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Abstract: This a brief review on F (T ) gravity and its relation with k-essence. Modified
teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as
a possible explanation of dark energy. We perform a thorough reconstruction analysis on
the so-called F (T ) models, where F (T ) is some general function of the torsion term, and
deduce the required conditions for the equivalence between of F (T ) models with pure kinetic
k-essence models. We present a new class of models of F (T )-gravity and k-essence.
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1. Introduction

Recent astrophysical data imply that the current expansion of the universe is accelerating [1]. There
exist different candidates for this acceleration phase. The simplest one is the introduction of the
Cosmological Constant Λ in the framework of General Relativity (ΛCDM model), namely an exotic
form of energy (the dark energy) whose Equation of State (EoS) parameter w is equal to minus one
and dynamically remains near this value, but in principle quintessence/phantom-fluid description is not
excluded. Despite the fact that the ΛCDM is a good candidate to describe our universe, the finite but
very small value of the Λ causes some well-known problems, such as the difference between the order
of Λ predicted by quantum field theory (a.k.a., fine-tuning), as well as the time where such acceleration
happen (a.k.a., the coincidence problem). Further, the origin of dark energy is an unsolved question.
Also, the existence of an early accelerated epoch, namely the inflation, introduces a new problem to the
standard cosmology, and various proposals have been made to construct acceptable inflationary model,
including the scalar, spinor SU(2), (non-)abelian vector theory (SU(2)) U(1), etc.
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Another alternative approach to the dark energy puzzle is the modified gravity theories. A typical
modified gravity is a generalization of Einstein’s gravity, where some combination of curvature invariants
is added into the classical Hilbert–Einstein action of General Relativity. This modification may lead to
an accelerated era without invoking the dark energy. The simplest theory of modified gravity is the
F (R) one, where the modification is given by a function of the Ricci scalar only. Another popular
modification is given by the string-inspired Gauss–Bonnet modified theories, where a modification via
the topological invariant four dimensional Gauss–Bonnet G appears (see the recent reviews [2–13]).
Also it can be represented by the f(R, T ) models where T is the trace of the energy-momentum
tensor [14–16]. The field equations of these theories are much more complicated with respect to the
case of General Relativity, since they are fourth order differential equations and it is so difficult to obtain
the exact solutions.

Recently a new type of gravity model, the F (T )-gravity, has been proposed. Its field equations are
second order [17,18]. These models are based on the “teleparallel” equivalent of General Relativity
(TEGR) [19–25], which, instead of using the curvature defined via the Levi–Civita connection, uses the
Weitzenböck connection that has no curvature but only torsion (see [24,25] for applications to inflation).
The fact that the field equations of F (T ) gravity are second order makes these theories simpler than the
ones where modification is via curvature invariants, and a deeper investigation on this kind of models is
of extreme interest (see [26–40] for recent developments).

In this paper we give a brief review on F (T ) gravity and its relation with k-essence. We study some
F (T )-models and models of k-essence. In Sections 2 and 3, we present some basic facts on F (T ) gravity.
In the Section 4, we study some models of F (T ) gravity for the FRW spacetime. Noether symmetry in
F (T ) gravity was considered in the Section 5. In Section 6, we consider the torsion-scalar model. We
investigate k-essence and its models in Sections 7 and 8. Section 9 is devoted to the study of the relation
between F (T ) gravity and k-essence and in Section 10 we present some generalizations of F (T ) gravity.
In the last section we give conclusions and general remarks.

2. General Aspects of F (T ) Gravity

The action of F (T )-gravity reads [17,18,26]

S =

∫
eLd4x (1)

where
L =

1

2κ2
F (T ) + Lm (2)

Here T is the torsion scalar, e = det (eiµ) =
√
−g and Lm is the matter Lagrangian. Here eiµ are

the components of the vierbein vector field eA in the coordinate basis eA ≡ eµA∂µ. Note that in the
teleparallel gravity, the dynamical variable is the vierbein field eA(xµ). To derive the equations of motion
we consider the metric

ds2 = gµνdx
µdxν = ηabθ

aθb (3)

where
θa = eaµdx

µ , dxµ = e µ
a θ

a (4)
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gµν being the metric of space-time, ηab the Minkowski’s metric, θa the tetrads and eaµ and their inverses
e µ
a the tetrads basis. We note that the tetrad basis satisfy the relations

eaµe
ν
a = δνµ, eaµe

µ
b = δab (5)

The root of the metric determinant is given by

e =
√
−g = det[eaµ] (6)

The standard Weitzenböck’s connection reads

Γαµν = e α
i ∂νe

i
µ = −ei µ∂νe α

i (7)

Then the components of the torsion and the contorsion are given by

Tαµν = Γανµ − Γαµν = e α
i

(
∂µe

i
ν − ∂νei µ

)
(8)

Kµν
α = −1

2
(T µνα − T νµα − T µν

α ) (9)

Now we define another tensor from the components of torsion and the contorsion as

S µν
α =

1

2

(
Kµν

α + δµαT
βν
β − δ

ν
αT

βµ
β

)
(10)

Finally, we define the torsion scalar as usual

T = TαµνS
µν
α (11)

Let us derive the equations of motion from the Euler–Lagrange equations. In order to use these equations
we first write the quantities

∂L

∂eaµ
= F (T )ee µ

a + eFT (T )4e α
a T

σ
ναS

µν
σ +

∂Lm
∂eaµ

(12)

and

∂α

[
∂L

∂(∂αeaµ)

]
= −4FT (T )∂α (ee σ

a S
µν
σ )− 4ee σ

a S
µα
σ ∂αT FTT (T ) + ∂α

[
∂Lm

∂(∂αeaµ)

