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Abstract: This a brief review on F'(T') gravity and its relation with k-essence. Modified
teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as
a possible explanation of dark energy. We perform a thorough reconstruction analysis on
the so-called F'(T") models, where F'(T') is some general function of the torsion term, and
deduce the required conditions for the equivalence between of /'(7") models with pure kinetic

k-essence models. We present a new class of models of F'(7)-gravity and k-essence.
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1. Introduction

Recent astrophysical data imply that the current expansion of the universe is accelerating [1]. There
exist different candidates for this acceleration phase. The simplest one is the introduction of the
Cosmological Constant A in the framework of General Relativity (ACDM model), namely an exotic
form of energy (the dark energy) whose Equation of State (EoS) parameter w is equal to minus one
and dynamically remains near this value, but in principle quintessence/phantom-fluid description is not
excluded. Despite the fact that the ACDM is a good candidate to describe our universe, the finite but
very small value of the A causes some well-known problems, such as the difference between the order
of A predicted by quantum field theory (a.k.a., fine-tuning), as well as the time where such acceleration
happen (a.k.a., the coincidence problem). Further, the origin of dark energy is an unsolved question.
Also, the existence of an early accelerated epoch, namely the inflation, introduces a new problem to the
standard cosmology, and various proposals have been made to construct acceptable inflationary model,
including the scalar, spinor SU(2), (non-)abelian vector theory (SU(2)) U(1), etc.
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Another alternative approach to the dark energy puzzle is the modified gravity theories. A typical
modified gravity is a generalization of Einstein’s gravity, where some combination of curvature invariants
is added into the classical Hilbert—Einstein action of General Relativity. This modification may lead to
an accelerated era without invoking the dark energy. The simplest theory of modified gravity is the
F(R) one, where the modification is given by a function of the Ricci scalar only. Another popular
modification is given by the string-inspired Gauss—Bonnet modified theories, where a modification via
the topological invariant four dimensional Gauss—Bonnet GG appears (see the recent reviews [2—13]).
Also it can be represented by the f(R,T) models where T is the trace of the energy-momentum
tensor [14-16]. The field equations of these theories are much more complicated with respect to the
case of General Relativity, since they are fourth order differential equations and it is so difficult to obtain
the exact solutions.

Recently a new type of gravity model, the F'(7T')-gravity, has been proposed. Its field equations are
second order [17,18]. These models are based on the “teleparallel” equivalent of General Relativity
(TEGR) [19-25], which, instead of using the curvature defined via the Levi—Civita connection, uses the
Weitzenbock connection that has no curvature but only torsion (see [24,25] for applications to inflation).
The fact that the field equations of F'(T") gravity are second order makes these theories simpler than the
ones where modification is via curvature invariants, and a deeper investigation on this kind of models is
of extreme interest (see [26—40] for recent developments).

In this paper we give a brief review on F'(7") gravity and its relation with k-essence. We study some
F(T)-models and models of k-essence. In Sections 2 and 3, we present some basic facts on F'(T") gravity.
In the Section 4, we study some models of F'(T") gravity for the FRW spacetime. Noether symmetry in
F(T) gravity was considered in the Section 5. In Section 6, we consider the torsion-scalar model. We
investigate k-essence and its models in Sections 7 and 8. Section 9 is devoted to the study of the relation
between F'(7T') gravity and k-essence and in Section 10 we present some generalizations of F'(T") gravity.

In the last section we give conclusions and general remarks.
2. General Aspects of F'(T') Gravity

The action of F'(T')-gravity reads [17,18,26]

S = / eLd'z (1)
where )
L=—FT)+ L, 2
2kK2 (T)+ @)
Here 7' is the torsion scalar, e = det (ez) = +/—g and L,, is the matter Lagrangian. Here ei are

the components of the vierbein vector field e4 in the coordinate basis ey = ei@u. Note that in the
teleparallel gravity, the dynamical variable is the vierbein field e 4 (z*). To derive the equations of motion
we consider the metric

ds® = gudxtdx” = nabﬁ‘l@b 3)

where

0% = e, dz" , dz" = e 0" 4)



Entropy 2012, 14 1629

g, being the metric of space-time, 7, the Minkowski’s metric, 6 the tetrads and e* u and their inverses
e, the tetrads basis. We note that the tetrad basis satisfy the relations

a v __ SV a n __ ga
e* e =0, el =0 (5)

The root of the metric determinant is given by

e =+/—g = detle" ] (0)
The standard Weitzenbock’s connection reads

I, =e%0¢", =—¢ ,0,e," (7)

Then the components of the torsion and the contorsion are given by

T°, = Lo, =T, =e" (0, — e ) (8)
1
KMVOC = _§ (ijoc - TVMa - Tozw/) )]

