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Abstract: In this paper, the model of wiretap channel has been reconsidered for the case
that the main channel is controlled by channel state information (side information), and it is
available at the transmitter in a noncausal manner (termed here noncausal side information)
or causal manner (termed here causal side information). Inner and outer bounds are derived
on the capacity-equivocation regions for the noncausal and causal manners, and the secrecy
capacities for both manners are described and bounded, which provide the best transmission
rate with perfect secrecy. Moreover, for the case that the side information is available at
the transmitter in a memoryless manner (termed here memoryless side information), both
the capacity-equivocation region and the secrecy capacity are determined. The results of
this paper extend the previous work on wiretap channel with noncausal side information by
providing an outer bound on the capacity-equivocation region. In addition, we find that the
memoryless side information can not help to obtain the same secrecy capacity as that of the
causal case, and this is different from the well known fact that the memoryless manner can
achieve the capacity of the channel with causal side information.
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1. Introduction

The concept of the wiretap channel was first introduced by A.D. Wyner [1]. It is a kind of degraded
broadcast channel. The wiretapper knows the encoding scheme used at the transmitter and the decoding
scheme used at the legitimate receiver, see Figure 1. The object is to describe the rate of reliable
communication from the transmitter to the legitimate receiver, subject to a constraint of the equivocation
to the wiretapper.

Figure 1. The model of wiretap channel.

After the publication of A.D. Wyner’s work, I. Csiszár and J. Körner [2] investigated a more general
situation: the broadcast channels with confidential messages. It is clear that A.D. Wyner’s wiretap
channel is a special case of the model of I. Csiszár and J. Körner, in a manner that the main channel is
less noisy than the wiretap channel. Furthermore, S.K. Leung-Yan-Cheong and M.E. Hellman studied the
Gaussian wiretap channel (GWC) [3], and showed that its secrecy capacity was the difference between
the main channel capacity and the overall wiretap channel capacity (the cascade of main channel and
wiretap channel).

The coding for channels with causal (past and current) side information at the encoder was first
investigated by C.E. Shannon [4] in 1958. After that, in order to solve the problem of coding for a
computer memory with defective cells, N.V. Kuznetsov and B.S. Tsybakov [5] considered a channel in
the presence of non-causal side information at the transmitter. They provided some coding techniques
without determination of the capacity. The capacity was found in 1980 by S. I. Gel’fand and M. S.
Pinsker [6]. Furthermore, Max H.M. Costa [7] investigated a power constrained additive noise channel,
where part of the noise is known at the transmitter as side information. This channel is also called
dirty paper channel. Based on the dirty paper channel, C. Mitrpant et al. [8] studied the Gaussian
wiretap channel with side information, and provided an inner bound on the capacity-equivocation region.
Furthermore, Y. Chen et al. [9] investigated the discrete memoryless wiretap channel with noncausal side
information, and also provided an inner bound on the capacity-equivocation region. Note that the coding
scheme of [9] is a combination of those in [1,6]. Chen et al. [9] generalize Mitrpant et al.’s work [8]
by extending the Gaussian channel to the discrete memoryless channel (DMC), i.e., the result of [8] can
be obtained from that of [9]. Recently, N. Merhav [10] studied a variation of the wiretap channel, and
obtained the capacity-equivocation region, where both the legitimate receiver and the wiretapper have
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access to some leaked symbols from the source, but the channels for the wiretapper are more noisy than
the legitimate receiver, which shares a secret key with the encoder.

In this paper, we study the model of wiretap channel with side information, see Figure 2. The
transition probability distribution of the main channel depends on a channel state information V N , which
is available at the encoder in a noncausal or causal manner. The wiretapper can get a degraded version
of the symbols Y N via a wiretap channel. Both the main channel and the wiretap channel are discrete
memoryless channels.

Figure 2. Wiretap channel with side information.

Inner and outer bounds are derived on the capacity-equivocation regions for the noncausal and causal
manners (the inner bound for the noncausal manner is in fact equivalent to that of [9]), and the secrecy
capacity for both manners is described and bounded. Moreover, for the case that the side information
is available at the transmitter in a memoryless manner (at time i, the encoder is only allowed to use the
side information Vi), both the capacity-equivocation region and the secrecy capacity are determined. In
Shannon’s well known paper [4], it shows that the optimal way to achieve the capacity of the channel
with causal side information is to use Vi instead of V i for the channel encoder. Then, it is natural to
think about whether the memoryless side information can help to obtain the same secrecy capacity as
that of the wiretap channel with causal side information, and this is also our motivation on the study of
the memoryless model.

Compared with [9], the inner bound on the capacity-equivocation region for the noncausal manner
of this paper, in fact, is equivalent to the achievable region in [9]. However, the region provided in this
paper is easier to understand than that of [9].

The remainder of this paper is organized as follows. In Section 2, we present the basic definitions and
the main results on the capacity-equivocation regions. In Section 3, we prove the outer bounds on the
capacity-equivocation regions for noncausal and causal manners, and provide the converse proof of the
capacity-equivocation region for the memoryless manner. The inner bound for causal manner and the
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direct part of the capacity-equivocation region for the memoryless manner are proved in Section 4. Final
conclusions are presented in Section 5.

2. Notations, Definitions and the Main Results

Throughout the paper, random variables, sample values and alphabets are denoted by capital letters,
lower case letters and calligraphic letters, respectively. A similar convention is applied to the random
vectors and their sample values. For example, UN denotes a random N -vector (U1, ..., UN), and uN =

(u1, ..., uN) is a specific vector value in UN that is the N th Cartesian power of U . UN
i denotes a random

N − i+ 1-vector (Ui, ..., UN), and uNi = (ui, ..., uN) is a specific vector value of UN
i . Let pV (v) denote

the probability mass function Pr{V = v}.
In this section, the model of Figure 2 is considered in three parts. The model of Figure 2 with

noncausal side information is described in Section 2.1, the causal side information is described in
Section 2.2, and the memoryless side information is described in Section 2.3, see the following.

2.1. The Model of Figure 2 with Noncausal Side Information

In this subsection, a description of the wiretap channel with noncausal side information is given by
Definitions 1–4. The inner and outer bounds on the capacity-equivocation region C composed of all
achievable (R, d) pairs are given in Theorem 1 and Theorem 2, respectively, where the achievable (R, d)

pair is defined in Definition 5.

Definition 1 (encoder) The source Sk is defined as (S1, S2, ..., Sk), where Si(1 ≤ i ≤ k) are i.i.d.
random variables that take values in the finite set S. Then H(Sk) = kHS , where HS = H(Si) for
1 ≤ i ≤ k. The side information V N is the output of a discrete memoryless source PV (·), and it is
available at the encoder in a noncausal manner. V N is independent of Sk.

The inputs of the encoder are Sk and V N , while the output is XN . The encoder fN is a
matrix of conditional probabilities fN(xN |sk, vN), where xN ∈ XN , sk ∈ Sk, vN ∈ VN ,∑

xN f
N(xN |sk, vN) = 1, and fN(xN |sk, vN) is the probability that the source sk and the side

information vN are encoded as the channel input xN .

Definition 2 (main channel) The main channel is a DMC with finite input alphabet X ×V , finite output
alphabet Y , and transition probability QM(y|x, v), where x ∈ X , v ∈ V , y ∈ Y . QM(yN |xN , vN) =∏N

n=1QM(yn|xn, vn). The inputs of the main channel are XN and V N , while the output is Y N .

Definition 3 (wiretap channel) The wiretap channel is also a DMC with finite input alphabet Y , finite
output alphabet Z , and transition probability QW (z|y), where y ∈ Y , z ∈ Z . The input and output of
the wiretap channel are Y N and ZN , respectively. The equivocation to the wiretapper is defined as

∆ =
H(Sk|ZN)

H(Sk)
(2.1)

The cascade of the main channel and the wiretap channel is another DMC with transition probability

QMW (z|x, v) =
∑
y∈Y

QW (z|y)QM(y|x, v) (2.2)
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Let CMW be the capacity of the channel QMW .

Note that, (Sk, V N)→ (XN , V N)→ Y N → ZN is a Markov chain in the model of Figure 2.

Definition 4 (decoder) The decoder is a mapping fD : YN → Sk, with input Y N and output
Ŝk = fD(Y N). Let Pe be the error probability, and it is defined as Pr{Sk 6= Ŝk}.

Definition 5 (achievable (R, d) pair in the model of Figure 2) A pair (R, d) (where R, d > 0) is called
achievable if, for any ε > 0, there exists an encoder-decoder (N, k,∆, Pe) such that

HSk

N
≥ R− ε,∆ ≥ d− ε, Pe ≤ ε (2.3)

The capacity-equivocation region C is a set composed of all achievable (R, d) pairs. Inner and outer
bounds on C are respectively provided in the following Theorem 1 and Theorem 2.

Theorem 1 The capacity-equivocation region C of the wiretap channel with noncausal side information
satisfiesRi ⊆ C, where

Ri = {(R, d) : 0 ≤ d ≤ 1

0 ≤ R ≤ I(U ;Y )− I(U ;V )

Rd ≤ min{I(U ;Y )− I(U ;Z), I(U ;Y )− I(U ;V )}}

where the random variables U , X , V , Y and Z satisfy the following Markov chain,

U → (X, V )→ Y → Z

Remark 1 There are some notes on Theorem 1, see the following.