]
(13)

where FT (T ) = dF (T )/dT and FTT (T ) = d2F (T )/dT 2. Now we use the Euler–Lagrange equation

∂L
∂eaµ

− ∂α
[

∂L
∂(∂αeaµ)

]
= 0 (14)

Substituting the expressions (12) and (13) into the later equation, we get the equations of motion of the
F (T ) gravity (after multiplying by e−1eaβ/4)

S µα
β ∂αT fTT (T ) +

[
e−1eaβ∂α (ee σ

a S
µα
σ ) + T σνβS

µν
σ

]
fT (T ) +

1

4
δµβf(T ) = 4πT µβ (15)

where

T µβ = −
e−1eaβ

16π

{
∂LMatter

∂eaµ
− ∂α

[
∂LMatter

∂(∂αeaµ)

]}
(16)

is the gravitational energy momentum tensor.
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3. The FRW Space-Time

We will assume a flat homogeneous and isotropic FRW universe with the metric

ds2 = −dt2 + a(t)2
3∑
i=1

(dxi)2 (17)

where t is cosmic time and a(t) is the scale factor. Then the modified Friedmann equations and the
continuity equation read (see, e.g., [17,18,26])

− 2TFT + F = 2k2ρm (18)

−8ḢTFTT + (2T − 4Ḣ)FT − F = 2k2pm (19)

ρ̇m + 3H(ρm + pm) = 0 (20)

This set can be rewritten as

− T − 2TfT + f = 2k2ρm (21)

−8ḢTfTT + (2T − 4Ḣ)(1 + fT )− T − f = 2k2pm (22)

ρ̇m + 3H(ρm + pm) = 0 (23)

if we consider the following equivalent form of the action

S =

∫
d4xe[

1

2κ2
(T + f(T )) + Lm] (24)

where f = F − T. Some properties of F (T )-gravity were studied in [18–36]. The field
equations (21)–(23) are equivalent to

M̂1F = 2k2ρm (25)

M̂2F = −M̂3M̂1F = 2k2pm (26)

M̂3ρm = −pm (27)

where

M̂1 = −2T∂T + 1 (28)

M̂2 = −8ḢT∂2TT + (2T − 4Ḣ)∂T − 1 = (4Ḣ∂T − 1)M̂1 = −(
1

3H
∂t + 1)M̂1 = −M̂3M̂1

(29)

M̂3 =
1

3H
∂t + 1 (30)

By using these equations we may construct high hierarchy of F (T ) gravity. For the case ρm = pm = 0

such hierarchy is written as
M̂n

1 Fn = 0 (31)

where F1 = F and (for n = 1, 2, 3)

− 2TF1T + F1 = 0 (32)

4T 2F2TT + F2 = 0 (33)

−8T 3F3TTT − 12T 2F3TT − 2TF3T + F3 = 0 (34)
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and so on. From the system (25)–(27) one has that any solution of the Equation (25) automatically solves
the Equations (26) and (27). It means that by solving the Equation (25), we have also a solution for the
Equations (26) and (27). Finally we introduce the effective EoS parameter

weff = −1− 3−1H−1[ln (M̂1F )]t = −1− 3−1[ln (M̂1F )]N (35)

4. Specific Models of F (T ) Gravity in FRW Universe

Some explicit models of F (T ) gravity have recently appeared in the literature (see, e.g., [17,18,26,
27,30,31,34,37]). Here, we would like to present some new models of modified teleparallel gravity.

4.1. Example 1: The M13-Model

Let us consider the M13-model. Its Lagrangian is

F (T ) =
n∑

j=−m

νj(t)T
j = ν−m(t)T−m + ...+ ν−1(t)T

−1 + ν0(t) + ν1(t)T + ...+ νn(t)T n (36)

We consider the particular case where m = n = 1 and νj = consts. Thus,

F = ν−1T
−1 + ν0 + ν1T FT = −ν−1T−2 + ν1, FTT = 2ν−1T

−3 (37)

By substituting these expressions into (18) and (19) we obtain

3k−2H2 = ρeff + ρm (38)

−k−2(2Ḣ + 3H2) = peff + pm (39)

where

ρeff = k−2[3H2 − 1.5ν−1T
−1 + 0.5ν1T − 0.5ν0] (40)

peff = k−2[6ν−1ḢT
−2 + 1.5ν−1T

−1 − 0.5ν1T + 0.5ν0 + 2(ν1 − 1)Ḣ − 3H2] (41)

The effective EoS parameter is given by

weff =
peff
ρeff

=
6ν−1ḢT

−2 + 1.5ν−1T
−1 − 0.5ν1T + 0.5ν0 + 2(ν1 − 1)Ḣ − 3H2

3H2 − 1.5ν−1T−1 + 0.5ν1T − 0.5ν0
(42)

Let us set ν1 = 1. Thus,

ρeff = k−2[−1.5ν−1T
−1 − 0.5ν0] peff = k−2[6ν−1ḢT

−2 + 1.5ν−1T
−1 + 0.5ν0] (43)

and

weff =
peff
ρeff

=
6ν−1ḢT

−2 + 1.5ν−1T
−1 + 0.5ν0

−1.5ν−1T−1 − 0.5ν0
= −1− 6ν−1ḢT

−2

1.5ν−1T−1 + 0.5ν0
(44)
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4.2. Example 2: The M21-Model

Our next example is the M21-model

F = T + αT δ lnT (45)

Now
FT = 1 + αδT δ−1 lnT + αT δ−1, FTT = αδ(δ − 1)T δ−2 lnT + α(2δ − 1)T δ−2 (46)

As a consequence, Equations (18) and (19) take the form

−T − 2αT δ − α(2δ − 1)T δ lnT = 2k2ρm (47)