Now we define another tensor from the components of torsion and the contorsion as
S M= L KM 4 grrP, — srPr 10
o T\ M a0l s 0l (10
Finally, we define the torsion scalar as usual

T=1",S" (11)

pr™~ o

Let us derive the equations of motion from the Euler—Lagrange equations. In order to use these equations
we first write the quantities

oL oL,,
= F(T ® Fr(T)4e “T° o 12
ger, (Tee,t + eFr(T)4e,T°,., S, + den, (12)
and
oL oL,,
— | = —A4F5(T 78 MY —dee °S P40, T Fpr(T _— 1
aoz |:a<aaeau):| T( )804 (eea SO' ) eea SO’ aa TT( ) + 8a [a(aaeau)] ( 3)

where Fp(T) = dF(T)/dT and Frp(T) = d*F(T)/dT?. Now we use the Euler-Lagrange equation

oL { oL 1
— 0y | =—=——| =0
de®, d(0ue®,)

(14)

Substituting the expressions (12) and (13) into the later equation, we get the equations of motion of the
F(T) gravity (after multiplying by e~'e®;/4)

o — a g 163 o v 1
Sﬁu 0T frr(T) + [e le 50a (€€,7S,") + T7,55," } fr(T) + Z(ng(T) = 47r7;3u (15)
where
etes (OL oL
wo_ B8 Matter Matter
7’13 B 167 { de”, Do {8(3&%)}} (16)

is the gravitational energy momentum tensor.
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3. The FRW Space-Time

We will assume a flat homogeneous and isotropic FRW universe with the metric

ds* = —dt* + a(t)?

7

3
(dz')” (17)

=1

where ¢ is cosmic time and a(t) is the scale factor. Then the modified Friedmann equations and the

continuity equation read (see, e.g., [17,18,26])

—2TFp +F = 2k*p, (18)
—8HTFrp + (2T —4H)Fp — F = 2K*p,, (19)
pm + 3H(pm +pm) = 0 (20)
This set can be rewritten as
—~T—=2Tfr+f = 2k°pn (21)
—8HT frr+ (2T —4H)1+ fp) =T — f = 2k*p,, (22)
pm + 3H(pm +Pm) = 0 (23)

if we consider the following equivalent form of the action

1
5= / dhrel g (T + F(T)) + £, (24)
where f = F — T. Some properties of F(7T)-gravity were studied in [18-36]. The field
equations (21)—(23) are equivalent to
M,F = 2k%p, (25)
MyF = —M;MF = 2k’p,, (26)
Mspm = —Pm 27)
where
M, = —2Tdr+1 (28)
. . . . . 1 . NN
(29)
- 1
M; = —0,+1 (30)

3H
By using these equations we may construct high hierarchy of F'(T") gravity. For the case p,, = p,, = 0
such hierarchy is written as

MI'F, =0 (31)
where I} = F and (forn =1, 2, 3)
AT?*Forp +Fy, = 0 (33)

—8T3 Fyppp — 12T Faypp — 2T Fyr + F3 = 0 (34)
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and so on. From the system (25)—(27) one has that any solution of the Equation (25) automatically solves
the Equations (26) and (27). It means that by solving the Equation (25), we have also a solution for the
Equations (26) and (27). Finally we introduce the effective EoS parameter

Wepp = —1 — 3T H YIn (M F)], = =1 = 37 [In (M, F)] 5 (35)
4. Specific Models of F'(T') Gravity in FRW Universe

Some explicit models of F(T") gravity have recently appeared in the literature (see, e.g., [17,18,26,
27,30,31,34,37]). Here, we would like to present some new models of modified teleparallel gravity.

4.1. Example 1: The M,3-Model

Let us consider the M;3-model. Its Lagrangian is

F(T) = Zn: vi)T! =v_ ()T " + o+ v ()T + 0p(t) + ()T + .o + v, ()T (36)

j=-m

We consider the particular case where m = n = 1 and v; = consts. Thus,
F=v T V'%u+unT Fr=-v. T2 +v,, Fpp=2w_,T73 (37)

By substituting these expressions into (18) and (19) we obtain

3k2H? = Peff + Pm (38)
—k7%(2H 4 3H?) = Deff + Pm (39)
where
pess = k?[BH? — 15v_ 1T + 0.501T — 0.511] (40)
Pepr =k 2[6v_ 1 HT 2 + 150,77 = 0.51 T + 0.51 + 2(vy — 1)H — 3H? (41)

The effective EoS parameter is given by

. 6V HT 2 + 150, T7' — 0.50,T + 0.5y + 2(vy — 1)H — 3H? @)
I pesr 3H? — 1.5v T + 0.50,T — 051,

