
panel (d) is illustrated the case (2) for ξ = η = 1. In panel (e) is illustrated the case (3) for
ξ = 1 and ω2 = 1. The panels (f) and (g) correspond to the KL-divergence of Proposition 1
for k = 1.
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DKL(X, Y ) =
1

2

(
ξ1 − ξ2
ω

)2
+

√
2

π

γ√
1 + τ 2

+E[log {2Φ(τW )}]−E[log {2Φ(τW + γ)}],

J(X, Y ) = 2

(
ξ1 − ξ2
ω

)2
+2E[log{2Φ(τW )}]−E[log{2Φ(τW−γ)}]−E[log{2Φ(τW+γ)}],
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where τ = ω|η|, γ = η(ξ1 − ξ2) and W ∼ SN1(0, 1, τ).

(2) X ∼ SN1(ξ, ω
2
1, η) versus Y ∼ SN1(ξ, ω

2
2, η):

DKL(X, Y ) =
1

2

{
log

(
ω2
2

ω2
1

)
+
ω2
1

ω2
2

− 1

}
,

J(X, Y ) =
1

2

(
ω2
1

ω2
2

− ω2
2

ω2
1

− 2

)
,

where δ1 = ηω2
1/
√

1 + η2ω2
1 .

(3) X ∼ SN1(ξ, ω
2, η1) versus Y ∼ SN1(ξ, ω

2, η2):

DKL(X, Y ) = E[log {2Φ(W11)}]− E[log {2Φ(W21)}],

J(X, Y ) =E[log {2Φ(W11)}]−E[log {2Φ(W12)}]+E[log {2Φ(W22)}]−E[log {2Φ(W21)}],

where Wij ∼ SN1(0, τ
2
i , sijτj), with τi = |ηi|ω and sij = sign(ηiηj), i, j = 1, 2.

3.1. J-Divergence between the Multivariate Skew-Normal and Normal Distributions

By letting η1 = η and η2 = 0 in Proposition 2, we have the J-divergence between a
multivariate skew-normal and normal distributions, J(X,Y0) say, where X ∼ SNk(ξ,Ω,η) and
Y0 ∼ SNk(ξ,Ω,0). For this important special case, we find in Corollary 3 that J(X0,Y0) =

0, the random variable W21 and W22 are degenerate at zero, and W11
d
= (η>Ωη)1/2W , with

W ∼ SN1(0, 1, (η
>Ωη)1/2), and W12

d
= (η>Ωη)1/2W0, with W0 ∼ N1(0, 1). This proves the

following results.

Corollary 4 Let X ∼ SNk(ξ,Ω,η) and Y0 ∼ SNk(ξ,Ω,0). Then,

J(X,Y0) = E[log {2Φ(τW )}]− E[log {2Φ(τW0)}],

where τ = (η>Ωη)1/2, W ∼ SN1(0, 1, τ) and W0 ∼ N1(0, 1).

It follows from Corollary 4 that the J-divergence between the multivariate skew-normal and normal
distributions is simply the J-divergence between the univariate SN1(0, τ

2, τ) andN1(0, τ
2) distributions.

Also, considering that E[log {2Φ(τW )}] = E[{2Φ(τW0)} log {2Φ(τW0)}], an alternative way to
compute the J(X,Y0)-divergence is

J(X,Y0) = E[{2Φ(τW0)− 1} log {2Φ(τW0)}] (7)

It is interesting to notice that for τ = 1 in (7) we have J(X,Y0) = E{(2U0 − 1) log(2U0)}, where U0

is a random variable uniformly distributed on (0, 1), or J(X,Y0) = E{U log(1 + U)}, with U being
uniformly distributed on (−1, 1). The following remark is suitable when used to compute the expected
value E[log{2Φ(Z)}] for Z ∼ SN1(ξ, ω

2, α).
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Remark 1: If Z ∼ SN1(ξ, ω
2, α), ω > 0, α ∈ R, then

E[log{2Φ(Z)}] = E[2Φ(αZ0) log{2Φ(ωZ0 + ξ)}]
= E[Φ(−αS0) log{2Φ(−ωS0 + ξ)}] + E[Φ(αS0) log{2Φ(ωS0 + ξ)}],

where Z0 ∼ N1(0, 1), S0 = |Z0| ∼ HN1(0, 1), and HN1 is the univariate half-normal distribution with
density 2φ(s), s > 0. Since the function log[2Φ(x)] is negative on (−∞, 0) and non-negative on [0,∞),
the last expression is more convenient for the numerical integration.