α(2δ − 1)(T − 4δḢ)T δ−1 lnT + T − 4Ḣ + 2αT δ − 4αḢ(4δ − 1)T δ−1 = 2k2pm (48)

One has

ρeff = 0.5k−2[2αT δ + α(2δ − 1)T δ lnT ] (49)

peff = −0.5k−2αT δ−1[(2δ − 1)(T − 4δḢ) lnT + 2T − 4(4δ − 1)Ḣ] (50)

The special case δ = 1/2 deserves a separate consideration. In this case the above equations take a
simpler form

−T − 2αT 0.5 = 2k2ρm T − 4Ḣ + 2αT 0.5 − 4αḢT−0.5 = 2k2pm (51)

For the effective energy density and pressure we get

ρeff = k−2αT 0.5, peff = −k−2αT−0.5(T − 2Ḣ) (52)

4.3. Example 3: The M22-Model

Now we consider the M22-model

F = T + f(y), y = tanh[T ] (53)

Thus
FT = 1 + fy(1− y2) FTT = fyy(1− y2)2 − 2y(1− y2)fy (54)

so that Equations (18) and (19) take the form

−T − 2(1− y2)Tfy + f = 2k2ρm (55)

T − 4Ḣ − 8(1− y2)2TḢfyy + (16yḢT + 2T − 4Ḣ)(1− y2)fy − f = 2k2pm (56)

We have

ρeff = 0.5k−2[2(1− y2)Tfy − f ] (57)

peff = 0.5k−2[8(1− y2)2TḢfyy − (16yḢT + 2T − 4Ḣ)(1− y2)fy + f ] (58)

The EoS parameter reads

weff =
8(1− y2)2TḢfyy − (16yḢT + 2T − 4Ḣ)(1− y2)fy + f

2(1− y2)Tfy − f
=

= −1 +
8(1− y2)2TḢfyy − (16yḢT − 4Ḣ)(1− y2)fy + f

2(1− y2)Tfy − f
(59)
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4.4. Example 4: The M25-Model

In this subsection we will consider the M25-model

F =
n∑
−m

νj(t)ξ
j (60)

where ξ = lnT . We take the case m = n = 1 and νj = consts, namely

F = ν−1ξ
−1 + ν0 + ν1ξ (61)

Thus
Fξ = −ν−1ξ−2 + ν1 Fξξ = 2ν−1ξ

−3 (62)

and
FT = (−ν−1ξ−2 + ν1)e

−ξ FTT = (2ν−1ξ
−3 + ν−1ξ

−2 − ν1)e−2ξ (63)

In this case, Equations (18) and (19) lead to

2ν−1ξ
−2 + ν−1ξ

−1 + ν0 − 2ν1 + ν1ξ = 2k2ρm (64)

−4Ḣ(4ν−1ξ
−3 + ν−1ξ

−2 − ν1)e−ξ − 2ν−1ξ
−2 − ν−1ξ−1 + 2ν1 − ν0 − ν1ξ = 2k2pm (65)

5. Noether Symmetry in F (T ) Gravity

In this section we want to present a brief review on Noether symmetry in F (T ) gravity following to
the paper [41]. Generally speaking, Noether symmetry is a power method to select models motivated
at a fundamental level. It also allows to construct the exact solution of the model. We start from the
point-like Lagrangian of F (T ) gravity:

L(a, ȧ, T, Ṫ ) = a3 (f − fTT )− 6fTaȧ
2 − ρm0 (66)

We now use the Euler–Lagrange equation:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 (67)

where qi are the generalized coordinates of the phase space and qi = a and T . Then we have

a3fTT

(
T + 6

ȧ2

a2

)
= 0 (68)

f − fTT + 2fTH
2 + 4

(
fT
ä

a
+HfTT Ṫ

)
= 0 (69)

Hence as fTT 6= 0 we obtain

T = −6
ȧ2

a2
= −6H2 (70)

that is the Euler constraint of the dynamics. Next using ä/a = H2 + Ḣ , we obtain

48H2fTT Ḣ − 4fT

(
3H2 + Ḣ

)
− f = 0 (71)



Entropy 2012, 14 1634

i.e., the modified second Friedmann equation. Now let us consider the Hamiltonian corresponding to
Lagrangian L [41]:

H =
∑
i

∂L
∂q̇i

q̇i − L (72)

so that

H(a, ȧ, T, Ṫ ) = a3
(
−6fT

ȧ2

a2
− f + fTT +

ρm0

a3

)
(73)

Assuming that the total energyH = 0 (Hamiltonian constraint) and from Equation (70), we get

12H2fT + f =
ρm0

a3
(74)

that is nothing but the first Friedmann equation.
Now we want to present the Noether symmetry for F (T ) gravity in the FRW metric case. To do it,

we introduce the generator of Noether symmetry as [41]

X = α
∂

∂a
+ β

∂

∂T
+ α̇

∂

∂ȧ
+ β̇

∂

∂Ṫ
(75)

where α = α(a, T ) and β = β(a, T ). As is well known, Noether symmetry exists if the equation

LXL = XL = α
∂L
∂a

+ β
∂L
∂T

+ α̇
∂L
∂ȧ

+ β̇
∂L
∂Ṫ

= 0 (76)

has solution. Here LXL is the Lie derivative of the Lagrangian L with respect to the vector X. The
corresponding Noether charge reads as

Q0 =
∑
i

αi
∂L
∂q̇i

= α
∂L
∂ȧ

+ β
∂L
∂Ṫ

= const (77)

From Equation (76) and using the relations α̇ = (∂α/∂a) ȧ+(∂α/∂T ) Ṫ , β̇ = (∂β/∂a) ȧ+(∂β/∂T ) Ṫ ,
we come to the equation