Let us set v; = 1. Thus,
pes = k2150 T = 050] pepp =k 2[6v HT 2+ 1.50_ 1T~ + 0.51) (43)

and

 Peyy 6 HT 24+ 150,771+ 050 X 6v_ T2

=_1— 44
Peff —1.5v_,T-1 — 0.5 1.5v_4T-1 + 0.5 Sl

Weff
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4.2. Example 2: The M-Model

Our next example is the My;-model
F=T+aT’InT

Now
Fr=1+adT ' InT+aT°", Frp=adé(6 —1)T°?InT + (26 — 1)T°2

As a consequence, Equations (18) and (19) take the form
—T —2aT° — (26 — )T° InT = 2K*p,,
(20 — 1)(T —46H)T° ' InT + T — 4H + 2aT° — 4aH (46 — 1)T°~ = 2k%p,,
One has
perr = 0.5k72[2aT° + (20 — 1)T° In T

Pess = —0.5k72aT° (26 — 1)(T — 40H)In T + 2T — 4(46 — 1) H]

1632

(45)

(46)

(47)

(48)

(49)

(50)

The special case 6 = 1/2 deserves a separate consideration. In this case the above equations take a

simpler form
—T —2aT%° = 2k%p,, T —4H + 2aT"° — 4aHT"° = 2k?p,,
For the effective energy density and pressure we get
pesr = k2T, posp = —k 2T~ (T — 2H)
4.3. Example 3: The Msy-Model

Now we consider the Mss-model
F=T+ f(y), y=tanh[T]
Thus
FT:1+fy(1_y2) FTT:fyy(l_y2)2_2y(1_y2)fy

so that Equations (18) and (19) take the form

~T —2(1 — )T f, + f = 2Ky,

T —4H —8(1 — y*)?THf,, + (16yHT + 2T — AH)(1 — y*) f, — f = 2k*pm,

We have

pesy = 0.5k22(1 = y*)T'f, — f]

Dess = 0.5k 2[8(1 — y*)*TH f,, — (16yHT + 2T — 4H)(1 — y*) f, + f]

The EoS parameter reads

_ 8(L—y»)?THf, — (16yHT + 2T —4H)(1 -y f, + f
Wesf = 20—y2)Tf, — f -

8(1 —y?)*THf,, — (16yHT — 4H)(1 — v f, + f
21— yA)Tf, — f

=1+

(5D

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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4.4. Example 4: The Ms5-Model

In this subsection we will consider the Mys-model
F=Y vt)¢
where § = InT'. We take the case m = n = 1 and v; = consts, namely

F=v_1&" +u+1ig

Thus
F§ = —1/71572 + 1 F&‘ = 21/,1573

and
Fr=(—v_1&%4v)et Frp=Qu a3 4+v &2 —p)e ™

In this case, Equations (18) and (19) lead to

W € v & = 20+ € = 2k,

—4H(4V_1§_3 Frv &2 —v)e ™t = 2w 6 — v 4 20 — vy — i€ = 2K p,,

5. Noether Symmetry in F'(T') Gravity

1633

(60)

(61)

(62)

(63)

(64)

(65)

In this section we want to present a brief review on Noether symmetry in F'(7T") gravity following to

the paper [41]. Generally speaking, Noether symmetry is a power method to select models motivated

at a fundamental level. It also allows to construct the exact solution of the model. We start from the

point-like Lagrangian of F'(T') gravity:
L(a,a,T,T) = a®(f — frT) — 6fraa® — pmo
We now use the Euler-Lagrange equation:
d (85) oL —0
dt \ 9g; 0

where ¢; are the generalized coordinates of the phase space and ¢; = a and T". Then we have

a2
a3fTT (T+ 6—2) =0
a

f_fTT+2fTH2+4(fT%+HfTTT) =0

Hence as f7r # 0 we obtain
-2
T=—6= = —6H>
a

that is the Euler constraint of the dynamics. Next using éi/a = H? + H, we obtain

ASH? frrH — Afp (?,H2 n H) —f=0

(66)

(67)

(68)

(69)

(70)

(71)
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i.e., the modified second Friedmann equation. Now let us consider the Hamiltonian corresponding to
Lagrangian £ [41]:

oL .
WY it (72)
so that "
H(a,a,T,T) = d® (—6fT“—2 — T+ ”—?) (73)
a a

Assuming that the total energy H = 0 (Hamiltonian constraint) and from Equation (70), we get
120 fp + f = " (74)

that is nothing but the first Friedmann equation.
Now we want to present the Noether symmetry for F'(7") gravity in the FRW metric case. To do it,

we introduce the generator of Noether symmetry as [41]

0 9, .0 .0
X—a%+ﬁa—T+a%+ﬁﬁ (75)

where o = a(a,T) and 8 = [B(a,T). As is well known, Noether symmetry exists if the equation

oL oc oL 0L

has solution. Here Lx L is the Lie derivative of the Lagrangian £ with respect to the vector X. The

corresponding Noether charge reads as

oL oL oL
— T = = = 77

Qo z; %5~ “oa + B@T const (77)
From Equation (76) and using the relations & = (9a/da) a+ (0a/dT) T, B = (0B/0a) a+(93/0T) T,
we come to the equation