• The range of the random variable U satisfies

‖U‖ ≤ ‖X‖‖V‖+ 3

The proof is similar to that of Theorem 2, and it is omitted here.
• The region Ri, in fact, is equivalent to the achievable region in [9], however, it is easier to

understand than that of [9]. The proof of Theorem 1 is a combination of Gel’fand–Pinsker’s
technique [6] and Wyner’s random binning method [1], and we omit it here.
• Secrecy capacity

The points in Ri for which d = 1 are of considerable interest, which imply the perfect secrecy
H(Sk) = H(Sk|ZN). Clearly, we can easily bound the secrecy capacity Cs of the model of
Figure 2 with noncausal side information by

max min{I(U ;Y )− I(U ;Z), I(U ;Y )− I(U ;V )} ≤ Cs ≤ max(I(U ;Y )− I(U ;V )) (2.4)

Theorem 2 The capacity-equivocation region C, as defined above, satisfies C ⊆ Ro, where

Ro = {(R, d) : 0 ≤ d ≤ 1

0 ≤ R ≤ I(U ;Y )− I(U ;V )

Rd ≤ I(U ;Y )− I(K;Z|A)}



Entropy 2012, 14 1676

where the random variables U , K, A, X , V , Y and Z satisfy the following Markov chains,

(U,K,A)→ (X, V )→ Y → Z

(K,A)→ U → Y → Z

and A may be assumed to be a (deterministic) function of K (these are directly from the definitions of
the random variables U , K, A, X , V , Y and Z, see Equations (3.18), (3.19), (3.20) and (3.21)).

Remark 2 There are some notes on Theorem 2, see the following.

• The ranges of the random variables U , K and A satisfy

‖A‖ ≤ ‖X‖‖V‖

‖K‖ ≤ ‖X‖2‖V‖2

‖U‖ ≤ ‖X‖2‖V‖2(‖X‖‖V‖+ 1)

The proof is in Appendix 5.
• Observing the formula Rd ≤ I(U ;Y )− I(K;Z|A) in Theorem 2, we have

I(U ;Y )− I(K;Z|A) =(a) I(U ;Y )−H(Z|A) +H(Z|K)

≥ I(U ;Y )−H(Z) +H(Z|K)

≥ I(U ;Y )−H(Z) +H(Z|K,U)

=(b) I(U ;Y )−H(Z) +H(Z|U) = I(U ;Y )− I(U ;Z) (2.5)

where (a) is from the fact that A may be assumed to be a (deterministic) function of K, and (b) is
from the Markov chain K → U → Y → Z. Then it is easy to see thatRi ⊆ Ro.

2.2. The Model of Figure 2 with Causal Side Information

The model of Figure 2 with causal side information is similar to the model with noncausal side
information in Section 2.1, except that the side information V N in Definition 1 is known to the encoder
in a causal manner, i.e., at the i-th time (1 ≤ i ≤ N ), the output of the encoder xi = fi(s

k, vi), where
vi = (v1, v2, ..., vi) and fi is the probability that the source sk and the side information vi are encoded as
the channel input xi at time i. Define

fN(xN |sk, vN) =
N∏
i=1

fi(xi|sk, vi) (2.6)

Inner and outer bounds on the capacity-equivocation region Cc for the model of Figure 2 with causal
side information are respectively provided in the following Theorem 3 and Theorem 4.

Theorem 3 The capacity-equivocation region Cc satisfiesRci ⊆ Cc, where

Rci = {(R, d) : 0 ≤ d ≤ 1

0 ≤ R ≤ I(U ;Y )

Rd ≤ I(U ;Y )− I(U ;Z)}



Entropy 2012, 14 1677

where the random variables U , X , V , Y and Z satisfy the following Markov chain,

U → (X, V )→ Y → Z

Remark 3 There are some notes on Theorem 3, see the following.

• The range of the random variable U satisfies

‖U‖ ≤ ‖X‖‖V‖+ 1

The proof is similar to that in Theorem 2, and it is omitted here.
• Secrecy capacity

The points in Rci for which d = 1 are of considerable interest, which imply the perfect secrecy
H(Sk) = H(Sk|ZN). Clearly, we can easily bound the secrecy capacity Cc

s of the model of
Figure 2 with causal side information by

max(I(U ;Y )− I(U ;Z)) ≤ Cc
s ≤ max I(U ;Y ) (2.7)

Theorem 4 The capacity-equivocation region Cc satisfies Cc ⊆ Rco, where

Rco = {(R, d) : 0 ≤ d ≤ 1

0 ≤ R ≤ I(U ;Y )

Rd ≤ I(U ;Y )− I(K;Z|A)}

where the random variables U , K, A, X , V , Y and Z satisfy the following Markov chains,

(U,K,A)→ (X, V )→ Y → Z

(K,A)→ U → Y → Z

and A may be assumed to be a (deterministic) function of K (these are directly from the definitions of
the random variables U , K, A, X , V , Y and Z, see Equations (3.18), (3.19), (3.20) and (3.21)).

Remark 4 There are some notes on Theorem 4, see the following.

• The ranges of the random variables U , K and A satisfy

‖A‖ ≤ ‖X‖‖V‖

‖K‖ ≤ ‖X‖2‖V‖2

‖U‖ ≤ ‖X‖3‖V‖3

The proof is similar to that of Theorem 2, and it is omitted here.
• Since the causal side information is a special case of the noncausal manner, the outer bound Rco

can be directly obtained fromRo by using the fact that U is independent of V .
• Note that I(U ;Y )− I(K;Z|A) ≥ I(U ;Y )− I(U ;Z) (the proof is the same as that in Remark 2),

and therefore, it is easy to see thatRci ⊆ Rco
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2.3. The Model of Figure 2 with Memoryless Side Information

The model of Figure 2 with memoryless side information is similar to the model with causal side
information in Section 2.2, except that the side information V N in Definition 1 is known to the
encoder in a memoryless manner, i.e., at the i-th time (1 ≤ i ≤ N ), the output of the encoder
xi = fi(s

k, vi), where fi is the probability that the source sk and the side information vi are encoded as
the channel input xi at time i. Define

fN(xN |sk, vN) =
N∏
i=1

fi(xi|sk, vi) (2.8)

The capacity of the main channel for the memoryless case is determined by C. E. Shannon [4],

CM = max
pX|U,V (x|u,v)pU (u)

I(U ;Y ) (2.9)

where U → (X, V )→ Y is a Markov chain and ‖U‖ ≤ ‖X‖‖V‖+ 1. The proof of ‖U‖ ≤ ‖X‖‖V‖+ 1

is similar to that of Theorem 2, and it is omitted here.
A function Γ

′
(R) used for describing the capacity-equivocation region composed of all achievable

(R, d) pairs in the model of Figure 2 with memoryless side information is defined in Definition 6.

Definition 6 (function Γ
′
(R)) For R ≥ 0, let

ρ(R) = {pX|U,V (x|u, v)pU(u) : I(U ;Y ) ≥ R} (2.10)

It is easy to see that ρ(R) is empty for R > CM , where CM is the capacity of the main channel, see
Equation (2.9). For 0 ≤ R ≤ CM , denote

Γ
′
(R) = sup

pX|U,V (x|u,v)pU (u)∈ρ(R)

I(U ;Y )− I(U ;Z) (2.11)

The following Lemma 1 provides some properties about Γ
′
(R). The proof of Lemma 1 is in

Appendix 5.

Lemma 1 The quantity Γ
′
(R), where 0 ≤ R ≤ CM , satisfies the following properties:

(i) The “supremum” in the definition of Γ
′
(R) is, in fact, a maximum, i.e., for each R, there exists a

mass function pX|U,V (x|u, v)pU(u) ∈ ρ(R) such that I(U ;Y )− I(U ;Z) = Γ
′
(R).

(ii) Γ
′
(R) is a concave function of R.

(iii) Γ
′
(R) is non-increasing in R.

(iv) Γ
′
(R) is continuous in R.

Our problem in the model of Figure 2 with memoryless side information is to characterize the
capacity-equivocation region Cm composed of all achievable (R, d) pairs. The following Theorem 5 gives
a characterization of the capacity-equivocation region Cm, which is proved in the remaining sections. The
secrecy capacity is defined in Remark 5 (see Equation (2.12)), which is bounded by the Formula (2.14).
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Theorem 5 The capacity-equivocation region Cm is equal toR∗, where

R∗ = {(R, d) : 0 ≤ d ≤ 1

0 ≤ R ≤ CM

Rd ≤ Γ
′
(R)}

Remark 5 There are some notes on Theorem 5, see the following.

• Comparison with A. D. Wyner’s wiretap channel [1]
The main channel capacity CM denoted by Equation (2.9) in Theorem 1 is different from that
of [1]. When the channel state information V is a constant, the model of Figure 2 reduces to A.
D. Wyner’s wiretap channel [1]. Substituting V by a constant and U by X into Equations (2.9),
(2.10) and (2.11), the characters CM , ρ(R), Γ

′
(R) and the regionR∗ are the same as those of [1].

• Secrecy capacity
A transmission rate C

′
s denoted by

C
′

s = max
(R,1)∈R∗

R (2.12)

is called the secrecy capacity in the model of Figure 2 with memoryless side information.
Furthermore, C

′
s is the unique solution of the equation

C
′

s = Γ
′
(C
′

s) (2.13)

and satisfies
0 ≤ Γ

′
(CM) ≤ C

′

s ≤ Γ
′
(0) (2.14)

Proof 1 (Proof of Equations (2.13) and (2.14)) Firstly, since Γ
′
(0) > 0, Γ

′
(CM) − CM ≤ 0 and

Γ
′
(R) − R is a non-increasing function of R, then there exists a unique C∗ ∈ (0, CM ] such that

Γ
′
(C∗) − C∗ = 0 and (C∗, 1) ∈ R∗. Secondly, if (R1, 1) ∈ R∗, then R1 ≤ Γ

′
(R1), so that

Γ
′
(R1)−R1 ≥ 0. Since Γ

′
(R)−R is a non-increasing function of R, we conclude that R1 ≤ C∗.