3αa2 (f − fTT )− βa3fTTT − 6ȧ2
(
αfT + βafTT + 2afT

∂α

∂a

)
− 12aȧṪ

∂α

∂T
= 0 (78)

Now we impose that the coefficients of ȧ2, Ṫ 2 and ȧṪ in Equation (78) to be zero. Then we get

a
∂α

∂T
= 0 (79)

αfT + βafTT + 2afT
∂α

∂a
= 0 (80)

3αa2 (f − fTT )− βa3fTTT = 0 (81)

As is known, the constraint (81) is sometimes called Noether condition. The corresponding Noether
charge looks like

Q0 = −12αfTaȧ = const (82)

From Equation (79) it follows that α = α(a). On the other hand, Equation (81) gives us

βafTTT = 3α (f − fTT ) (83)
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Hence we have

fTT

(
2a
dα

da
− 2α

)
+ 3αf = 0 (84)

which we recast as
1− a

α

dα

da
=

3f

2fTT
(85)

We split the last equations into two equations as

nf − fTT = 0 (86)

1− a

α

dα

da
− 3

2n
= 0 (87)

These equations have the solutions [41]

f(T ) = µT n (88)

α(a) = α0 a
1−3/(2n) (89)

where µ and α0 are real constants. So from Equation (83), we get

β(a, T ) = −3α0

n
a−3/(2n) T (90)

Finally we can conclude that the existence of explicit non-zero solutions of f(T ), α and β, implies the
existence of Noether symmetry. Note that Noether symmetry allows us to construct the exact solution of
a(t) for the given f(T ) model. For example, from Equation (82) it follows [41]

ac1 ȧ = c2 (91)

where

c1 =
3

2n
− 1 , c2 =

[
Q0

−12α0µn(−6)n−1

]1/(2n−1)
(92)

Its solution reads as

a(t) = −(1 + c1)(c3 − c2t)1/(1+c1) = (−1)1+2n/3 · 3

2n
(c2t− c3)2n/3 (93)

where c3 = conts. This solution describes the accelerated expansion of the universe as

a(t) ∼ t2n/3 (94)

where its prefactor (−1)1+2n/3 · 3
2n
c
2n/3
2 is not important. As is well-known, in order to get the expanding

universe, the constraint n > 0 is required.

6. The Torsion–Scalar Model

In this section we would like to study the F (T ) gravity in the presence of matter whose Lagrangian is

Lm =
1

2
εφ̇2 − V (φ) (95)
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where φ is a scalar field and V (φ) is the potential depending on φ. The equations of motion assume
the form

−2TFT + F = 2k2[
1

2
εφ̇2 + V ] (96)

−8ḢTFTT + (2T − 4Ḣ)FT − F = 2k2[
1

2
εφ̇2 − V ] (97)

φ̈+ 3Hφ̇+ ε
∂V

∂φ
= 0 (98)

where ε = 1 for the usual case and ε = −1 for the phantom case. From this system we get

εφ̇2 = −8ḢTFTT − 4ḢFT , V = 4ḢTFTT − 2(T − Ḣ)FT + F (99)

where dot denotes the derivative with respect to the time. If we compare these equations with (23)–(25)
we have

ρ =
1

2
εφ̇2 + V, p =

1

2
εφ̇2 − V (100)

For simplicity we restrict ourself to the case F = αT + βT 0.5. Thus,

εφ̇2 = −4αḢ, V = −αT + 2αḢ (101)

and

w = −1 + 4
Ḣ

T
(102)

Let us consider some examples.

6.1. Example 1: a = δ sinhm[µt]

In our first example we consider the following form for the scale factor

a = δ sinhm[µt] (103)

As a consequence

H = µm coth[µt], Ḣ = − µ2m

sinh2[µt]
, φ̇2 =

4αµ2m

ε sinh2[µt]
(104)

So we obtain

φ = φ0 ± 2

√
αµ2m

ε
log[tanh[

µt

2
]], V = 6αm2µ2 coth2[µt]− 2αµ2m

sinh2[µt]
(105)

and the potential takes the form ( tanh[µt
2

] = e
± φ−φ0

2
√
αµ2mε−1 )

V = 3αm2µ2[
1 + e

± φ−φ0√
αµ2mε−1

e
± φ−φ0

2
√
αµ2mε−1

]− αµ2m(1− e±
φ−φ0√
αµ2mε−1 )2

2e
± φ−φ0√

αµ2mε−1

(106)
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6.2. Example 2: a = a0e
βtm

Let us consider the case a = a0e
δ

m+1
tm+1

. Thus, H = δtm and we have

t = [
(φ− φ0)(m+ 1)

±4
√
−αmδε−1

]
2

m+1 , εφ̇2 = −4αmδtm−1 (107)

such that

φ = φ0 ±
4
√
−αmδε−1
m+ 1

t
m+1

2 , V = 6αδ2t2m + 2αmδtm−1 (108)

We finally get

V = 6αδ2[
(φ− φ0)(m+ 1)

±4
√
−αmδε−1

]
4m
m+1 + 2αmδ[

(φ− φ0)(m+ 1)

±4
√
−αmδ

]
2(m−1)
m+1 (109)

6.3. Example 3: a = a0t
n

The next example is given by

a = a0t
n (110)

for which

H =
n

t
, Ḣ = − n

t2
, εφ̇2 =

4αn

t2
, φ− φ0 = ±2

√
αnε−1 ln[t], t = e

± φ−φ0
2
√
αnε−1 (111)

and

V = 2αn(3n− 1)t−2 (112)

The potential assumes the final form

V = 2αn(3n− 1)e
∓ φ−φ0√

αnε−1 (113)