3aa® (f — frT) — Ba® frrT — 6a0° (a fr+ Bafrr + 2a ng—z> — 12aaT§—; =0 (78)

Now we impose that the coefficients of a2, 7?2 and a7 in Equation (78) to be zero. Then we get

oo
aa_T =0 (79)

oo
afr + Bafrr + 2OLJCT% = 0 (80)
3aad® (f — frT) — Ba’ freT = 0 31)

As is known, the constraint (81) is sometimes called Noether condition. The corresponding Noether
charge looks like
Qo = —12afraa = const (82)

From Equation (79) it follows that & = «(a). On the other hand, Equation (81) gives us

ﬁafTTT = 30& (f — fTT) (83)
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Hence we have

T (Qad—a - 2a> +3af=0 (84)
da
which we recast as p 3f
a do
1— 222 =
ada  2f7T ®5)

We split the last equations into two equations as

nf—frT = 0 (86)
a do 3
1= _ = = 7
ada 2n 0 @7
These equations have the solutions [41]
F(T) = prm (88)
ala) = agal™/C0 (89)

where p and « are real constants. So from Equation (83), we get

B(a,T) = =220 g-3/n (90)
n

Finally we can conclude that the existence of explicit non-zero solutions of f(7"), a and 3, implies the
existence of Noether symmetry. Note that Noether symmetry allows us to construct the exact solution of
a(t) for the given f(7T") model. For example, from Equation (82) it follows [41]

at a = ¢y 91)
where ; o T
AT o L = —12apun(—6)"—1 ©2)
Its solution reads as
a(t) = ~(1+ ex)(e — et /07 = (1405 . 2y — )20 93)

where c3 = conts. This solution describes the accelerated expansion of the universe as

a(t) ~ /3 (94)

L2n/3. 3 2"/ is not important. As is well-known, in order to get the expanding

universe, the constraint n > 0 is required.

where its prefactor (—1)

6. The Torsion—Scalar Model

In this section we would like to study the F'(T") gravity in the presence of matter whose Lagrangian is

L = 36 =~ V(0) 95)
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where ¢ is a scalar field and V' (¢) is the potential depending on ¢. The equations of motion assume
the form

1 .
—2TFr+ F = 2k2[§e¢2 + V]

(96)
. . 1 .
—8HTFrr + (2T —4H)Fr — F = 2k2[§eq§2 —V] (97)
. .oV
3H — =0 98
¢+3Ho+e 96 (98)
where € = 1 for the usual case and € = —1 for the phantom case. From this system we get
e¢* = —8HT Fpr — AHFy,

V =4HTFrp —2(T — H)Fp 4+ F (99)
where dot denotes the derivative with respect to the time. If we compare these equations with (23)—(25)
we have

1 . 1 .
P:§€¢2+V7 p:§e¢2—V

(100)
For simplicity we restrict ourself to the case F' = oT + 375, Thus,
e’ = —daH, V =—-aT +2aH (101)
and
w= 114z (102)
Let us consider some examples.

6.1. Example 1: a = ¢ sinh™[ut]

In our first example we consider the following form for the scale factor

a = §sinh™ [put]
As a consequence

(103)
2 2
: wem ‘9 dap*m
H = pymcoth|ut|, H=-——"—-—, = 104
a ] sinh?[jt] € sinh*[yut] (104
So we obtain
au®m Lt 5 o ) 2001°m
O =¢y£2 log[tanh[—]], V = 6am”u” coth®|ut] — —5— (105)
€ 2 sinh®[t]
:I: ¢_¢0
and the potential takes the form ( tanh[%t] =e 2VauPmel)
1 + ¢;¢0—1 2 1 i\/% 2
V = Sam2u?| +e ¢7: ]_au m(l —e Veu )
+ 0
e 2\/a;/,2me_1

=50 (106)
26 vV auQme_l
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6.2. Example 2: a = age”*"

. _ 5 ym+1
Let us consider the case a = age=+1' . Thus, H = 6t™ and we have

(¢ —do)(m+1), > 12 -1
t= il ep® = —Adamot™
[ +4/—amde! ] ¢
such that
4 - 5 -1 m—+1
b= do £ YL ymE 60622 4+ 2amet™ !
m+1
We finally get
V = 604(52[(¢ - ¢0)(m + 1)]% + 2am5[(¢ - ¢0)(m + 1)]2(7;”7;1)
+4v/ —amde! +4v/—amd
6.3. Example 3: a = apt"
The next example is given by
a = apt"
for which
. : 4 6—dg
H=2 H=-0, =" 0-go=42anelllf], t=c Wor
and