3.2. Maximum Entropy

We also explore the necessary inequalities to determine the bounds for the entropy of a variable
distributed multivariate skew-normal. By [5], for any density fX(x) of a random vector X ∈ Rk—not
necessary Gaussian—with zero mean and variance-covariance matrix Σ = E[XX>], the entropy of X

is upper bounded as

H(X) ≤ 1

2
log
{

(2πe)k|Σ|
}

(8)

and
H(X0) =

1

2
log
{

(2πe)k|Ω|
}

(9)

is the entropy of X0 ∼ Nk(0,Ω), i.e., the entropy is maximized under normality. Let X ∼ SNk(ξ,Ω,η),
our interest is now to give an alternative approximation of the entropy of the skew-normal random vector
X. By [20] or by Lemma 2, we have that the skew-normal entropy is

H(X) =
1

2
log
{

(2πe)k|Ω|
}
− E [log {2Φ(τW )}] ,

where W ∼ SN1 (0, 1, τ) with τ = (η>Ωη)1/2. By (8), (9) and Property (ii) of Lemma 1, we have that

H(X) ≤ 1

2
log(2πe)k +

1

2
log

∣∣∣∣Ω− 2

π
δδ>

∣∣∣∣
= H(X0) +

1

2
log

(
1− 2

π
δ>Ω−1δ

)
= H(X0) +

1

2
log

(
1− 2

π

τ 2

1 + τ 2

)
,

since δ = Ωη/
√

1 + η>Ωη and so δ>Ω−1δ = τ 2/(1 + τ 2). Therefore, we obtain a lower bound for
the following expected value

E [log {2Φ(τW )}] ≥ −1

2
log

(
1− 2

π

τ 2

1 + τ 2

)
.

Note from this last inequality that E [log {2Φ(τW )}] is always positive, because 2τ 2/π(1 + τ 2) < 1.
On the other hand, [27] uses the Negentropy HN to quantify the non-normality of a random variable

X, which defined as

HN(X) = H(X0)−H(X),
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where X0 is a normal variable with the same variance as that of X. The Negentropy is always
nonnegative, and will become even larger as the random variable and is farther from the normality.
Then, the Negentropy of X ∼ SNk(ξ,Ω,η) coincides with E[log{2Φ(τW )}]. As is well-known,
the entropy is a measure attributed to uncertainty of information, or a randomness degree of a single
variable. Therefore, the Negentropy measures the departure from the normality of the distribution of
the random variable X. To determine a symmetric difference of a Gaussian random variable with
respect to its skewed version, i.e., that preserves the location and dispersion parameters but incorporates
a shape/skewness parameter, the J-divergence presented in Section 3.2 is a useful tool to analyze this fact.

Figure 2 shows in panel (a) several values of h(τ) = E[log{2Φ(τW )}] for τ = 0, 1, ..., 200. It is
interesting to notice that the maximum value of this expected value is approximately equal to 2.339. In
the panel (b) this figure shows the values of J-divergence betweenX ∼ SN1(0, τ

2, τ) and Y0 ∼ N(0, τ 2)

computed in (7) for τ = 0, 1, ..., 10.

Figure 2. (a) Behavior of h(τ) = E[log{2Φ(τW )}] for τ = 0, 1, ..., 200. (b) Behavior of
J(X, Y0) for τ = 0, 1, ..., 10.
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4. Statistical Application