7. The k-Essence

The action of k-essence reads [42–45]

S =

∫
d4x
√
−g[

1

2κ2
R +K(X,φ) + Lm] (114)

The corresponding (closed) set of equations for FRW metric (17) is

3k−2H2 = 2XKX −K + ρm (115)

−k−2(2Ḣ + 3H2) = K + pm (116)

(KX + 2XKXX)Ẋ + 6HXKX −Kφ = 0 (117)
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˙ρm + 3H(ρm + pm) = 0 (118)

where X = −(1/2)φ̇2. The equation for the scalar field φ is given by

−(a3φ̇KX)t = a3Kφ (119)

which corresponds to the Equation (117). In the pure kinetic k-essence case we have Kφ = 0 and from
the last equation one has (see, e.g., [46])

a3φ̇KX = a3
√
−2XKX =

√
κ = const (120)

8. Models of k-Essence for FRW Universe

In what follows we will present some new models of k-essence. All of them may give rise to cosmic
acceleration.

8.1. Example 1: The M12-Model

Let us consider the M12-model with the following Lagrangian

K = ν−m(N)N−m + ...+ ν−1(N)N−1 + ν0(N) + ν1(N)N + ...+ νn(N)Nn (121)

where in general νj = νj(φ) = νj(N) and N = ln (aa−10 ). We study the case m = 0, n = 2, νj = const.
The M12-model becomes

K = ν0 + ν1N + ν2N
2 (122)

To find νj and X we look for H in the form

H = µ0 + µ1N (123)

where µj = consts [in general µj = µj(t)]. This solution corresponds to the scale factor

a = a0e
N (124)

Finally, we obtain the following parametric form of the M12-model (parametric pure kinetic k-essence)

K = −(2µ0µ1 + 3µ2
0)− 2µ1(µ1 + 3µ0)N − 3µ2

1N
2 (125)

X = k−1a60µ
2
1(µ0 + µ1N)2e6N (126)

8.2. Example 2: The M1-Model

Our next example is the M1-model, whose Lagrangian assumes the form

K = ν−m(t)t−m + ...+ ν−1(t)t
−1 + ν0(t) + ν1(t)t+ ...+ νn(t)tn (127)
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where in general νj = νj(φ) = νj(t). Let us explore this model for the case: m = 0, n = 2 and
νj = consts. In this case the M1-model takes the form

K = ν0 + ν1t+ ν2t
2 (128)

To find νj and X we look for the following form of H ,

H = µ0 + µ1t (129)

so that

a = a0e
µ0t+0.5µ1t2 (130)

where µj = consts [in general µj = µj(t)]. As a consequence, we obtain the following explicit form of
the k-essence Lagrangian

K = −(2µ1 + 3µ2
0)− 6µ0µ1t− 3µ2

1t
2 (131)

We also have

2XKX = 3H2 +K = −2Ḣ = −2µ1 (132)

For X we get the following expression

X = γ−12 e6µ0t+3µ1t2 , γ−12 = κ−1a60µ
2
1 (133)

from which

t =
1

3µ1

[−3µ0 ±
√

9µ2
0 + 3µ1 ln (γ2X)] (134)

Finally, we reconstruct the M23-model

K = −2µ1 − 3µ2
0 − µ1 ln[γ2X] = ν0 + ν1 lnX (135)

We recall that in general the M23-model is read as

K = ν−m(t)ζ−m + ...+ ν−1(t)ζ
−1 + ν0(t) + ν1(t)ζ + ...+ νn(t)ζn (136)

where ζ = lnX .]

8.3. Example 3: The M24-Model

Here we present the M24-model

K =
2mλσ2(−2βv + λv2 + λ)(1− v2)

(β − λv)2
− 3[n− mλσ(1− v2)

β − λv
]2 (137)

X = γ3(2βv − λv2 − λ)2(1− v2)2(β − λv)6m−4 (138)
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where γ3 = κ−1α6m2λ2σ6, v = tanh[σt] and λ, σ, α, β, n,m are some constants. Solving the
Equation (116) we obtain

H = n− mλσ(1− v2)
β − λv

(139)

from which we derive the scale factor as

a = α[β − λv]ment (140)

Note that

Ḣ =
mλσ2(2βv − λv2 − λ)(1− v2)

(β − λv)2
(141)

9. The Relation between F (T )-Gravity and k-Essence in the FRW Universe

In this section, we want to analyze the relation between modified teleparallel gravity and pure
kinetic k-essence. Note that we can also consider this relation in the context of general modified
gravity theories.

9.1. General Case

9.1.1. Version-I

Let us consider the following transformation

K = 8ḢTfTT − 2(T − 2Ḣ)fT + f (142)

X = κ−1k−4a6[Ḣ + 0.5k2(ρm + pm)]2 (143)

where T = −6H2. Thus Equations (21)–(23) take the form

0 = −3k−2H2 + 2XKX −K + ρm (144)

0 = k−2(2Ḣ + 3H2) +K + pm (145)

(KX + 2XKXX)Ẋ + 6HXKX = 0 (146)

˙ρm + 3H(ρm + pm) = 0 (147)

These are the equations of motion of pure kinetic k-essence. This result shows that the field equations
of modified teleparallel gravity and pure kinetic k-essence are equivalent to each other. This equivalence
permits to construct a new class of pure kinetic k-essence models starting from some models of modified
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teleparallel gravity. Let us see it for the following modified teleparallel gravity model: f(T ) = αT n

[17,18]. In this case, we have

fT = αnT n−1, fTT = αn(n− 1)T n−2 (148)

Substituting these expressions into the Equations (142) and (143) we get

K = 8αn(n− 1)ḢT n−1 − 2αn(T − 2Ḣ)T n−1 + αT n (149)

X = κ−1k−4a6[Ḣ + 0.5k2(ρm + pm)]2 (150)

Let us consider some specific cases.