V = 2an(3n — 1)t 2
The potential assumes the final form
6=
V =2an(3n — 1)e Vonet
7. The k-Essence
The action of k-essence reads [42-45]
1
The corresponding (closed) set of equations for FRW metric (17) is

3kT2H? =2XKx — K + p,

—k72(2H + 3H?*) = K + p,

(Kx +2XKxx)X +6HXKy — Ky =0

1637

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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pm + 3H (pm +Dm) =0 (118)

where X = —(1/2)¢?. The equation for the scalar field ¢ is given by
—(a®9Kx ), = a* K, (119)

which corresponds to the Equation (117). In the pure kinetic k-essence case we have K, = 0 and from
the last equation one has (see, e.g., [46])

CoKy = a>V—2XKx = \/k = const (120)
8. Models of k-Essence for FRW Universe

In what follows we will present some new models of k-essence. All of them may give rise to cosmic
acceleration.

8.1. Example 1: The M 5-Model
Let us consider the M;2-model with the following Lagrangian
K=v_n(N)N""+ .. +v 1 (N)N'+15(N)+ v (N)N + ... + v,(N)N" (121)

where in general v; = v;(¢) = v;(N) and N = In (aa,'). We study the case m = 0,n = 2, v; = const.

The M;,-model becomes
K = vy + 1N + vy N? (122)
To find v; and X we look for H in the form
H = po + mN (123)
where 11; = consts [in general ;; = p;(¢)]. This solution corresponds to the scale factor
a = age’ (124)
Finally, we obtain the following parametric form of the M;5-model (parametric pure kinetic k-essence)

K = —(2pop + 345) — 2 (s + 3p0) N — 3pi N* (125)

X =k agu (po + N )?e®N (126)
8.2. Example 2: The M,-Model
Our next example is the M;-model, whose Lagrangian assumes the form

K=v_ )t "+ . +v Ot +wt) + i)t + ... + v ()" (127)
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where in general v; = v;(¢) = v;(t). Let us explore this model for the case: m
v;j = consts. In this case the M;-model takes the form

K =1 —I— l/lt + V2t2
To find v; and X we look for the following form of H,
H = pio + put

so that

2
a = aoeuot-‘roﬁ,ult

1639

= 0,n = 2 and

(128)

(129)

(130)

where p1; = consts [in general 1; = 11;(t)]. As a consequence, we obtain the following explicit form of

the k-essence Lagrangian

K = —(2pu + 3p1) — 6popnt — 3pit?
We also have

OXKy =3H*>+ K = —2H = -2/

For X we get the following expression

X — ’7_1 6uot+3u1t ’72_ —_ 1(18/1%
from which
1
t= 3/“[ 3pto & \/9M0 + 31 In (72.X)]

Finally, we reconstruct the Msz-model
K = —2uy — 3uf — py In[vX] =g+ 1 In X

We recall that in general the Moz-model is read as

K=v_pnt)C™+ ... +v_ () +v(t) + ()¢ + ..+ v (1)

where ( = In X.]
8.3. Example 3: The My,-Model

Here we present the My,-model

2mAo?(=26v + Av? + A)(1 — v?)
(8 = Av)?

mAo(l — U2)]2

K =
b — v

—3n—

X =33(28v — Xo? = A)*(1 — 0*)*(8 — do)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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where 73 = k1a®m?)\%0° v = tanh[ot] and A, 0,a, 3,n,m are some constants. Solving the
Equation (116) we obtain

H=n- W (139)
from which we derive the scale factor as
a = alf — \v|me™ (140)
Note that
i mAo?(28v — Av? — \)(1 — v?) (141)

(8 = Av)?
9. The Relation between F'(T")-Gravity and k-Essence in the FRW Universe

In this section, we want to analyze the relation between modified teleparallel gravity and pure
kinetic k-essence. Note that we can also consider this relation in the context of general modified
gravity theories.

9.1. General Case
9.1.1. Version-I
Let us consider the following transformation

K =8HT frp —2(T — 2H) fr + f (142)

X = k46 [H 4 0.5k (pm + pm)]? (143)
where T' = —6H?. Thus Equations (21)—(23) take the form

0=—-3k"H’+2XKx — K + pn, (144)
0=Fk"2(2H + 3H*) + K + pp, (145)
(Kx +2XKxx)X +6HXKyx =0 (146)
P A 3H (P + D) = 0 (147)

These are the equations of motion of pure kinetic k-essence. This result shows that the field equations
of modified teleparallel gravity and pure kinetic k-essence are equivalent to each other. This equivalence

permits to construct a new class of pure kinetic k-essence models starting from some models of modified
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teleparallel gravity. Let us see it for the following modified teleparallel gravity model: f(T) = aT™
[17,18]. In this case, we have

fr=anT™ ', frr=an(n—1)T"? (148)
Substituting these expressions into the Equations (142) and (143) we get

K =8an(n —1)HT" ' — 2an(T — 2H)T" * 4+ oT" (149)
X =k a8 H 4 0.5k (pp + pim))? (150)
Let us consider some specific cases.