For a statistical application of this paper, we consider the seismic catalogue of the Servicio
Sismológico Nacional of Chile (SSN, [28]) analyzed by [22], containing 6,714 aftershocks on a map
[32–40◦S]×[69–75.5◦E] for a period between 27 February 2010 to 13 July 2011. Our main goal is
to compare the aftershock distributions of local and moment magnitudes (Ml and Mw, respectively)
using the KL-divergence and J-divergence between clusters detected by nonparametric clustering (NPC)
method developed by [23] (See Figure 3). This method allows the detection of subsets of points forming
clusters associated with high density areas which hinge on an estimation of the underlying probability
density function via a nonparametric kernel method for each of these clusters. Consequently, this
methodology has the advantage of not requiring some subjective choices on input, such as the number of
existing clusters. The aftershock clusters analyzed by [22] consider the high density areas with respect
to its map positions, i.e., they consider the bi-dimensional distribution of latitude-longitude joint variable
to be estimated by the kernel method. For more details about the NPC method, see also [23].
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Figure 3. Left: Map of the Chile region analyzed for post-seismicity correlation with
clustering events: black (1), red (2), green (3), blue (4), violet (5), yellow (6) and gray (7).
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Depending on the case, we consider it pertinent to analyze the measures of J-divergences between a
cluster sample fitted by a skew-normal distribution versus the same sample fitted by a normal distribution,
where the fits are previously diagnosed by QQ-plots (see e.g., [20]). The MLE’s of the model parameters
are obtained by using the sn package developed by [29] and described later in Section 4.1; the entropies,
cross-entropies, KL-divergence and J-divergences presented in the previous sections are computed using
skewtools package developed by [30]. Both packages are implemented in R software [31]. In Section 4.2
we present the Kupperman test [32] based on asymptotic approximation of the KL-divergence statistic
to chi-square distribution with degrees of freedom depending on the dimension of the parametric space.



Entropy 2012, 14 1618

4.1. Likelihood Function

In order to examine the usefulness of the KL-divergence and J-divergence between multivariate
skew-normal distributions developed in this paper, we consider the MLE’s of the location, dispersion
and shape/skewness parameters proposed by [17] (and considered for a meteorological application
in [20]) for a sample of independent observations Zi ∼ SNk(ξ,Ω,η), i = 1, ..., N . We estimate the
parameters by numerically maximizing the log-likelihood function:

log L(θ) ∝ −N
2

log |Ω| − N

2
tr(Ω−1V) +

N∑
i=1

log [Φ{η>Ω−1/2(zi − ξ)}],

where

V =
1

N

N∑
i=1

(zi − ξ)(zi − ξ)>

and θ = {ξ,Ω,η}. Then, we can obtain θ̂ = {ξ̂, Ω̂, η̂} = arg maxθ L(θ) using the Newton–Rhapson
method. This method works well for distributions with a small number of k-variables. Other similar
methods such as the EM algorithm tend to have more robust relativity but run slower than MLE.

4.2. Asymptotic Test

Following [32,33], in this section we consider the asymptotic properties of the likelihood estimator
of the J-divergence between the distributions of two random vectors X and Y. For this, it is assumed
that X and Y have pdf indexed by unknown parameters vectors θ1 and θ2, respectively, which belong
to the same parameters space. Let θ̂1 = (θ̂11, . . . , θ̂1p)

> and θ̂2 = (θ̂21, . . . , θ̂2p)
> be the MLE’s of the

parameter vectors θ1 = (θ11, . . . , θ1p)
> and θ2 = (θ21, . . . , θ2p)

>, respectively, based on independent
samples of size N1 and N2 from the distributions of X and Y, respectively. Denote by J(θ1,θ2) the
J-divergence between the distributions of X and Y, and consider the statistic defined by

SKL(θ̂1, θ̂2) =
N1N2

N1 +N2

J(θ̂1, θ̂2).

Under the regularity conditions discussed by [33], it follows that if N1

N1+N2
−→

N1,N2→∞
λ, with 0 < λ < 1,

then under the homogeneity null hypothesis H0 : θ1 = θ2,

SKL(θ̂1, θ̂2)
d−→

N1,N2→∞
χ2
p (10)

where “ d−→” means convergence in distribution.
Based on (10) an asymptotic statistical hypothesis tests for the null hypothesis H0 : θ1 = θ2 can

be derived. Consequently, it can be implemented in terms of the J-divergence (or the KL-divergence,
as in [3]) between the multivariate skew-normal distributions X ∼ SNk(ξ1,Ω1,η1) and Y ∼
SNk(ξ2,Ω2,η2), for which θ1 and θ2 are the corresponding p = 2k + k(k + 1)/2 different unknown
parameters in {ξ1,Ω1,η1} and {ξ2,Ω2,η2}, respectively. Hence, (10) allows testing through the
P -value if the homogeneity null hypothesis H0 : ξ1 = ξ2, Ω1 = Ω2, η1 = η2 is rejected or not.
Thus, if for large values of N1, N2 we observe SKL(θ̂1, θ̂2) = s, then the homogeneity null hypothesis
can be rejected at level α if P (χ2

p > s) ≤ α.
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4.3. Main Results