(i) If the scale factor behaves as a = a0e
g(t) so that H = ġ, Ḣ = g̈, K and X take the form

K = 8αn(n− 1)g̈(−6)n−1ġ2(n−1) − 2αn(−6ġ2 − 2g̈)(−6)n−1ġ2(n−1) + α(−6)nġ2n (151)

X = κ−1k−4a6g̈2 (152)

If we now consider the simplest case g = t (it means, ġ = 1, g̈ = 0), we get

K = −2αn(−6)n + α(−6)n = (1− 2n)α(−6)n (153)

X = 0 (154)

(ii) A non-trivial model may be obtained from a = a0t
m. In this case H = mt−1, Ḣ = −mt−2, T =

−6m2

t2
and K and X take the form

K = 8αn(n− 1)Ḣ(
−6m2

t2
)n−1 − 2αn(

−6m2

t2
− 2Ḣ)(

−6m2

t2
)n−1 + α(

−6m2

t2
)n (155)

X = κ−1k−4a60m
2t6m−4 (156)

or
K = 2αm(−6m2)n−1[−4n(n− 1) + 2n(1− 3m) + 3m]t−2n (157)

X = κ−1k−4a60m
2t6m−4 = γ−15 t6m−4 (158)

Since t = (γ5X)
1

6m−4 we finally get the following pure kinetic k-essence model

K = 2αm(−6m2)n−1[−4n(n− 1) + 2n(1− 3m) + 3m](γ5X)
n

2−3m (159)
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9.1.2. Version-II

Let us rewrite Equations (21)–(23) as

3k−2H2 = ρeff + ρm (160)

−k−2(2Ḣ + 3H2 = peff + pm (161)

ρ̇m + 3H(ρm + pm) = 0 (162)

where
ρeff = 2TfT − f, peff = 8ḢTfTT − 2(T − 2Ḣ)fT + f (163)

We introduce the following two functions K and X ,

K = 8ḢTfTT − 2(T − 2Ḣ)fT + f, X =
4Ḣ2(2TfTT + fT )2

κa−6
(164)

These functions belong to the system of the Equations (144)–(147).

9.2. Specific Case: φ = φ0 + ln a±
√
12

One specific interesting case is given by

φ = φ0 + ln a±
√
12 (165)

It deserves separate investigation. In fact for this case φ̇ = ±
√

12H so that X = −0.5φ̇2 = −6H2 = T .
The corresponding continuity equation is

φ̈(fT − φ̇2fTT ) + 3Hφ̇fT = 0 (166)

or, in terms of T ,

(fT + 2TfTT )Ṫ + 6HTfT = 0 (167)

where ρ′ = 2TfT − f, p′ = f and ρ̇′ + 3H(ρ′ + p′) = 0. Let us split the Equation (22) into two
separate equations,

4ḢTfTT − (T − 2Ḣ)fT = 0 (168)

and

−4Ḣ + T − f = 2k2pm (169)

Equation (168) is automatically satisfied since it is just an another form for the continuity Equation (166).
So we finally obtain the equation system for F (T )-gravity, which takes the form

−T − 2TfT + f = 2k2ρm (170)
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−4Ḣ + T − f = 2k2pm (171)

(fT + 2TfTT )Ṫ + 6HTfT = 0 (172)

ρ̇m + 3H(ρm + pm) = 0 (173)

After the identification T = X = −6H2 and f = 2k2K, we recover Equations (144)–(147). So we
can conclude that for the special case (165) both F (T )-gravity and pure kinetic k-essence are equivalent
to each other at least at the level of the dynamical equations. Some remarks can be observed from the
continuity Equation (166)[=(167)=(168)]. Two integrals of motion (IjT = 0) appear:

I1 = a−30 a3T 0.5fT , I2 = f − a3T 0.5fT∂
−1
T (a−3T−0.5) (174)

Their general solution is given by

f = C2 + iC1a
2
0∂
−1
T (a−3T−0.5), Cj = const (175)

Finally we would like to present an exact solution for both F (T )-gravity and pure kinetic k-essence. Let
us consider the ΛCDM model for which a−3 = − 1

2ρ0
(T + 2Λ) = − 1

2ρ0
(X + 2Λ) so that

f = f(X) = f(T ) = C2 −
iC1a

3
0

3ρ0
(T 1.5 + 6ΛT 0.5) = C2 −

iC1a
3
0

3ρ0
(X1.5 + 6ΛX0.5) (176)

which is the M32-model. This is the exact solution of the equations of motion of pure kinetic k-essence
and F (T )-gravity simultaneously.

10. F (R, T ) Gravity

We have just considered one generalization of F (T ) in the presence of scalar field. In this section
we would like to present another possible generalization of F (T ) gravity, namely the so-called
F (R, T ) gravity.