Thus C∗ is the maximum of those R1 in which (R1, 1) ∈ R∗, i.e., C∗ is the secrecy capacity
C
′
s in the model of Figure 2 with memoryless side information. By using the Formula (2.13),

and the non-increasing property of Γ
′
(·) (see Lemma 1 (iii)), we get Equation (2.14). The proof

is completed.

• Note that in Equation (2.14), we have C
′
s ≤ Γ

′
(0), which implies that C

′
s ≤ max(I(U ;Y ) −

I(U ;Z)). Also note that for the causal model, the secrecy capacity satisfies max(I(U ;Y ) −
I(U ;Z)) ≤ Cc

s ≤ max I(U ;Y ) (see Equation 2.7).
Then, it is easy to see that the memoryless manner for the encoder can not help to obtain the same
secrecy capacity as that of the wiretap channel with causal side information.
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3. Proof of Theorem 2, Theorem 4 and Converse Half of Theorem 5

3.1. Proof of Theorem 2

Suppose (R, d) is achievable, i.e., for any given ε > 0, there exists an encoder-decoder (N, k,∆, Pe)

such that
HSk

N
≥ R− ε,∆ ≥ d− ε, Pe ≤ ε

Then we will show the existence of random variables (U,K,A)→ (X, V )→ Y → Z such that

0 ≤ d ≤ 1 (3.1)

0 ≤ R ≤ I(U ;Y )− I(U ;V ) (3.2)

Rd ≤ I(U ;Y )− I(K;Z|A) (3.3)

3.1.1. Proof of Equation (3.1)

d− ε ≤ ∆ =
H(Sk|ZN)

H(Sk)
≤ H(Sk)

H(Sk)
= 1

Letting ε→ 0, we have d ≤ 1.

3.1.2. Proof of Equations (3.2) and (3.3)

The Formulas (3.2) and (3.3) are proved by Lemma 2, see the following.

Lemma 2 The random vectors Sk, Y N , ZN and the random variables U , K, A, Y , Z of Theorem 2
satisfy:

1

N
H(Sk) ≤ I(U ;Y )− I(U ;V ) + δ(Pe) (3.4)

1

N
H(Sk|ZN) ≤ I(U ;Y )− I(K;Z|A) + δ(Pe) (3.5)

where δ(Pe) = h(Pe) + Pe log(|S| − 1). Note that h(Pe) = −Pe logPe − (1− Pe) log(1− Pe)

Substituting H(Sk) = kHS , H(Sk|ZN )
H(Sk)

= ∆ and Equation (2.3) into Equations (3.4) and (3.5), it is
easy to see that

R− ε ≤ I(U ;Y )− I(U ;V ) + δ(ε) (3.6)

(R− ε)(d− ε) ≤ I(U ;Y )− I(K;Z|A) + δ(ε) (3.7)

Letting ε→ 0 and using the fact that δ(ε)→ 0 as ε→ 0, the Formulas (3.2) and (3.3) are obtained.
It remains to prove Lemma 2, see the following.

Proof 2 (Proof of Lemma 2) The Formula (3.4) is from Equations (3.8), (3.10) and (3.22). The
Formula (3.5) is proved by Equations (3.9), (3.10), (3.14), (3.22) and (3.26).
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<Part i> We begin with the left parts of the inequalities Equations (3.4) and (3.5), see the following.

1

N
H(Sk) =

1

N
(I(Sk;Y N) +H(Sk|Y N))

(1)

≤ 1

N
(I(Sk;Y N) + kδ(Pe))

≤ 1

N
I(Sk;Y N) + δ(Pe) (3.8)

1

N
H(Sk|ZN)

(2)

≤ 1

N
(H(Sk|ZN) + kδ(Pe)−H(Sk|Y N))

=
1

N
(H(Sk|ZN) + kδ(Pe)−H(Sk|Y N) +H(Sk)−H(Sk))

=
1

N
(I(Sk;Y N)− I(Sk;ZN)) + δ(Pe) (3.9)

where (1) and (2) follow from the Fano’s inequality.
<Part ii> The character 1

N
I(Sk;Y N) in Formulas (3.8) and (3.9) can be bounded by Equation (3.10),

see the following.

1

N
I(Sk;Y N)

(a)
=

1

N
(I(Sk;Y N)− I(Sk;V N))

=
1

N

N∑
i=1

(I(Sk;Yi|Y i−1)− I(Sk;Vi|V N
i+1))

=
1

N

N∑
i=1

(H(Yi|Y i−1)−H(Yi|Y i−1, Sk)−H(Yi|Y i−1, Sk, V N
i+1) +H(Yi|Y i−1, Sk, V N

i+1)

−I(Sk;Vi|V N
i+1))

=
1

N

N∑
i=1

(I(Yi;S
k, V N

i+1|Y i−1)− I(Yi;V
N
i+1|Y i−1, Sk)− I(Sk;Vi|V N

i+1))

=
1

N

N∑
i=1

(I(Yi;S
k, V N

i+1|Y i−1)− I(Yi;V
N
i+1|Y i−1, Sk)−H(Vi|V N

i+1)

+H(Vi|V N
i+1, S

k)−H(Vi|V N
i+1, S

k, Y i−1) +H(Vi|V N
i+1, S

k, Y i−1))

=
1

N

N∑
i=1

(I(Yi;S
k, V N

i+1|Y i−1)− I(Yi;V
N
i+1|Y i−1, Sk)− I(Vi;S

k, Y i−1|V N
i+1)

+I(Vi;Y
i−1|V N

i+1, S
k))

(b)
=

1

N

N∑
i=1

(I(Yi;S
k, V N

i+1|Y i−1)− I(Vi;S
k, Y i−1|V N

i+1))

=
1

N

N∑
i=1

(H(Yi|Y i−1)−H(Yi|Y i−1, Sk, V N
i+1)−H(Vi|V N

i+1) +H(Vi|V N
i+1, S

k, Y i−1))

(c)

≤ 1

N

N∑
i=1

(H(Yi)−H(Yi|Y i−1, Sk, V N
i+1)−H(Vi) +H(Vi|V N

i+1, S
k, Y i−1))

=
1

N

N∑
i=1

(I(Yi;S
k, V N

i+1, Y
i−1)− I(Vi;S

k, Y i−1, V N
i+1)) (3.10)
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Formula (a) follows from the fact that Sk is independent of V N .
Formula (b) is from

N∑
i=1

I(Yi;V
N
i+1|Y i−1, Sk) =

N∑
i=1

I(Vi;Y
i−1|V N

i+1, S
k) (3.11)

Formula (c) follows from that V N is composed of N i.i.d. random variables.

Proof 3 (Proof of Equation (3.11)) Since the left part of Equation (3.11) is equal to

N∑
i=1

I(Yi;V
N
i+1|Y i−1, Sk) =

N∑
i=1

N∑
j=i+1

I(Yi;Vj|Y i−1, Sk, V N
j+1) (3.12)

and the right part of Equation (3.11) is equal to

N∑
i=1

I(Vi;Y
i−1|V N

i+1, S
k) =

N∑
i=1

i−1∑
j=1

I(Vi;Yj|V N
i+1, S

k, Y j−1)

=
N∑
j=1

j−1∑
i=1

I(Vj;Yi|Sk, V N
j+1, Y

i−1)

=
N∑
i=1

N∑
j=i+1

I(Vj;Yi|Sk, V N
j+1, Y

i−1) (3.13)

The Formula (3.11) is verified by Equations (3.12) and (3.13).

<Part iii> The character 1
N
I(Sk;ZN) in Formula (3.9) can be bounded by the following

Equation (3.14).

1

N
I(Sk;ZN)

(1)
=

1

N
(I(Sk;ZN)− I(Sk;V N))

=
1

N

N∑
i=1

(I(Sk;Zi|Zi−1)− I(Sk;Vi|V N
i+1))

=
1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk)−H(Zi|Zi−1, Sk, V N
i+1) +H(Zi|Zi−1, Sk, V N

i+1)

−I(Sk;Vi|V N
i+1))

=
1

N

N∑
i=1

(I(Zi;S
k, V N

i+1|Zi−1)− I(Zi;V
N
i+1|Zi−1, Sk)− I(Sk;Vi|V N

i+1))

=
1

N

N∑
i=1

(I(Zi;S
k, V N

i+1|Zi−1)− I(Zi;V
N
i+1|Zi−1, Sk)−H(Vi|V N

i+1)

+H(Vi|V N
i+1, S

k)−H(Vi|V N
i+1, S

k, Zi−1) +H(Vi|V N
i+1, S

k, Zi−1))

=
1

N

N∑
i=1

(I(Zi;S
k, V N

i+1|Zi−1)− I(Zi;V
N
i+1|Zi−1, Sk)− I(Vi;S

k, Zi−1|V N
i+1)

+I(Vi;Z
i−1|V N

i+1, S
k))
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(2)
=

1

N

N∑
i=1

(I(Zi;S
k, V N

i+1|Zi−1)− I(Vi;S
k, Zi−1|V N

i+1))

=
1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk, V N
i+1)−H(Vi|V N

i+1) +H(Vi|V N
i+1, S

k, Zi−1))

(3)
=

1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk, V N
i+1)−H(Vi) +H(Vi|V N

i+1, S
k, Zi−1))

≥ 1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk, V N
i+1)−H(Vi) +H(Vi|V N

i+1, S
k, Zi−1, Y i−1))

(4)
=

1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk, V N
i+1)−H(Vi) +H(Vi|V N

i+1, S
k, Y i−1)) (3.14)

Formula (1) is from the fact that Sk is independent of V N .
Formula (2) follows from

N∑
i=1

I(Zi;V
N
i+1|Zi−1, Sk) =

N∑
i=1

I(Vi;Z
i−1|V N

i+1, S
k) (3.15)

Formula (3) is from the fact that Vi is independent of V N
i+1.