The skew-normal KL-divergence values of Proposition 1 for each pair of clusters are reported in
Table 1. By (4), we can obtain the symmetrical skew-normal J-divergences to compare the parametric
differences between these clusters. The MLE’s of the unknown parameters for the distribution of each
cluster are shown in Table 2 with its respective descriptive statistics and estimated skew-normal model
parameters. In the Appendix B, we attach the Figures A1 and A2 which indicate the performance of
the fitted models, where we also include the QQ-plots for the normal and skew-normal cases. These
QQ-plots represent the dispersion of the Mahalanobis distances related to the theoretical parameters,
with respect to the empirical percentiles of the chi-square distribution. It follows from there that as the
dispersion line is fitted by the theoretical line in a greater degree, the skew-normal fit will have better
performance. The diagnostic QQ-plots are also possible to obtain by using the sn package developed
by [29].

Table 1. KL-divergences for pairs of clusters.

Cluster black (1) red (2) green (3) blue (4) violet (5) yellow (6) gray (7)
black (1) 0 0.178 0.149 0.008 0.262 0.041 0.835
red (2) 0.219 0 0.743 0.267 0.018 0.455 0.273

green (3) 0.181 0.601 0 0.102 0.909 0.038 1.688
blue (4) 0.015 0.234 0.095 0 0.374 0.015 0.981

violet (5) 0.212 0.018 0.721 0.269 0 0.437 0.216
yellow (6) 0.053 0.350 0.031 0.020 0.530 0 1.194
gray (7) 0.978 0.224 1.887 1.032 0.274 1.398 0

We can see from Table 1 that the grey (7) cluster has the larger discrepancy with respect to the other
clusters, except with respect to red (2) and violet (5) clusters, which is mainly due to the location and
shape fitted parameters (see Table 2). A counterpart case is found for the green (3) cluster, which presents
greater differences with respect to these two aforementioned clusters. On the other hand, the diagnostic
QQ-plots show good performance of the skew-normal fit with respect to the normal case, although we
should observe here that the red (2) cluster is being affected by an outlier observation corresponding to
the greater magnitude Mw = 8.8. However, this fit considers that the probability of a similar occurrence
in the future of a great event like this is practically zero.

Given that the seismic observations have been classified by the NPC method considering their
positions on the map, the KL-divergence and J-divergence based on magnitudes proposed in this
paper are not valid tools to corroborate the clustering method. Nevertheless, these measures
corroborate some similarities in the distributions of those clusters localized away from the epicenter
as, e.g., red (2)–violet (5) and green (3)–yellow (6), as well as some discrepancies in the distributions of
some clusters as, e.g., red (2)–green (3), red (2)–blue (4) and gray (7)–black (1). All of these similarities
and discrepancies were evaluated through the Kupperman test (10). Table 3 reports the statistic test
values and the corresponding P -values obtained by comparing the asymptotic reference chi-square
distribution with p = 3 degrees of freedom (k = 1). We can see that this test corroborates the similarities
in the distribution of the clusters red (2)–violet (5) and green (3)–yellow (6), but this test also suggests
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similarities for the black (1)–blue (4) and blue (4)–yellow (6) clusters. These results are consistent with
the values of the fitted parameters, as we can see in Table 2. In this last table we have also presented the
values of the parameter τ = (η2Ω)1/2 for each cluster and the divergence J(X, Y0) between skew-normal
and normal distributions defined in Equation (7). Specifically, since the shape/skewness parameters of
red (2) and gray (7) clusters are the smallest, it is then evident that the lower values for the divergence
J(X, Y0) correspond to these clusters, a result that is consistent with the panel (b) Figure 2.