10.1. The M37-Model

The action of M37-gravity is given by [36]

S37 =

∫
d4x
√
−g[F (R, T ) + Lm] (177)

where Lm is the matter Lagrangian, εi = ±1 (signature) and

R = u+ ε1g
µνRµν (178)

T = v + ε2Sρ
µν T ρµν (179)

Here u = u(xi; gij, ˙gij, g̈ij, ...; fj) and v = v(xi; gij, ˙gij, g̈ij, ...; gj) are some functions to be defined.
Now we work in the FRW universe with the metric (18). In this case the curvature and torsion scalars
can be written as

R = u+ 6ε1(Ḣ + 2H2) (180)

T = v + 6ε2H
2 (181)
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where, u = u(t, a, ȧ, ä,
...
a , ...; fi) and v = v(t, a, ȧ, ä,

...
a , ...; gi) are some real functions, H = (ln a)t,

while fi and gi are some unknown functions related with the geometry of the spacetime. By introducing
the Lagrangian multipliers we can now rewrite the action (221) as

S37 =

∫
dt a3

{
F (R, T )− λ

[
T − v − 6ε2

ȧ2

a2

]
− γ

[
R− u− 6ε1

(
ä

a
+
ȧ2

a2

)]
+ Lm

}
(182)

where λ and γ are Lagrange multipliers. If we take the variations with respect to T and R of this action
we get

λ = FT , γ = FR (183)

Therefore, the action (182) can be rewritten as

S37 =

∫
dt a3

{
F (R, T )− FT

[
T − v − 6ε2

ȧ2

a2

]
− FR

[
R− u− 6ε1

(
ä

a
+
ȧ2

a2

)]
+ Lm

}
(184)

Then the corresponding point-like Lagrangian reads as

L37 = a3[F − (T − v)FT − (R− u)FR +Lm]− 6(ε1FR − ε2FT )aȧ2 − 6ε1(FRRṘ+ FRT Ṫ )a2ȧ (185)

We finally obtain the following equations of the M37-model [36]:

D2FRR +D1FR + JFRT + E1FT +KF = −2a3ρ

U +B2FTT +B1FT + C2FRRT + C1FRTT + C0FRT +MF = 6a2p (186)

ρ̇+ 3H(ρ+ p) = 0

Here

D2 = −6ε1Ṙa
2ȧ (187)

D1 = 6ε1a
2ä+ a3uȧȧ (188)

J = −6ε1a
2ȧṪ (189)

E1 = 12ε2aȧ
2 + a3vȧȧ (190)

K = −a3 (191)

and

U = A3FRRR + A2FRR + A1FR (192)

A3 = −6ε1Ṙ
2a2 (193)

A2 = −12ε1Ṙaȧ− 6ε1R̈a
2 + a3Ṙuȧ (194)

A1 = 12ε1ȧ
2 + 6ε1aä+ 3a2ȧuȧ + a3u̇ȧ − a3ua (195)

B2 = 12ε2Ṫ aȧ+ a3Ṫ vȧ (196)

B1 = 24ε2ȧ
2 + 12ε2aä+ 3a2ȧvȧ + a3v̇ȧ − a3va (197)

C2 = −12ε1a
2ṘṪ (198)

C1 = −6ε1a
2Ṫ 2 (199)

C0 = −12ε1Ṫ aȧ+ 12ε2Ṙaȧ− 6ε1a
2T̈ + a3Ṙvȧ + a3Ṫ uȧ (200)

M = −3a2 (201)
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The M37-model (221) admits some interesting particular and physically important cases. Let us see
some example.

(i) F (R)-gravity. If the model is independent of the torsion, namely F = F (R, T ) = F (R), and we
assume that u = 0, the action (221) takes the form

SR =

∫
d4xe[F (R) + Lm] (202)

where
R = ε1g

µνRµν (203)

is the curvature scalar. We work with the FRW metric (222). In this case R assumes the form

R = 6(Ḣ + 2H2) (204)

We rewrite the action as
SR =

∫
dtLR (205)

where the Lagrangian is given by

LR = a3(F −RFR + Lm)− 6ε1FRaȧ
2 − 6ε1FRRṘa

2ȧ (206)

The corresponding field equations of F (R) gravity read

6ṘHFRR − (R− 6H2)FR + F = ρ (207)

−2Ṙ2FRRR + [−4ṘH − 2R̈]FRR + [−2H2 − 4a−1ä+R]FR − F = p (208)

ρ̇+ 3H(ρ+ p) = 0 (209)

(ii) F (T )-gravity. Now we assume that the function F = F (R, T ) is independent of the curvature scalar
R and v = 0. In this case we get the modified teleparallel gravity—F (T ) gravity. Its gravitational
action is

ST =

∫
d4xe[F (T ) + Lm] (210)

where e = det (eiµ) =
√
−g. The torsion scalar T is defined as

T = ε2Sρ
µν T ρµν (211)

where

T ρµν ≡ −eρi
(
∂µe

i
ν − ∂νeiµ

)
(212)

Kµν
ρ ≡ −1

2
(T µνρ − T νµρ − Tρµν) (213)

Sρ
µν ≡ 1

2

(
Kµν

ρ + δµρT
θν
θ − δνρT θµθ

)
(214)

For a spatially flat FRW metric (222), we have that the torsion scalar assumes the form

T = Ts = −6H2 (215)
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The action (210) can be written as

ST =

∫
dtLT (216)

where the point-like Lagrangian reads

LT = a3 (F − FTT )− 6FTaȧ
2 − a3Lm (217)

The equations of F(T) gravity look like

12H2FT + F = ρ (218)

48H2FTT Ḣ − FT
(

12H2 + 4Ḣ
)
− F = p (219)

ρ̇+ 3H(ρ+ p) = 0 (220)

10.2. The M43-Model

In this subsection we consider the M43-model which is one of the representatives of F (R, T ) gravity.
The action of M43-model reads as

S43 =

∫
d4x
√
−g[F (R, T ) + Lm]

R = Rs = ε1g
µνRµν (221)

T = Ts = ε2Sρ
µν T ρµν

where Lm is the matter Lagrangian, εi = ±1 (signature), R is the curvature scalar, T is the torsion scalar.
Let us consider the spacetime where the curvature and torsion are written by using the connection Gλ

µν

as a sum of the curvature and torsion, namely

Gλ
µν = ei

λ∂µe
i
ν + ej

λeiνω
j
iµ = Γλµν +Kλ

µν (222)