Formula (4) is from the Markov chain Vi → (V N
i+1, S

k, Y i−1)→ Zi−1.

Proof 4 (Proof of Equation (3.15)) Since the left part of Equation (3.15) is equal to

N∑
i=1

I(Zi;V
N
i+1|Zi−1, Sk) =

N∑
i=1

N∑
j=i+1

I(Zi;Vj|Zi−1, Sk, V N
j+1) (3.16)

and the right part of Equation (3.15) is equal to

N∑
i=1

I(Vi;Z
i−1|V N

i+1, S
k) =

N∑
i=1

i−1∑
j=1

I(Vi;Zj|V N
i+1, S

k, Zj−1)

=
N∑
j=1

j−1∑
i=1

I(Vj;Zi|Sk, V N
j+1, Z

i−1)

=
N∑
i=1

N∑
j=i+1

I(Vj;Zi|Sk, V N
j+1, Z

i−1) (3.17)

The Formula (3.15) is verified by Equations (3.16) and (3.17).

<Part iv>(single letter) To complete the proof, we introduce an random variable J , which is
independent of Sk, XN , V N , Y N and ZN . Furthermore, J is uniformly distributed over {1, 2, ..., N}.
Define

A = (ZJ−1, J) (3.18)

K = (ZJ−1, V N
J+1, S

k, J) (3.19)

U = (Y J−1, V N
J+1, S

k, J) (3.20)
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X = XJ , Y = YJ , Z = ZJ , V = VJ (3.21)

<Part v> Then Equation (3.10) can be rewritten as

1

N
I(Sk;Y N) ≤ 1

N

N∑
i=1

(I(Yi;S
k, V N

i+1, Y
i−1)− I(Vi;S

k, Y i−1, V N
i+1))

=
1

N

N∑
i=1

(I(Yi;S
k, V N

i+1, Y
i−1|J = i)− I(Vi;S

k, Y i−1, V N
i+1|J = i))

= I(YJ ;Sk, V N
J+1, Y

J−1|J)− I(VJ ;Sk, Y J−1, V N
J+1|J)

(a)

≤ I(YJ ;Sk, V N
J+1, Y

J−1, J)− I(VJ ;Sk, Y J−1, V N
J+1, J)

≤ I(U ;Y )− I(U ;V ) (3.22)

where (a) is from the fact that VJ is independent of J , i.e., p(VJ = v, J = i) = p(VJ = v)p(J = i).

Proof 5 (Proof of p(VJ = v, J = i) = p(VJ = v)p(J = i)) Since V N is the output of a discrete
memoryless source pV (v), then we have

p(Vi = v) = p(V = v) (3.23)

From <Part iv>, we know that the random variable J is independent of V N , and therefore,

p(VJ = v, J = i) = p(Vi = v, J = i)

= p(Vi = v)p(J = i)

=(1) P (V = v)p(J = i) (3.24)

where (1) follows from Equation (3.23).
On the other hand, the probability p(VJ = v) can be calculated as follows,

p(VJ = v) =
N∑
i=1

p(VJ = v, J = i) =
N∑
i=1

p(Vi = v, J = i)

=(a)

N∑
i=1

p(Vi = v)p(J = i)

=(b)

N∑
i=1

p(V = v)p(J = i)

= p(V = v)
N∑
i=1

p(J = i) = p(V = v) (3.25)

where (a) is from the fact that J is independent of V N , the Formula (b) is from Equation (3.23).
By using Equations (3.24) and (3.25), it is easy to verify that VJ is independent of J , completing

the proof.
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<Part vi> Analogously, Equation (3.14) can be rewritten as

1

N
I(Sk;ZN) =

1

N

N∑
i=1

(H(Zi|Zi−1)−H(Zi|Zi−1, Sk, V N
i+1)−H(Vi) +H(Vi|V N

i+1, S
k, Y i−1))

=
1

N

N∑
i=1

(H(Zi|Zi−1, J = i)−

H(Zi|Zi−1, Sk, V N
i+1, J = i)−H(Vi|, J = i) +H(Vi|V N

i+1, S
k, Y i−1, J = i))

= (a)H(ZJ |ZJ−1, J)−H(ZJ |ZJ−1, Sk, V N
J+1, J)−H(VJ) +H(VJ |V N

J+1, S
k, Y J−1, J)

= H(Z|A)−H(Z|K,A)−H(V ) +H(V |U)

= I(K;Z|A)− I(U ;V ) (3.26)

where (a) follows from the fact that VJ is independent of J .
Substituting Equations (3.22) and (3.26) into Equations (3.8) and (3.9), Lemma 2 is proved.

The Markov chains (U,K,A) → (X, V ) → Y → Z and (K,A) → U → Y → Z are easily verified
by Equations (3.18), (3.19), (3.20) and (3.21).

The proof of Theorem 2 is completed.

3.2. Proof of Theorem 4

Suppose (R, d) is achievable, i.e., for any given ε > 0, there exists an encoder-decoder (N, k,∆, Pe)

such that
HSk

N
≥ R− ε,∆ ≥ d− εPe ≤ ε

Then we will show the existence of random variables (U,K,A)→ (X, V )→ Y → Z such that

0 ≤ d ≤ 1 (3.27)

0 ≤ R ≤ I(U ;Y ) (3.28)

Rd ≤ I(U ;Y )− I(K;Z|A) (3.29)

The Formula (3.27) is from

d− ε ≤ ∆ =
H(Sk|ZN)

H(Sk)
≤ H(Sk)

H(Sk)
= 1

. Letting ε→ 0, we have d ≤ 1.
Since the model of Figure 2 with causal side information is a special case of the model of Figure 2

with noncausal side information, the Formulas (3.28) and (3.29) are obtained from Equations (3.2) and
(3.3), respectively, see the following.

Proof 6 (Proof of Equation (3.28)) The parameter R of Equation (3.28) can be written as follows,

R− ε ≤ H(Sk)

N

≤(a) δ(Pe) +
1

N

N∑
i=1

(H(Yi)−H(Yi|Y i−1, Sk, V N
i+1)−H(Vi) +H(Vi|Y i−1, Sk, V N

i+1))

≤(b) δ(ε) +H(Y )−H(Y |U)

= I(U ;Y ) + δ(ε) (3.30)
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where (a) follows from Equations (3.8) and (3.10), and the Formula (b) is from the definitions of Y , U ,
see Equations (3.20) and (3.21), and Vi is independent of (Y i−1, Sk, V N

i+1).
Letting ε→ 0, the proof of Equation (3.28) is completed.

Proof 7 (Proof of Equation (3.29)) The parameter Rd of Equation (3.29) satisfies

(R− ε)(d− ε) ≤ H(Sk|ZN)

N

≤(a) 1

N
I(Sk;Y N)− 1

N
I(Sk;ZN) + δ(Pe)

≤(b) 1

N

N∑
i=1

(I(Yi;S
k, V N

i+1, Y
i−1)− I(Vi;S

k, Y i−1, V N
i+1)−

H(Zi|Zi−1) +H(Zi|Zi−1, Sk, V N
i+1) +H(Vi)−H(Vi|V N

i+1, S
k, Y i−1)) + δ(Pe)

=(c) 1

N

N∑
i=1

(I(Yi;S
k, V N

i+1, Y
i−1)−H(Zi|Zi−1) +H(Zi|Zi−1, Sk, V N

i+1) + δ(Pe)

≤(d) I(U ;Y )− I(K;Z|A) + δ(ε) (3.31)

where (a) follows from Equation (3.9), the Formula (b) is from Equations (3.10) and (3.14), the Formula
(c) is from the fact that Vi is independent of (Zi−1, Y i−1, Sk, V N

i+1), the Formula (d) is from the definitions
of Y , Z, U , K, A, see Equations (3.18), (3.19), (3.20) and (3.21). Letting ε → 0, the proof of
Equation (3.29) is completed.

The proof of Theorem 4 is completed.

3.3. Converse Half of Theorem 5

In this subsection, we establish the converse theorem of Theorem 5: the region Cm which is composed
of all achievable (R, d) pairs is contained in the setR∗, i.e., Cm ⊆ R∗.

Suppose (R, d) ∈ Cm, i.e., for any given ε > 0, there exists an encoder-decoder (N, k,∆, Pe) such that

HSk

N
≥ R− ε,∆ ≥ d− ε, Pe ≤ ε

Then we will show that (R, d) ∈ R∗, i.e., (R, d) satisfies the following conditions

0 ≤ R ≤ CM , 0 ≤ d ≤ 1 and Rd ≤ Γ
′
(R)

The proof ofR ≤ CM and d ≤ 1 is obvious, and it is omitted here. It only needs to proveRd ≤ Γ
′
(R),

see the following.
The following Lemma 3 provides a Markov chain used in the remaining of this subsection. The proof

of Lemma 3 is in Appendix 5.