Table 2. Mean and standard deviation (sd) from the normal fit, minimum (min), maximum
(max) and number of observations (N) for each cluster and for the full data (see “Total”
below); skew-normal MLE’s and their respective standard deviations (in brackets) for each
and the full cluster; τ and J(X, Y0) values for each and the full cluster.

Cluster Descriptive Statistics Skew-normal fit
mean sd min max N ξ Ω η τ J(X,Y0)

black (1) 3.427 0.655 2.0 6.6 4182 3.430 (0.010) 0.651 (0.008) 0.756 (0.020) 0.610 0.211
red (2) 3.924 0.769 2.1 8.8 962 3.927 (0.025) 0.766 (0.019) 0.445 (0.068) 0.389 0.092

green (3) 3.085 0.615 2.0 5.2 265 3.081 (0.038) 0.618 (0.030) 0.711 (0.105) 0.559 0.181
blue (4) 3.339 0.729 2.0 6.1 280 3.337 (0.043) 0.730 (0.035) 0.697 (0.101) 0.595 0.202

violet (5) 3.852 0.682 2.6 6.8 265 3.858 (0.041) 0.673 (0.033) 0.820 (0.067) 0.673 0.252
yellow (6) 3.215 0.666 2.1 5.2 215 3.201 (0.047) 0.683 (0.040) 0.805 (0.128) 0.665 0.247
gray (7) 4.447 0.695 2.7 6.9 332 4.447 (0.038) 0.694 (0.029) 0.453 (0.124) 0.378 0.087

Total 3.539 0.743 2.0 8.8 6584 3.539 (0.009) 0.743 (0.007) 0.731 (0.018) 0.629 0.224

Table 3. J-divergences for each pair of clusters. The statistic values and P -values of the
asymptotic test are given in brackets. Those marked in bold correspond to the P -values
higher than a probability 0.04 related to a 4% significance level.

Cluster black (1) red (2) green (3) blue (4) violet (5) yellow (6) gray (7)
black (1) 0 0.397 0.330 0.023 0.475 0.093 1.814

(0; 1) (311; 0) (82; 0) (6.1; 0.106) (118; 0) (19; 0) (558; 0)
red (2) 0.397 0 1.344 0.501 0.037 0.805 0.497

(311; 0) (0; 1) (279; 0) (109; 0) (7.6; 0.055) (142; 0) (123; 0)
green (3) 0.330 1.344 0 0.197 1.630 0.069 3.575

(82; 0) (279; 0) (0; 1) (27; 0) (216; 0) (8.1; 0.043) (527; 0)
blue (4) 0.023 0.501 0.197 0 0.642 0.035 2.014

(6.1; 0.106) (109; 0) (27; 0) (0; 1) (88; 0) (4.2; 0.239) (306; 0)
violet (5) 0.475 0.037 1.630 0.642 0 0.967 0.490

(118; 0) (7.6; 0.055) (216; 0) (88; 0) (0; 1) (115; 0) (72; 0)
yellow (6) 0.093 0.805 0.069 0.035 0.967 0 2.593

(19; 0) (142; 0) (8.1; 0.043) (4.2; 0.239) (115; 0) (0; 1) (338; 0)
gray (7) 1.814 0.497 3.575 2.014 0.490 2.593 0

(558; 0) (123; 0) (527; 0) (306; 0) (72; 0) (338; 0) (0; 1)
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5. Conclusions

We have presented a methodology to compute the Kullback–Leibler divergence for multivariate
data presenting skewness, specifically, for data following a multivariate skew-normal distribution.
The calculation of this measure is semi-analytical, since it is the sum of two analytical terms, one
corresponding to the multivariate normal Kullback–Leibler divergence and the other depending on
the location, dispersion and shape parameters, and a third term which must be computed numerically
and which was reduced from a multidimensional integral to an integral in only one dimension.
Numerical experiments have shown that the performance of this measure is consistent with its theoretical
properties. Additionally, we have derived expressions for the J-divergence between different multivariate
skew-normal distributions, and in particular for the J-divergence between the skew-normal and normal
distributions. The presented entropy and KL-divergence concepts for this class of distributions are
necessary to compute other information tools as mutual information.