(i) If the scale factor behaves as a = age?® so that H = g, H= g, K and X take the form

K = 8an(n —1)§(—6)""1¢*"= — 2an(—64> — 25)(—6)""1¢*" D + a(—6)"¢*™" (151)

X =k ab? (152)

If we now consider the simplest case g = ¢ (it means, g = 1, g = 0), we get

K = —2an(—6)" 4+ a(—6)" = (1 — 2n)a(—6)" (153)
X=0 (154)
(ii) A non-trivial model may be obtained from a = ayt™. In this case H = mt ™!, H = —mt 2T =

=0m” and K and X take the form

. —6m?* —6m? ., —6m? —6m?
K =8an(n —1)H( = )"t — 2am( = 2H)( = )"+ af > ) (155)
X =kt a§m*om 1 (156)
or
K = 2am(—6m*)" ![~4n(n — 1) + 2n(1 — 3m) + 3m]t " (157)
X =kt aim?tom Tt = A 1ot (158)

Since t = (75X )f)m#—4 we finally get the following pure kinetic k-essence model

K = 2am(—6m?)" " —4n(n — 1) + 2n(1 — 3m) + 3m](y;X)=3m (159)
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9.1.2. Version-II
Let us rewrite Equations (21)—(23) as

3kT*H? = pess + pm

—l{'_Q(QH —|— 3H2 = peff +pm

pm+3H(pm+pm) =0

where
pers =2Tfr — f,  perr =8HT frp —2(T — 2H) fr + f

We introduce the following two functions /K and X,

4H2<2TfTT + fr)?
ka6

K =8HT frpy —2(T —2H)fr+ f, X =
These functions belong to the system of the Equations (144)—(147).
9.2. Specific Case: ¢ = ¢y + In a*V12

One specific interesting case is given by

¢ = go+ma*v"

1642

(160)

(161)

(162)

(163)

(164)

(165)

It deserves separate investigation. In fact for this case ¢ = +tV12H sothat X = —0.5¢> = —6H? =T.

The corresponding continuity equation is

o(fr — észT) + 3H¢fT =0
or, in terms of 7',

(fr + 2T fr0)T + 6HT fr =0

(166)

(167)

where p) = 2T fr — f, p' = fand p' +3H(p' + p') = 0. Let us split the Equation (22) into two

separate equations,
AHT frr — (T — 2H) fr =0
and

—4H +T — f = 2k*p,,

(168)

(169)

Equation (168) is automatically satisfied since it is just an another form for the continuity Equation (166).

So we finally obtain the equation system for F'(7T')-gravity, which takes the form

—T = 2T fr+ f = 2Ky

(170)
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—AH+T — f =2k*p, (171)
(fr + 2T frp)T + 6HT fr =0 (172)
Pm + 3H (pm + pm) = 0 (173)

After the identification T = X = —6H? and f = 2k*K, we recover Equations (144)—(147). So we
can conclude that for the special case (165) both F'(T)-gravity and pure kinetic k-essence are equivalent
to each other at least at the level of the dynamical equations. Some remarks can be observed from the
continuity Equation (166)[=(167)=(168)]. Two integrals of motion (/;7 = 0) appear:

I = ay’a®T* fr, Iy = f—a®T% fr07 (a7°T7%7) (174)
Their general solution is given by
f=Cy+iCai0; (a*T7%), C; = const (175)

Finally we would like to present an exact solution for both F'(7')-gravity and pure kinetic k-essence. Let

us consider the ACDM model for which a™* = —5 (T + 2A) = —5-(X + 2A) so that
_ _ _ 1CLaG (5 0.5\ _ iC1a5 15 0.5
f= F(X) = F(T) = Gy = T 1 6AT0) = €y = (07 1 6AX") (176)
0 0

which is the Ms,-model. This is the exact solution of the equations of motion of pure kinetic k-essence
and F'(T')-gravity simultaneously.

10. F (R, T') Gravity

We have just considered one generalization of F'(T') in the presence of scalar field. In this section
we would like to present another possible generalization of F'(7") gravity, namely the so-called
F(R,T) gravity.