Lemma 3 In the model of Figure 2, the random variable Zi and the random vectors Sk and Y i−1 (1 ≤
i ≤ N ) form the following Markov chain:

Y i−1 → Sk → Zi
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The proof of Rd ≤ Γ
′
(R) is considered in the following five steps:

(i) Show that
H(Sk)∆ ≤ I(Sk;Y N |ZN) + kδ(Pe)

(ii) In the right part of step (i), show that

I(Sk;Y N |ZN) ≤
N∑
n=1

(I(Un;Yn|Y n−1)− I(Un;Zn|Y n−1))

(iii) In the right part of step (ii), show that

1

N

N∑
n=1

(I(Un;Yn|Y n−1)− I(Un;Zn|Y n−1)) ≤ Γ
′
(

1

N

N∑
n=1

I(Un;Yn|Y n−1))

(iv) A property about the variable of the function Γ
′
(·) in step (iii) is

k

N
(HS − δ(Pe)) ≤

1

N

N∑
n=1

I(Un;Yn|Y n−1)

(v) Substituting step (ii), step (iii) and step (iv) into step (i), we have

Rd ≤ Γ
′
(R)

3.3.1. Proof of Step (i)

By using Fano’s inequality,

H(Sk|ZN , Y N) ≤ H(Sk|Y N) ≤ kδ(Pe) (3.32)

where δ(Pe) = h(Pe) + Pe log(|S| − 1).
Then we have

H(Sk)∆ = H(Sk|ZN)

≤ H(Sk|ZN) + kδ(Pe)−H(Sk|ZN , Y N)

= kδ(Pe) + I(Sk;Y N |ZN) (3.33)

Thus, the proof of step (i) is completed.

3.3.2. Proof of Step (ii)

I(Sk;Y N |ZN) = H(Sk|ZN)−H(Sk|Y N , ZN)

=(a) H(Sk|ZN)−H(Sk|Y N)

= I(Sk;Y N)− I(Sk;ZN)

= H(Y N)−H(Y N |Sk)−H(ZN) +H(ZN |Sk)

=
N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Sk)−H(Zn|Zn−1) +H(Zn|Zn−1, Sk))
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≤(b)

N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Sk, V N
n+1)−H(Zn|Zn−1, Y n−1) +H(Zn|Sk))

=(c)

N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Sk, V N
n+1)−H(Zn|Y n−1) +H(Zn|Sk, Y n−1))

=(d)

N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Sk, V N
n+1)−H(Zn|Y n−1) +H(Zn|Sk, Y n−1, V N

n+1))

=(e)

N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Un)−H(Zn|Y n−1) +H(Zn|Un, Y n−1))

=
N∑
n=1

(I(Un;Yn|Y n−1)− I(Un;Zn|Y n−1)) (3.34)

where Formula (a) follows from Sk → Y N → ZN , see Lemma 3 in Appendix 5. Formula (b) follows
from the fact that V N

n+1 is independent of Yn, Y n−1, Sk. Formula (c) follows from Zn−1 → Y n−1 → Zn

and Y n−1 → Sk → Zn (see Lemma 2). Formula (d) follows from the fact that V N
n+1 is independent of

Zn, Y
n−1, Sk. Formula (e) follows from the definition that Un = (Sk, Y n−1, V N

n+1), and this is coincident
with the definition of U used in the converse proof of Equation (2.9).

The proof of step (ii) is completed.

3.3.3. Proof of Step (iii)

The proof of step (iii) is considered in two parts. The first part is for some definitions, and the second
part is for the main proof.

• For n = 2, 3, ..., N , and any yn−1 ∈ Yn−1, let

αn(yn−1) = I(Un;Yn|Y n−1 = yn−1) (3.35)

Denote
α1 = I(U1;Y1) (3.36)

It follows from the definition of ρ(R) in Equation (2.10) that the distribution p1, defined by

p1 = Pr{X1 = x|U1 = u, V1 = v}Pr{U1 = u}, u ∈ Ux ∈ X , v ∈ V (3.37)

belongs to ρ(α1). Similarly, for 2 ≤ n ≤ N , let

pn,yn−1 = Pr{Xn = x|Un = u, Vn = v, Y n−1 = yn−1}Pr{Un = u|Y n−1 = yn−1} (3.38)

where u ∈ U , x ∈ X , v ∈ V , yn−1 ∈ Yn−1. Then it is easy to see that pn,yn−1 ∈ ρ(αn(yn−1)).
Thus, from the definition of Γ

′
(R) in Equation (2.11),

Γ
′
(α1) ≥ I(U1;Y1)− I(U1;Z1) (3.39)

and for 2 ≤ n ≤ N , yn−1 ∈ Yn−1,

Γ
′
(αn(yn−1)) ≥ I(Un;Yn|Y n−1 = yn−1)− I(Un;Zn|Y n−1 = yn−1) (3.40)
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• By using the Formulas (3.35) and (3.40), the proof of step (iii) is as follows,

1

N

N∑
n=1

(I(Un;Yn|Y n−1)− I(Un;Zn|Y n−1))

=
1

N

N∑
n=1

∑
yn−1∈Yn−1

Pr{Y n−1 = yn−1}(I(Un;Yn|Y n−1 = yn−1)− I(Un;Zn|Y n−1 = yn−1))

≤(a) 1

N

N∑
n=1

∑
yn−1∈Yn−1

Pr{Y n−1 = yn−1}Γ′(αn(yn−1))

≤(b) Γ
′
(

1

N

N∑
n=1

∑
yn−1∈Yn−1

Pr{Y n−1 = yn−1}αn(yn−1))

=(c) Γ
′
(

1

N

N∑
n=1

I(Un;Yn|Y n−1))

where Formula (a) follows from the inequality Equation (3.40). Formula (b) follows from the
concavity of Γ

′
(R)[Lemma 1 (ii)]. Formula (c) follows from the definition Equation (3.35).

The proof of step (iii) is completed.

3.3.4. Proof of Step (iv)

1

N

N∑
n=1

I(Un;Yn|Y n−1) =
1

N

N∑
n=1

(H(Un|Y n−1)−H(Un|Y n−1, Yn))

=(a) 1

N

N∑
n=1

(H(V N
n+1, S

k|Y n−1)−H(V N
n+1, S

k|Y n−1, Yn))

=(b) 1

N

N∑
n=1

(H(V N
n+1) +H(Sk|V N

n+1, Y
n−1)−H(V N

n+1)−H(Sk|V N
n+1, Y

n−1, Yn))

=
1

N

N∑
n=1

I(Sk;Yn|V N
n+1, Y

n−1)

=
1

N

N∑
n=1

(H(Yn|V N
n+1, Y

n−1)−H(Yn|V N
n+1, Y

n−1, Sk))

=(c) 1

N

N∑
n=1

(H(Yn|Y n−1)−H(Yn|Y n−1, Sk))

=
1

N
(H(Y N)−H(Y N |Sk))

=
1

N
I(Sk;Y N)

=
1

N
(H(Sk)−H(Sk|Y N))

≥(d) 1

N
(kHS − kδ(Pe))
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where Formula (a) follows from the definition that Un = (Sk, Y n−1, V N
n+1). Formulas (b) and (c) follow

from the fact that V N
n+1 is independent of Yn, Y n−1, Sk, Vn. Formula (d) follows from H(Sk) = kHS and

the Fano’s inequality.
The proof of step (iv) is completed.

3.3.5. Proof of Step (v)

Substituting step (ii), step (iii), step (iv) into step (i), and using the non-increasing property of
Γ
′
(R)[Lemma 1 (iii)], it is easy to see that

kHS∆− kδ(Pe)
N

≤ Γ
′
(
kHS − kδ(Pe)

N
) (3.41)

By using the definition of achievable (R, d) pair, i.e., ∆ ≥ d− ε, HSk
N
≥ R− ε, Pe ≤ ε, and the fact that

δ(Pe) ≤ δ(ε), we know from Equation (3.41) that

(R− ε)(d− ε)− δ(ε) ≤ kHS∆− kδ(Pe)
N

≤ Γ
′
(
kHS − kδ(Pe)

N
)

≤(a) Γ
′
(R− ε− δ(ε)) (3.42)

where the formula (a) follows from the non-increasing property of Γ
′
(R) [Lemma 1 (iii)]. In

Equation (3.42), letting ε → 0 and invoking the continuity of Γ
′
(R) [Lemma 1 (iv)] yield Rd ≤ Γ

′
(R).

The proof of step (v) is completed.
The converse part of Theorem 5 is proved.

4. Proof of Theorem 3 and Direct Half of Theorem 5

In this section, all logarithms are taken to the base 2.

4.1. Proof of Theorem 3

In this subsection, we will show the achievability of the region Rci, and we only need to prove that
the pair (R, d = I(U ;Y )−I(U ;Z)

R
) is achievable.

4.1.1. Coding Construction

Given the pair (R, d = I(U ;Y )−I(U ;Z)
R

), let k and N satisfy HSk
N

= R = I(U ;Y )− γ, where γ satisfies
0 ≤ γ ≤(a) I(U ;Z), and (a) is from d = I(U ;Y )−I(U ;Z)

R
) ≤ 1 and R = I(U ;Y )− γ.