This work has also presented a statistical application related to aftershocks produced by the Maule
earthquake which occurred on 27 February 2010. The results shown that the proposed measures are
useful tools for comparing the distributions of magnitudes of events related to the regions near the
epicenter. We also consider an asymptotic homogeneity test for the cluster distributions under the
skew-normality assumption and, consequently, confirm the found results in a consistent form.
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Appendices

Appendix A. Some Proofs

Proof of part (iv) of Lemma 1: From Lemma 1(i) we have

η̃>(Z− ξ̃)
d
= η̃>(ξ − ξ̃) + η̃>δ|U0|+ η̃>U.

Since η̃>U ∼ N1(0, η̃
>Ωη̃ − (η̃>δ)2), which is independent of U0, we can write

√
η̃>Ωη̃ η̃>U

d
=√

1− δ20 U1, where δ0 = η̃>δ/
√
η̃>Ωη̃ and U1 ∼ N1(0, 1) and is independent of U0. Hence, we obtain

η̃>(Z− ξ̃)
d
= η̃>(ξ − ξ̃) +

√
η̃>Ωη̃ Z0,

where Z0 = δ0|U0|+
√

1− δ20 U1. Since Z0 ∼ SN1(0, 1, η0), where

η0 =
δ0√

1− δ20
=

η̃>δ√
η̃>Ωη̃ − (η̃>δ)2

,

the proof follows.

Proof of Lemma 2: By (5) we have for the logarithm of the pdf of Y ∼ SNk(ξ2,Ω2,η2) that

log fY(x) = log φk(x; ξ2,Ω2) + log[2Φ{η>2 (x− ξ2)}]

= −1

2

{
k log(2π) + log |Ω2|+ (x− ξ2)>Ω−12 (x− ξ2)

}
+ log[2Φ{η>2 (x− ξ2)}].
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Thus, since by (2)CH(X,Y) = −E[log fY(X)], we have by applying the Lemma 1(iii) with Z replaced
by X, a = ξ2 and B = Ω−12 that

CH(X,Y) =
1

2

{
k log(2π) + log |Ω2|+ E{(X− ξ2)>Ω−12 (X− ξ2)}

}
− E[log {2Φ(η>2 (X− ξ2))}]

=
1

2

{
k log(2π) + log |Ω2|+ tr(Ω2

−1Ω1) + (ξ1 − ξ2)>Ω−12 (ξ1 − ξ2)

+2

√
2

π
(ξ1 − ξ2)>Ω−12 δ1

}
− E[log {2Φ(η>2 (X− ξ2))}]

=
1

2

{
k log(2π) + log |Ω2|+ tr(Ω2

−1Ω1) + (ξ1 − ξ2)>Ω−12 (ξ1 − ξ2)
}

+

√
2

π
(ξ1 − ξ2)>Ω−12 δ1 − E[log {2Φ(η>2 (X− ξ2))}].

From Lemma 1(iii) we find that the random variable η>2 (X−ξ2) has the same distribution of W21 in (6).
Thus, the proof follows by noting that

CH(X0,Y0) = −E[log φk(X0; ξ2,Ω2)]

=
1

2

{
k log(2π) + log |Ω2|+ tr(Ω2

−1Ω1) + (ξ1 − ξ2)>Ω−12 (ξ1 − ξ2)
}
.

Proof of Proposition 1: Note first by Lemma 2 that H(X) = CH(X,X) is given by

H(X) =
1

2
{k + k log(2π) + log |Ω1|} − E[log {2Φ(η>1 (X− ξ1))}]

= H(X0)− E[log {2Φ(η>1 (X− ξ1))}],

where H(X0) = CH(X0,X0) = 1
2
{k + k log(2π) + log |Ω1|} and by the property (iii) of the

Lemma 1 we have η>1 (X − ξ1)
d
= W11. Thus, the proof follows from the fact that DKL(X,Y) =

CH(X,Y) − H(X).
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Appendix B. Complementary Figures

Figure A1. Plots of Skew-normal fits (in red) and QQ-plots of Normal and Skew-Normal
distributions for clusters black (1), red (2), green (3) and blue (4).
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Figure A2. Plots of Skew-normal fits (in red) and QQ-plots of Normal and Skew-Normal
distributions for clusters violet (5), yellow (6), gray (7) and all observations.
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