10.1. The M37-M0d€l

The action of M3;-gravity is given by [36]

Sor = /d‘lx\/—g[F(R, T)+ L,,] (177)

where L, is the matter Lagrangian, ¢; = 1 (signature) and
R = u+eg"R, (178)
T = v+eSMT?, (179)

Here u = u(z;; gij, Gij, Gij» -3 [;) and v = v(x;; 945, Gij, Gij, ---; gj) are some functions to be defined.
Now we work in the FRW universe with the metric (18). In this case the curvature and torsion scalars

can be written as

R = u+6e(H+2H?) (180)
T = v+ 6eH? (181)
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where, u = u(t,a,a,d, @,...; f;) and v = v(t,a,a,d, @, ...;g;) are some real functions, H = (Ina),,
while f; and g; are some unknown functions related with the geometry of the spacetime. By introducing
the Lagrangian multipliers we can now rewrite the action (221) as

'2 . .2
Sg7=/dta3{F(R,T)—/\ {T—v—fieg%} - [R—u—(iel (§+%)} +Lm} (182)

where A and ~y are Lagrange multipliers. If we take the variations with respect to 7" and R of this action
we get

Therefore, the action (182) can be rewritten as

2

Ss7 = /dta3 {F(R,T) — Fr {T —v— 662%:| — Fg [R —u — b€ (% + Z—Z)] + Lm} (184)
Then the corresponding point-like Lagrangian reads as
Ls; = a®[F — (T —v)Fp — (R —u)Fr + Ly,) — 6(e1Fr — €2Fp)aa® — 6e,(FrrR + FrrT)aa (185)
We finally obtain the following equations of the Ms;-model [36]:

D2FRR+D1FR+JFRT+E]_FT+KF == —2a3p
U+ BoFrp + BiFr + CoFgrr + Ci Frrr + CoFrr + MF = 6G2P (186)
p+3H(p+p) = 0

Here
Dy, = —6eRd’a (187)
Dy = 6ea%i + dPuqa (188)
J = —6ea’al (189)
B, = 12600 + dPvaa (190)
K = - (191)

and

U = A3Fprr+ AsFrp + A1 Fg (192)
As = —6eR%? (193)
Ay = —12¢, Raa — 661Ra2 + aSRua (194)
Ay = 126,6® + 6ejai + 3aaug + a®iy, — aPu, (195)
By, = 126,Taa+ a*Tv, (196)
By = 24e0* + 1263ai + 3a’av, + a’ivg — a’v, (197)
Cy, = —126a*RT (198)
C; = —66a’T7? (199)
Co = —126,Taa+ 12e,Raa — 661a*T + a® Ruy + a>Tug (200)

M = —3d? (201)
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The Mgs7-model (221) admits some interesting particular and physically important cases. Let us see

some example.

(i) F(R)-gravity. If the model is independent of the torsion, namely F' = F(R,T) = F(R), and we
assume that uv = 0, the action (221) takes the form

Sk = / d*ze[F(R) + L) (202)

where
R=eg""R,, (203)

is the curvature scalar. We work with the FRW metric (222). In this case R assumes the form

R =6(H +2H?) (204)
We rewrite the action as
Sp = / dtLg (205)
where the Lagrangian is given by
Lr = a*(F — RFR + Ly,) — 6e1 Fraa® — 6e, FrpRa’a (206)

The corresponding field equations of F'( R) gravity read

6RHFrp — (R—6H)Fr+F = p (207)
—2R?Fppp + [-ARH — 2R|Fgp + [-2H? —4a”'a+ R|Fg — F = p (208)
p+3H(p+p) = 0 (209)

(it) F(T')-gravity. Now we assume that the function ' = F/(R,T') is independent of the curvature scalar
R and v = 0. In this case we get the modified teleparallel gravity—F'(7T") gravity. Its gravitational
action is

Sr = / d*xe[F(T) + Ly,] (210)

where ¢ = det (¢!,) = y/—g. The torsion scalar 7" is defined as

T = eS8, T*,, (211)
where
T = —ef (046, —0ye),) (212)
K", = —% (TH , — T, — T ") (213)
S = % (K", + 0hT% g — 65T%)) (214)

For a spatially flat FRW metric (222), we have that the torsion scalar assumes the form

T=T,=—6H> (215)
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The action (210) can be written as

Sr = / dtLy

Ly = a* (F — FyT) — 6Frad® — L,

where the point-like Lagrangian reads

The equations of F(T) gravity look like

12H?Fr+F = p
ASH? FrpH — Fy (12H2 + 4H> _F = p
p+3H(p+p) = 0

10.2. The M, 3-Model
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(216)

(217)

(218)
(219)
(220)

In this subsection we consider the M3-model which is one of the representatives of F'(R,T') gravity.

The action of My3-model reads as

S = / Qo /=G F(R.T) + Ly
R = RszelgijuV
T = T, =S, T0,,

(221)

where L,, is the matter Lagrangian, ¢; = £1 (signature), R is the curvature scalar, 7 is the torsion scalar.