A separated source-channel coding method is provided. The source encoder is a mapping

Sk →W = {1, 2, ..., 2kHS(1+k−
1
4 )}

with the input Sk and the output W .
Generate a random code-book composed of 2N(I(U ;Y )−γ1) codewords of uN (γ1 is a small fixed positive

number), and each of them is i.i.d. generated according to pU(u). Divide the code-book into 2kHS(1+k−
1
4 )
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bins, and each bin corresponds to a specific value inW . There are 2NI(U ;Y )−Nγ1−kHS(1+k−
1
4 ) codewords

in each bin. Note that

NI(U ;Y )−Nγ1 − kHS(1 + k−
1
4 ) = NI(U ;Y )−Nγ1 −NR−NRk−

1
4

= NI(U ;Y )−Nγ1 −N(I(U ;Y )− γ)−NRk−
1
4

= Nγ −Nγ1 −NRk−
1
4

≤(1) NI(U ;Z)−Nγ1 −NRk−
1
4 ≤ NI(U ;Z) (4.1)

where (1) is from 0 ≤ γ ≤ I(U ;Z). For a given w, randomly choose a codeword in bin w to transmit.
The xN is generated according to a new discrete memoryless channel (DMC) with inputs uN , vN , and

output xN . The transition probability of this new DMC is pX|U,V (x|u, v). Furthermore, we have

pXN |UN ,V N (xN |uN , vN) =
N∏
i=1

pX|U,V (xi|(ui, vi) (4.2)

For given yN , the legitimate receiver tries to find a sequence uN such that (uN , yN) ∈ TNUY (ε∗∗). If
there exists one sequence, put out the corresponding index ŵ of the bin, else declare a decoding error.
Then, by using the mapping Sk →W , put out the corresponding source ŝk.

4.1.2. Proof of HSk
N
≥ R− ε, Pe ≤ ε, and ∆ ≥ d− ε

By using the above definitions, it is easy to verify that HSk
N

= R ≥ R− ε.
Then, observing the construction of UN , it is easy to see that the codewords of UN is upper-bounded

by 2NI(U ;Y ). Since the main channel can be viewed as an ordinary DMC with input UN and output Y N ,
from the standard channel coding theorem, we have Pr{W 6= Ŵ} → 0 as the coding length N → ∞.
From the source coding theorem, we have Pr{Sk 6= Ŝk} → 0 as k = NR

HS
→ ∞. So we can choose

sufficiently large N to satisfy Pr{Sk 6= Ŝk}+ Pr{W 6= Ŵ} ≤ ε, thus Pe ≤ ε is proved.
It remains to show that ∆ ≥ d− ε, see the following.

4.1.3. Proof of ∆ ≥ I(U ;Y )−I(U ;Z)
R

− ε

Since

H(Sk)∆

N
=

1

N
H(Sk|ZN) =

1

N
(H(Sk, ZN)−H(ZN))

=
1

N
(H(Sk, ZN , UN)−H(UN |Sk, ZN)−H(ZN))

=
1

N
(H(ZN |Sk, UN) +H(Sk) +H(UN |Sk)−H(UN |Sk, ZN)−H(ZN))

=(a) 1

N
(H(ZN |UN) +H(Sk) +H(UN |Sk)−H(UN |Sk, ZN)−H(ZN))

=
1

N
(H(Sk) + I(UN ;ZN |Sk)− I(UN ;ZN))

=
1

N
(H(Sk) +H(ZN |Sk)−H(ZN |Sk, UN)− I(UN ;ZN))

≥(b) 1

N
(H(Sk) +H(ZN |Sk,W )−H(ZN |UN)− I(UN ;ZN))
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=(c) 1

N
(H(Sk) +H(ZN |W )−H(ZN |UN ,W )− I(UN ;ZN))

=
1

N
(H(Sk) + I(UN ;ZN |W )− I(UN ;ZN))

≥(d) I(U ;Y )− γ1 −Rk−
1
4 − δ(ε∗∗)− I(U ;Z) (4.3)

where (a), (b) and (c) follow from Sk → W → UN → ZN , (d) is from H(Sk)
N

= R = I(U ;Y )− γ,

H(UN |W ) =
M∑
i=1

Pr{W = i}H(UN |W = i)

=
M∑
i=1

Pr{W = i} log 2NI(U ;Y )−Nγ1−kHS(1+k−
1
4 )

= NI(U ;Y )−Nγ1 − kHS(1 + k−
1
4 )

= NI(U ;Y )−Nγ1 − kHS −NRk−
1
4 (4.4)

and the fact that given W and ZN , there are 2NI(U ;Y )−Nγ1−kHS(1+k−
1
4 ) codewords left for the

wiretapper, and therefore, by using Equation (4.1) and the standard channel coding theorem, we have
H(UN |W,ZN) ≤ Nδ(ε∗∗), where ε∗∗ is an arbitrary small positive number. Then for sufficiently large
N , choosing ε∗∗, γ1 , Rk−

1
4 such that γ1 + Rk−

1
4 + δ(ε∗∗) ≤ εR, and using H(Sk)

N
= R, we have

∆ ≥ I(U ;Y )−I(U ;Z)
R

− ε. The proof for ∆ ≥ d− ε is completed.
The proof of Theorem 3 is completed.

4.2. Proof of the Direct Half of Theorem 5

In this subsection we establish the direct part of Theorem 5 (about existence), i.e.,R∗ ⊆ Cm. Suppose
(R, d) ∈ R∗, i.e., (R, d) satisfies the following conditions:

0 ≤ R ≤ CM , 0 ≤ d ≤ 1 and Rd ≤ Γ
′
(R)

We will show that (R, d) ∈ R, that is to say, (R, d) is achievable, i.e., for any given ε > 0, there exists
an encoder-decoder (N, k,∆, Pe) such that

HSk

N
≥ R− ε,∆ ≥ d− ε, Pe ≤ ε

A sufficient condition of the corresponding proof is to show that the (R, d) pair satisfying

Rd = Γ
′
(R) (4.5)

is achievable, see the remaining of this section. The construction of the code is introduced in Section
4.2.1. For any given ε > 0, the proofs of HSk

N
≥ R− ε and ∆ ≥ d− ε are given in Section 4.2.2. Section

4.2.3 is about Pe ≤ ε.

4.2.1. Code Construction

The existence of the encoder-decoder is under the sufficient condition Rd = Γ
′
(R). Let k and N

satisfy HSk
N

= R. Choose a probability mass function Pr{X∗ = x|U∗ = u, V = v}Pr{U∗ = u}
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such that I(U∗;Y ∗) ≥ R and I(U∗;Y ∗) − I(U∗;Z∗) = Γ
′
(R), where U∗ and V are the inputs of the

channel encoder, while X∗ is the output, Y ∗ and Z∗ are the respective outputs of the main channel and
the wiretap channel.

A separated source-channel coding method is provided. The source encoder is a mapping
Sk → {1, 2, ...,M}, with the input Sk and the output W . According to the specific value of W ,
generate M1 codewords {uN(w,m) : 1 ≤ w ≤ M, 1 ≤ m ≤ M2} i.i.d. according to Pr{U∗ = u},
where M1 = 2NI(U

∗;Y ∗), M = 2kHS(1+k−
1
4 ) and M2 = M1

M
= 2NI(U

∗;Y ∗)−kHS(1+k−
1
4 ) (note that

1
N

logM2 ≤ I(U∗;Z∗)− ε, and this is from the similar argument in [1], p. 1377).
For a given w, there is a corresponding subcode Cw = {uN(w, 1), ..., uN(w,M2)}. Randomly choose

a codeword uN(w,m) from Cw to transmit.
The xN is generated according to a new discrete memoryless channel (DMC) with inputs uN(w,m),

vN , and output xN . The transition probability of this new DMC is pX∗|U∗,V (x|u, v). Furthermore,
we have

pXN |UN ,V N (xN |uN(w,m), vN) =
N∏
i=1

pX∗|U∗,V (xi|(ui, vi) (4.6)

The inputs of the main channel are xN and vN , while the output is yN . In the decoding scheme, for
given yN , try to find a codeword uN(ŵ, m̂) such that (uN(ŵ, m̂), yN) ∈ TNUY (ε∗∗∗∗). If there is one or
more such codeword, choose one and put out the corresponding ŵ. According to ŵ and the mapping
FD : {1, 2, ...,M} → Sk, put out the corresponding ŝk.

4.2.2. Proofs of HSk
N
≥ R− ε and ∆ ≥ d− ε

Since HSk
N

= R, it is easy to see that HSk
N
≥ R − ε for any ε > 0. It remains to show that ∆ ≥ d− ε,

see the Formulas (4.7), (4.8), (4.12), (4.16) and (4.18).

H(Sk)∆

N
=

1

N
H(Sk|ZN) =

1

N
(H(Sk, ZN)−H(ZN))

=
1

N
(H(Sk, ZN , UN)−H(UN |Sk, ZN)−H(ZN))

=
1

N
(H(ZN |Sk, UN) +H(Sk) +H(UN |Sk)−H(UN |Sk, ZN)−H(ZN))

=(a) 1

N
(H(ZN |UN) +H(Sk) +H(UN |Sk)−H(UN |Sk, ZN)−H(ZN))

=
1

N
(H(Sk) + I(UN ;ZN |Sk)− I(UN ;ZN))

=
1

N
(H(Sk) +H(ZN |Sk)−H(ZN |Sk, UN)− I(UN ;ZN))

≥(b) 1

N
(H(Sk) +H(ZN |Sk,W )−H(ZN |UN)− I(UN ;ZN))

=(c) 1

N
(H(Sk) +H(ZN |W )−H(ZN |UN ,W )− I(UN ;ZN))

=
1

N
(H(Sk) + I(UN ;ZN |W )− I(UN ;ZN)) (4.7)

where (a), (b) and (c) follow from Sk → W → UN → ZN . Then, we will estimate the two characters
I(UN ;ZN |W ) and I(UN ;ZN), respectively.
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•
I(UN ;ZN |W ) ≥ logM2 − h(λ̄)− λ̄ logM2 (4.8)

where λ̄ =
∑M

i=1 Pr{W = i}λi, and λi is the resulting error probability of a code
Ci = {cN(i, 1), ..., cN(i,M2)} used on the channel QMW .