Here Γjiµ is the Levi–Civita connection and Kj
iµ is the contorsion. The quantities Γjiµ and Kj

iµ are
defined as

Γljk =
1

2
glr{∂kgrj + ∂jgrk − ∂rgjk} (223)

and
Kλ
µν = −1

2

(
T λµν + Tµν

λ + Tνµ
λ
)

(224)

respectively. Here the components of the torsion tensor are given by

T λµν = ei
λT iµν = Γλµν − Γλνµ (225)

T iµν = ∂µe
i
ν − ∂νeiµ + Γijµe

j
ν − Γijνe

j
µ (226)

The curvature Rρ
σµν is defined as

Rρ
σµν = ei

ρejσR
i
jµν = ∂µG

ρ
σν − ∂νGρ

σµ +Gρ
λµG

λ
σν −Gρ

λνG
λ
σµ

= R̄ρ
σµν + ∂µK

ρ
σν − ∂νKρ

σµ +Kρ
λµK

λ
σν −Kρ

λνK
λ
σµ

+ΓρλµK
λ
σν − ΓρλνK

λ
σµ + ΓλσνK

ρ
λµ − ΓλσµK

ρ
λν (227)
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where the Riemann curvature is defined in the standard way

R̄ρ
σµν = ∂µΓρσν − ∂νΓρσµ + ΓρλµΓλσν − ΓρλνΓ

λ
σµ (228)

Now we introduce the curvature and torsion scalars,

R = gijRij (229)

T = Sµνρ T ρµν (230)

where
Sµνρ =

1

2

(
Kµν
ρ + δµρT

θν
θ − δνρT

θµ
θ

)
(231)

Now the M43-model is written in the form of (221).
Now we want to present the M43-model for the spatially flat FRW spacetime. In this case the metric

assumes the form
ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (232)

where a(t) is the scale factor. In this case, the non-vanishing components of the Levi–Civita
connection are

Γ0
00 = Γ0

0i = Γ0
i0 = Γi00 = Γijk = 0

Γ0
ij = a2Hδij (233)

Γijo = Γi0j = Hδij

where H = (ln a)t and i, j, k, ... = 1, 2, 3. Let us calculate the components of torsion tensor. The
non-vanishing components are given by:

T110 = T220 = T330 = a2h

T123 = T231 = T312 = 2a3f, (234)

where h and f are some real functions. Note that the indices of the torsion tensor are raised and lowered
with the metric, namely

Tijk = gklTij
l. (235)

Now we can find the contortion components. We get

K1
10 = K2

20 = K3
30 = 0

K1
01 = K2

02 = K3
03 = h

K0
11 = K0

22 = K0
22 = a2h (236)

K1
23 = K2

31 = K3
12 = −af

K1
32 = K2

13 = K3
21 = af.

The non-vanishing components of the curvature Rρ
σµν are given by

R0
101 = R0

202 = R0
303 = a2(Ḣ +H2 +Hh+ ḣ)

R0
123 = −R0

213 = R0
312 = 2a3f(H + h)

R1
203 = −R1

302 = R2
301 = −a(Hf + ḟ)

R1
212 = R1

313 = R2
323 = a2[(H + h)2 − f 2]. (237)
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Similarly, we write the non-vanishing components of the Ricci curvature tensor Rµν as

R00 = −3Ḣ − 3ḣ− 3H2 − 3Hh

R11 = R22 = R33 = a2(Ḣ + ḣ+ 3H2 + 5Hh+ 2h2 − f 2) (238)

The non-vanishing components of the tensor Sµνρ are

S10
1 =

1

2

(
K10

1 + δ11T
θ0
θ − δ01T θνθ

)
=

1

2
(h+ 2h) = h (239)

S10
1 = S20

2 = S3
30 = 2h (240)

S23
1 =

1

2

(
K23

1 + δ21 + δ31
)

= − f

2a
(241)

S23
1 = S31

2 = S21
3 = − f

2a
(242)

and

T = T 1
10S

10
1 + T 2

20S
20
2 + T 3

30S
30
3 + T 23

1 S1
23 + T 2

31S
31
2 + T 3

12S
12
3 (243)

Now we can write the explicit forms of the curvature and torsion scalars. One has

R = 6(Ḣ + 2H2) + 6ḣ+ 18Hh+ 6h2 − 3f 2 (244)

T = 6(h2 − f 2) (245)

For FRW metric, the M43-model takes the form

S43 =

∫
d4x
√
−g[F (R, T ) + Lm]

R = 6(Ḣ + 2H2) + 6ḣ+ 18Hh+ 6h2 − 3f 2 (246)

T = 6(h2 − f 2)

In this way, we have derived the M43-model as one of geometrical realizations of F (R, T ) gravity by
starting from the pure geometrical point of view.

11. Conclusions

In this work we have presented a brief review on F (T ) gravity. We have investigated generalized
F (T ) modified torsion models, that is, models in which the torsion gravity equations are extended
to scalar fields. This study is a continuation of our investigation program of F (T ) gravity [31]. We
note that the GR case corresponds not only to the model F (T ) = T , but also to our specific model
F (T ) = αT + βT 1/2, for which we obtain the same results.

We also considered the recently developed F (T ) gravity, which is a new modified gravity capable of
accounting for the present cosmic accelerating expansion. In particular, we presented some new models
of F (T ) gravity and k-essence. We analyzed the relation between F (T ) gravity and k-essence. We also
studied some new parametric models of pure kinetic k-essence, presented a short review on Noether
symmetry of F (T ) gravity, and considered some generalizations of F (T ) gravity. Finally we note that it
is interesting to extend these results for the knot universe case [47,48].
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