Let us consider the spacetime where the curvature and torsion are written by using the connection G* ,,

as a sum of the curvature and torsion, namely

A xq i i g A A
G = e 0"y +eje iy, =17 + K7

(222)

Here Fgu is the Levi—Civita connection and Kfu is the contorsion. The quantities qu and Kfu are

defined as

Iy, = %QZT{akgrj + 0;9rk — Or gk }
and ]

K = (T T 1,0

respectively. Here the components of the torsion tensor are given by
T)\/u/ — ei)\Ti;Ll/ — F)\}U/ o F)\l/p,
Tiu,, = 8Hei,, — &,eiu + Fijuej,, - Fijl,eju
The curvature ¥, is defined as
i pi A A
Rpaw/ = eipe]aRZjuu = aquO'V - aquau + Gp)\uG ov GPAVG on
= Rpa;w + 8/LKPUV - al/Kpa'p, + Kp)\MK)\UZ/ - Kp)\l/K)\U,u,

A A A A
—|—F'§MK ov — I8, K gy + 17, K5, — Lo K

ag

(223)

(224)

(225)
(226)

(227)
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where the Riemann curvature is defined in the standard way

R = 0,10, — 0,17, + 15 T, — %, T (228)

Aus ov AV op

Now we introduce the curvature and torsion scalars,

R = ¢"R; (229)
T = SwTh, (230)

where )
S =3 (g + prge — i) (231)

Now the My3-model is written in the form of (221).
Now we want to present the M,3-model for the spatially flat FRW spacetime. In this case the metric
assumes the form
ds® = —dt* + a*(t)(dz® + dy* + d2?) (232)
where a(t) is the scale factor. In this case, the non-vanishing components of the Levi-Civita

connection are

Fgo = ng = F?o = Féo = F;‘k =0

F?j = a*HJ;, (233)
I, = Ty = Ho;
where H = (Ina); and 4,75, k,... = 1,2,3. Let us calculate the components of torsion tensor. The

non-vanishing components are given by:
Tio = a0 =T33 = a’h
Tios = Toz = Ta1o = 2d°f, (234)

where h and f are some real functions. Note that the indices of the torsion tensor are raised and lowered

with the metric, namely
Tijr = guTy'. (235)

Now we can find the contortion components. We get
K'y = Ky =K’ =0
K'oy = K=K =h
Kon = KO22 = K022 = a’h (236)
K'y3 = K3 =K, =—af
K132 = K213 = K%, = af.
The non-vanishing components of the curvature R”,,,, are given by
Ry = Rl =R =d*(H+H>+ Hh+ h)
Ry = —R%13 =R =2d"f(H +h)
Rl'yps = —R'spe = R0 = —a(Hf + f)
R'2ip = R'siz = R33 = a’[(H + h)* — f7]. (237)
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Similarly, we write the non-vanishing components of the Ricci curvature tensor 12, as

Ry = —3H —3h—3H*—3Hh
Ry = Roy= Ry =d*(H +h+3H*+5Hh + 20> — f?) (238)

The non-vanishing components of the tensor 54" are

1

1
S = 3 (K{° +6,1,° — 6013") = 3 (h+2h) =h (239)
S0 = 53 =550 =2n (240)
1 S
S = S (B2 401 +07) = —- (241)
523 _ 531 — 521 — _i 242
1 2 3 2a ( )
and
T = TypS1% 4 T5n S50 + Ty S50 + T2 Sgs + Ty Sat + T1,S3° (243)

Now we can write the explicit forms of the curvature and torsion scalars. One has

R = 6(H + 2H?) +6h + 18Hh + 6h* — 3> (244)
T = 6(h*—f?) (245)

For FRW metric, the M,3-model takes the form

S43 = /d4$\/ —Q[F(R, T) + Lm]
R = G6(H +2H?) +6h + 18Hh + 6h* — 3> (246)
T = 6(h*~f?)

In this way, we have derived the M 3-model as one of geometrical realizations of F'(R,T') gravity by

starting from the pure geometrical point of view.
11. Conclusions

In this work we have presented a brief review on F'(T') gravity. We have investigated generalized
F(T) modified torsion models, that is, models in which the torsion gravity equations are extended
to scalar fields. This study is a continuation of our investigation program of F(7") gravity [31]. We
note that the GR case corresponds not only to the model F'(7)) = T, but also to our specific model
F(T) = oT + T2, for which we obtain the same results.

We also considered the recently developed F'(T') gravity, which is a new modified gravity capable of
accounting for the present cosmic accelerating expansion. In particular, we presented some new models
of F(T) gravity and k-essence. We analyzed the relation between F'(T") gravity and k-essence. We also
studied some new parametric models of pure kinetic k-essence, presented a short review on Noether
symmetry of F'(T') gravity, and considered some generalizations of F'(T") gravity. Finally we note that it

is interesting to extend these results for the knot universe case [47,48].
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