Proof 8 (Proof of Equation (4.8))

I(UN ;ZN |W ) = H(UN |W )−H(UN |W,ZN) (4.9)

H(UN |W ) =
M∑
i=1

Pr{W = i}H(UN |W = i)

=
M∑
i=1

Pr{W = i} logM2

= logM2 (4.10)

H(UN |W,ZN) =
M∑
i=1

Pr{W = i}H(UN |W = i, ZN)

≤(a)

M∑
i=1

Pr{W = i}(h(λi) + λi logM2)

≤(b) h(
M∑
i=1

Pr{W = i}λi) +
M∑
i=1

Pr{W = i}λi logM2

=(c) h(λ̄) + λ̄ logM2 (4.11)

Formula (a) follows from the Fano’s inequality. Formula (b) follows from the concavity of h(·).
Formula (c) follows from the definition of λ̄ =

∑M
i=1 Pr{W = i}λi.

Substituting Equations (4.10) and (4.11) into Equation (4.9), we get Equation (4.8).

• Since UN is composed of N i.i.d. random variables with probability mass function
Pr{U∗ = u}, u ∈ U , and V N is available at the encoder in a memoryless case, we have

1

N
I(UN ;ZN) =

1

N

N∑
n=1

I(Un;Zn)

= I(U∗;Z∗) (4.12)

Substituting H(Sk)
N

= R, Equations (4.8) and (4.12) into Equation (4.7),

R∆ ≥ H(Sk)

N
+

logM2

N
− h(λ̄)

N
− λ̄ logM2

N
− I(U∗;Z∗) (4.13)

For H(Sk) = kHS and logM2 = NI(U∗;Y ∗) − kHS(1 + k−
1
4 ), the Formula (4.13) can be written

as follows,

R∆ ≥ I(U∗;Y ∗)− kHS

N
k−

1
4 − h(λ̄)

N
− λ̄ logM2

N
− I(U∗;Z∗) (4.14)
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Since kHS

N
= R and I(U∗;Y ∗)− I(U∗;Z∗) = Γ

′
(R), we know from Equation (4.14) that

R∆ ≥ Γ
′
(R)−Rk−

1
4 − h(λ̄)

N
− λ̄ logM2

N
(4.15)

Rk−
1
4 + h(λ̄)

N
+ λ̄ logM2

N
in the right part of Equation (4.15) is estimated as follows. Since the channel

QMW can be viewed as an ordinary DMC with input UN and output ZN , by using the similar argument
in [1], p. 1377, λ̄→ 0 as the coding length N →∞. So with sufficiently large N, we choose N to satisfy

Rk−
1
4 +

h(λ̄)

N
+
λ̄ logM2

N
≤ εR (4.16)

Substituting Equation (4.16) into Equation (4.15),

R∆ ≥ Γ
′
(R)− εR (4.17)

Then by using Equation (4.5), Formula (4.17) can be rewritten as

∆ ≥ Γ
′
(R)

R
− ε = d− ε (4.18)

The proof of ∆ ≥ d− ε is completed.

4.2.3. Proof of Pe ≤ ε

Pe = Pr{Sk 6= Ŝk} ≤ Pr{Sk 6= FD(W )} + Pr{W 6= Ŵ}. Since the main channel can be
viewed as an ordinary DMC with input UN and output Y N , from the standard channel coding theorem,
we have Pr{W 6= Ŵ} → 0 as the coding length N → ∞. From the source coding theorem, we
have Pr{Sk 6= FD(W )} → 0 as k = NR

HS
→ ∞. So we can choose sufficiently large N to satisfy

Pr{Sk 6= FD(W )}+ Pr{W 6= Ŵ} ≤ ε, thus Pe ≤ ε. The proof is completed.

5. Conclusions

In this paper, we study the model of wiretap channel with side information. Inner and outer bounds
are derived on the capacity-equivocation regions for the noncausal and causal manners (the inner bound
for the noncausal manner is in fact equivalent to that of [9]), and the secrecy capacities for both manners
are described and bounded. Moreover, for the case that the side information is available at the transmitter
in a memoryless manner, both the capacity-equivocation region and the secrecy capacity are determined.
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Appendix

Size Constraints of the Auxiliary Random Variables in Theorem 2

By using the support lemma (see [11], p. 310), it suffices to show that the random variables U , A
and K can be replaced by new ones, preserving the Markovity (U,A,K) → (X, V ) → Y → Z and
the characters I(U ;Y ), I(U ;V ), H(Z|A), H(Z|K), and furthermore, the range of the new U , A and K
satisfies: ‖A‖ ≤ ‖X‖‖V‖, ‖K‖ ≤ ‖X‖2‖V‖2, ‖U‖ ≤ ‖X‖2‖V‖2(‖X‖‖V‖+ 1). The proof of which is
in the reminder of this section.

• (Proof of ‖A‖ ≤ ‖X‖‖V‖)
Define the following continuous scalar functions of p̄ :

fXV (p̄) = pXV (x, v), fZ(p̄) = H(Z)

Since there are ‖X‖‖V‖ − 1 functions of fXV (p̄), the total number of the continuous scalar
functions of p̄ is ‖X‖‖V‖.
Let p̄XV |A = Pr{X = x, V = v|A = a}. With these distributions p̄XV |A, we have

pXV (x, v) =
∑
a∈A

p(A = a)fXV (p̄XV |A) (1)

H(Z|A) =
∑
a∈A

p(A = a)fZ(p̄XV |A) (2)

According to the support lemma ([11], p. 310), the random variableA can be replaced by new ones
such that the new A takes at most ‖X‖‖V‖ different values and the expressions in Equations (1)
and (2) are preserved.
• (Proof of ‖K‖ ≤ ‖X‖2‖V‖2)

Once the alphabet of A is fixed, we apply similar arguments to bound the alphabet of K, see the
following. Let p̄ = pXV (x, v), define the following continuous scalar functions of p̄ :

fXV (p̄) = pXV (x, v), fZ(p̄) = H(Z)

Since there are ‖X‖‖V‖ − 1 functions of fXV (p̄), the total number of the continuous scalar
functions of p̄ is ‖X‖‖V‖.
Let p̄XV |K = Pr{X = x, V = v|K = k}. With these distributions p̄XV |K , we have

pXV |A(x, v|a) =
∑
u∈K

p(K = k|A = a)fXV (p̄XV |K) (3)

H(Z|K,A) =
∑
k∈K

p(K = k|A = a)fZ(p̄XV |K) (4)

According to the support lemma ([11], p. 310), for every fixed a, the random variable K can be
replaced by new ones such that the new K takes at most ‖X‖‖V‖ + 1 different values and the
expressions Equations (3) and (4) are preserved. Therefore, ‖K‖ ≤ ‖X‖2‖V‖2 is proved.
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• (Proof of ‖U‖ ≤ ‖X‖2‖V‖2(‖X‖‖V‖+ 1))
Once the the alphabet of K is fixed, we apply similar arguments to bound the alphabet of U , see
the following. Define the following continuous scalar functions of p̄ :

fXV (p̄) = pXV (x, v), fY (p̄) = H(Y ), fV (p̄) = H(V )

Since there are ‖X‖‖V‖ − 1 functions of fXV (p̄), the total number of the continuous scalar
functions of p̄ is ‖X‖‖V‖+ 1.
Let p̄XV |U = Pr{X = x, V = v|U = u}. With these distributions p̄XV |U , we have

pXV |K(x, v|k) =
∑
u∈U

p(U = u|K = k)fXV (p̄XV |U) (5)

I(U ;Y ) = fY (p̄)−
∑
u∈U

p(U = u|K = k)fY (p̄XV |U) (6)

I(U ;V ) = fV (p̄)−
∑
u∈U

p(U = u|K = k)fV (p̄XV |U) (7)

According to the support lemma ([11], p. 310), for every fixed k, the random variable U can be
replaced by new ones such that the new U takes at most ‖X‖‖V‖ + 1 different values and the
expressions in Equations (5–7) are preserved. Therefore, ‖U‖ ≤ ‖X‖2‖V‖2(‖X‖‖V‖ + 1) is
proved.

Proof of Lemma 1

Proof of (i)

Since I(U ;Y )− I(U ;Z) and I(U ;Y ) are continuous functions of Pr{X = x, U = u|V = v}, using
similar argument of [1], p. 1382, we conclude that I(U ;Y )− I(U ;Z) has a maximum on ρ(R).

Proof of (ii)

Let 0 ≤ R1, R2 ≤ CM and 0 ≤ θ ≤ 1, we will show that Γ
′
(θR1 + (1 − θ)R2) ≥ θΓ

′
(R1) + (1 −

θ)Γ
′
(R2), see the Formulas (3) and (8).

Let Pr{U ′ = u,X
′

= x|V = v} ∈ ρ(R1) achieve Γ
′
(R1), i.e., I(U

′
;Y

′
) ≥ R1 and I(U

′
;Y

′
) −

I(U
′
;Z
′
) = Γ

′
(R1). Also let Pr{U ′′ = u,X

′′
= x|V = v} ∈ ρ(R2) achieve Γ

′
(R2), i.e., I(U

′′
;Y

′′
) ≥

R2 and I(U
′′
;Y

′′
) − I(U

′′
;Z
′′
) = Γ

′
(R2). Note that U ′ → Y

′ → Z
′ and U

′′ → Y
′′ → Z

′′ are
two Markov chains. The coefficient θ is determined by a random variable Q in Figure 3, such that
Pr{Q = 1} = θ and Pr{Q = 2} = 1 − θ. Q is independent of V , U ′ , U ′′ , Y ′ , Y ′′ , Z ′ and Z ′′ . By
using U ′ → Y

′ → Z
′ , U ′′ → Y

′′ → Z
′′ and the fact that Q is independent of U ′ , U ′′ , Y ′ , Y ′′ , Z ′ , Z ′′ ,

we conclude that Q→ U → Y → Z. Then we have,

I(U ;Y ) = H(Y )−H(Y |U)

= H(Y )−H(Y |U,Q) (1)

≥ H(Y |Q)−H(Y |U,Q)

= I(U ;Y |Q)
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= Pr{Q = 1}I(U ;Y |Q = 1) + Pr{Q = 2}I(U ;Y |Q = 2)

= θI(U
′
;Y

′
) + (1− θ)I(U

′′
;Y

′′
) (2)

≥ θR1 + (1− θ)R2 (3)

Formula (1) follows from Q → U → Y . Formula (2) follows from that Q is independent of
U
′
, U
′′
, Y

′
, Y

′′ .

Figure 3. The definition of the random variable Q.

From the definition of Γ
′
(R) and the Formula (3),

Γ
′
(θR1 + (1− θ)R2) ≥ I(U ;Y )− I(U ;Z)

= H(U |Z)−H(U |Y )

= H(U |Z)−H(U |Y, Z) (4)

= I(U ;Y |Z)

= H(Y |Z)−H(Y |U,Z)

= H(Y |Z)−H(Y |U,Z,Q) (5)

≥ H(Y |Z,Q)−H(Y |U,Z,Q)

= I(U ;Y |Z,Q)

= Pr{Q = 1}I(U ;Y |Z,Q = 1) + Pr{Q = 2}I(U ;Y |Z,Q = 2)

= θI(U
′
;Y

′|Z ′) + (1− θ)I(U
′′
;Y

′′|Z ′′) (6)

= θ(I(U
′
;Y

′
)− I(U

′
;Z
′
)) + (1− θ)(I(U

′′
;Y

′′
)− I(U

′′
;Z
′′
)) (7)

= θΓ
′
(R1) + (1− θ)Γ′(R2) (8)

Formula (4) follows from U → Y → Z. Formula (5) follows from H(Y |U,Z) = H(Y |U,Z,Q).
Formula (6) follows from the fact that Q is independent of U ′ , U ′′ , Y ′ , Y ′′ , Z ′ , Z ′′ . Formula (7) follows
from U

′ → Y
′ → Z

′ and U ′′ → Y
′′ → Z

′′ .

Proof 9 (Proof of Equation (5))

H(Y |U,Z)−H(Y |U,Z,Q) = I(Y,Q|U,Z)

= H(Q|U,Z)−H(Q|U,Z, Y )

= (a)H(Q|U)−H(Q|U)

= 0
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where (a) follows from Q→ U → Y → Z, completing the proof.

The proof of (ii) is completed.

Proof of (iii)

This part is from the definition of Γ
′
(R), since ρ(R) is a non-increasing set.

Proof of (iv)

The proof of (iv) is similar to [1], p. 1383.
The proof of Lemma 1 is completed.

Proof of Lemma 3

Lemma 4 Note that in the model of Figure 2, (Sk, V N) → (XN , V N) → Y N → ZN is assumed to be
a Markov chain, then we have Sk → (XN , V N)→ Y N → ZN .

Proof 10 Sk → (XN , V N)→ Y N → ZN is a Markov chain if and only if Sk → (XN , V N)→ Y N and
(Sk, XN , V N)→ Y N → ZN are Markov chains, see [12], p. 10.

Since (Sk, V N)→ (XN , V N)→ Y N → ZN is a Markov chain, then we have

H(Y N |XN , V N , Sk, V N) = H(Y N |XN , V N , Sk) = H(Y N |XN , V N),

H(ZN |XN , V N , Sk, V N , Y N) = H(ZN |XN , V N , Sk, Y N) = H(ZN |Y N)

which imply that Sk → (XN , V N)→ Y N and (Sk, XN , V N)→ Y N → ZN . Lemma 4 is proved.

The proof of the Markov chain in Lemma 3 in the form of probability mass functions depends on the
joint probability distribution P (ZN = zN , Y N = yN , XN = xN , V N = vN , Sk = sk), see the following.

P (ZN = zN , Y N = yN , XN = xN , V N = vN , Sk = sk)

= P (ZN = zN |Y N = yN)P (Y N = yN |XN = xN , V N = vN) ·
P (XN = xN |V N = vN , Sk = sk)P (Sk = sk)P (V N = vN) (9)

= P (Sk = sk)
N∏
n=1

P (Zn = zn|Yn = yn)P (Yn = yn|Xn = xn, Vn = vn) ·

P (Xn = xn|Vn = vn, S
k = sk)P (Vn = vn) (10)

Formula (9) is from Sk → (XN , V N)→ Y N → ZN (see Lemma 3) and the fact that Sk is independent
of V N . Formula (10) is from Equation (2.8), the properties of the discrete memoryless channel and the
fact that V N is composed of N i.i.d. random variables.
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Proof of Lemma 3

The proof is considered in two parts. The first part is to calculate P (Y i−1 = yi−1, Zi = zi, S
k =

sk), which is obtained from the joint probability distribution P (ZN = zN , Y N = yN , XN = xN ,

V N = vN , Sk = sk). The second part is to prove Y i−1 → Sk → Zi by Equations (15) and (17).
First part. P (Zi = zi, S

k = sk, Y i−1 = yi−1) is calculated as follows, where zi, yi−1, sk are fixed.
Note that zN∗ = (z1, z2, ..., zi−1, zi+1, ..., zN).

P (Zi = zi, S
k = sk, Y i−1 = yi−1)

=
∑

zN
∗
:N∗=IN\{i}

yN
i

,vN ,xN

P (ZN = zN , Y N = yN , XN = xN , V N = vN , Sk = sk)

=
∑

zN
∗
:N∗=IN\{i}

yN
i

,vN ,xN

P (Sk = sk)
N∏
n=1

{P (Zn = zn|Yn = yn)P (Yn = yn|Xn = xn, Vn = vn) ·

P (Xn = xn|Vn = vn, S
k = sk)P (Vn = vn)

}
(11)

=
∑

zN
∗
:N∗=IN\{i}

yN
i

,vN ,xN

P (Sk = sk)
N∏
n=1

{
P (Zn = zn|Yn = yn)P (Yn = yn|Xn = xn, Vn = vn, S

k = sk) ·

P (Xn = xn|Vn = vn, S
k = sk)P (Vn = vn)

}
(12)

=
∑

zN
∗
:N∗=IN\{i}

yN
i

,vN ,xN

P (Sk = sk)
N∏
n=1

{
P (Zn = zn|Yn = yn)P (Yn = yn, Xn = xn|Vn = vn, S

k = sk) ·

P (Vn = vn)}

=
∑

zN
∗
:N∗=IN\{i}
yN
i

,vN

P (Sk = sk)
N∏
n=1

P (Zn = zn|Yn = yn)P (Yn = yn|Vn = vn, S
k = sk)P (Vn = vn)

= P (Sk = sk)
∑
yi,vi

P (Zi = zi|Yi = yi)P (Yi = yi|Vi = vi, S
k = sk)P (Vi = vi) ·

∑
vi−1,zi−1

i−1∏
n=1

{
P (Zn = zn|Yn = yn)P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}
·

∑
vNi+1,y

N
i+1,z

N
i+1

N∏
n=i+1

{
P (Zn = zn|Yn = yn)P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

= P (Sk = sk)
∑
yi,vi

P (Zi = zi|Yi = yi)P (Yi = yi|Vi = vi, S
k = sk)P (Vi = vi) ·

∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

= P (Sk = sk)
∑
yi,vi

P (Zi = zi|Yi = yi, Vi = vi, S
k = sk)P (Yi = yi|Vi = vi, S

k = sk)P (Vi = vi) ·
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∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

(13)

= P (Sk = sk)
∑
yi,vi

P (Zi = zi, Yi = yi|Vi = vi, S
k = sk)P (Vi = vi) ·

∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

=
∑
vi

P (Zi = zi|Vi = vi, S
k = sk)P (Vi = vi)P (Sk = sk) ·

∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

= P (Zi = zi, S
k = sk)

∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)
}

(14)

= P (Zi = zi|Sk = sk)
∑
vi−1

i−1∏
n=1

{
P (Yn = yn|Vn = vn, S

k = sk)P (Vn = vn)P (Sk = sk)
}

= P (Zi = zi|Sk = sk)
i−1∏
n=1

P (Yn = yn, S
k = sk) (15)

Formula (11) is from Equation (10). Formula (12) is from the Markov chain Sk → (Xn, Vn) → Yn.
Formula (13) is from the Markov chain (Sk, Vi) → Yi → Zi. Formulas (14) and (15) are from the fact
that Sk is independent of V N .

Second part. By the definition of Markov chain in the form of probability mass function and
Equation (15),

P (Zi = zi, S
k = sk, Y i−1 = yi−1)P (Sk = sk)

= P (Sk = sk)P (Zi = zi|Sk = sk)
i−1∏
n=1

P (Yn = yn, S
k = sk) (16)

= P (Zi = zi, S
k = sk)

∑
zi

P (Zi = zi, S
k = sk, Y i−1 = yi−1) (17)

= P (Zi = zi, S
k = sk)P (Sk = sk, Y i−1 = yi−1)

where Equations (16) and (17) are from Equation (15). Thus, the proof of Y i−1 → Sk → Zi

is completed.
The proof of Lemma 3 is completed.
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