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Abstract: For evaluating the classification model of an information system, a proper
measure is usually needed to determine if the model is appropriate for dealing with
the specific domain task. Though many performance measures have been proposed,
few measures were specially defined for multi-class problems, which tend to be more
complicated than two-class problems, especially in addressing the issue of class
discrimination power. Confusion entropy was proposed for evaluating classifiers in the
multi-class case. Nevertheless, it makes no use of the probabilities of samples classified
into different classes. In this paper, we propose to calculate confusion entropy based on a
probabilistic confusion matrix. Besides inheriting the merit of measuring if a classifier can
classify with high accuracy and class discrimination power, probabilistic confusion entropy
also tends to measure if samples are classified into true classes and separated from others
with high probabilities. Analysis and experimental comparisons show the feasibility of the
simply improved measure and demonstrate that the measure does not stand or fall over the
classifiers on different datasets in comparison with the compared measures.
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1. Introduction

Classifier evaluation is one of the fundamental issues in the machine learning and pattern recognition
societies, especially when a new classification method is introduced and compared with other possible
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candidates. The accuracy of a classifier has usually been taken as the measure for this purpose.
Nevertheless, classification accuracy has been found to be inefficient for measuring some properties,
such as the class discrimination power, of classifiers. It has also been criticized for its incapability
of evaluating classifiers in the case of cost/benefit decision analysis. Many performance measures
have been proposed for evaluating classification models. In recent years, some researchers strongly
recommended to evaluate classification models by a graphical, multi-objective analysis method, such as
the ROC (Receiver operating characteristic) analysis [1,2], instead of by scalar performance measures.
Though they were proposed for evaluating classifiers from different aspects, most of the measures and
analysis methods were originally designed for two-class problems. For employing such measures in
the multi-class case, some measures have been generalized to be computed based on c(c − 1) 1-vs.-1
or c 1-vs.-others two-class problems transformed from original multi-class problems, where c is the
number of classes. Nevertheless, such generalized measures are likely unable to take into account
all aspects of multi-class problems, which are usually the cases in real applications and tend to be
more complicated to deal with. In the two-class case, if a sample of one class is correctly classified
with high probability, it must be classified into the other class with low probability. In other words,
given the information of a sample classified into one class, the information of the sample classified
into the other class is deterministic. However, this is not true for the multi-class case. For example,
in a four-class case, if a sample is classified into its true class with probability of 40%, we still
have to know the probabilities with which it is classified into the other three classes to intuitively
determine whether or not the sample is well classified. It may be classified into each of the other
three classes with probability of 20%. It may also be misclassified into one of the other three classes
with probability of 60%. As one may find, given the probability of 40%, the probabilities with which
the sample is classified into the other classes may vary and generate various results. Generally, a
sample is expected to be classified into its true class with high probability. In addition, if a sample
is classified into one class with probability of zero, we can determine that this sample is well separated
from this class. We do not expect a sample to be classified into all classes with equal probability.
Such cases can hardly be differentiated by the generalized measures computed based on converted
two-class problems.

In [3], the measure of confusion entropy, CEN for short, was introduced for evaluating classifiers in
the multi-class case. By exploiting the misclassification information of confusion matrices, the measure
takes into consideration both the classification accuracy and class discrimination power of classifiers.
Analysis and experimental results had shown the effectiveness of the measure. Recently, confusion
entropy was systematically compared with the Matthews Correlation Coefficient [4], in which CEN
was suggested to be reserved for specific topics where high discrimination is crucial. Nevertheless, the
measure leaves out of account the probabilities of samples classified into different classes, which are
exploited in evaluating classifiers by some performance measures based on a probabilistic understanding
of error. In this paper, we propose to generate probability-based confusion matrices of candidate
classifiers. The confusion entropy of one classifier is then computed based on its probabilistic confusion
matrix, which is called the probabilistic confusion entropy. Besides taking into account both the
classification accuracy and class discrimination power of classifiers, probabilistic confusion entropy also
tries to measure if samples are classified into true classes with high probabilities and into other classes
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unevenly with low probabilities. In the paper, both analysis and experimentation are conducted to show
the effectiveness of the improved measure.

The rest of the paper is organized as follows. Section 2 reviews the related work. In Section 3, we
discuss what one may be concerned with in evaluating the classification model of an information system
and try to discuss what available measures can evaluate. In Section 4, we define confusion entropy based
on a probabilistic confusion matrix. We also analyze the simply improved measure to show its feasibility
for classifier evaluation. In Section 5, we experimentally compare probabilistic confusion entropy with
mean absolute error, mean squared error and four variants of AUC (The area under the ROC curve).
Finally, Section 6 concludes the paper.

2. Related Work

Ferri et al. [5] grouped scalar performance measures into three families: the metrics based on a
threshold and a qualitative understanding of error, the metrics based on a probabilistic understanding of
error and the metrics based on how well the model ranks the samples. In addition, another group involves
graphical, multi-objective analysis methods. The first group involves the measures of classification
accuracy, sensitivity, specificity, precision and recall. It also encompasses the measures of the F-score,
the sensitivity-PPA (Positive predictive accuracy) average and the sensitivity-PPA product [6], the AUC
defined by one run (AUCb), which is also called balanced accuracy, Youden’s index [7,8], which
has linear correspondence with AUCb, the odds ratio or cross-product, the discriminant power [9],
which can be computed directly from the odds ratio, the likelihood, Cohen’s kappa [10,11], relative
classifier information (RCI) [12,13], normalized mutual information (NMI) [6,14], Matthews Correlation
Coefficient (MCC) [15], the mean F-measure [16], macro average arithmetic [17], macro average
geometric [5], etc. Confusion entropy [3], CEN for short, also belongs to this group. All these
measures can be computed based on a confusion matrix. In this group, RCI, NMI, MCC and CEN
were originally designed for multi-class problems. The second group involves the measures of the
macro average mean probability rate (MAPR) [17], mean probability rate (MPR) [18], mean absolute
error (MAE), mean squared error (MSE), LogLoss (LogL) [19,20], calibration loss (CalL) [21,22],
calibration by bins (CalB) [23], etc. For computing these measures, we have to obtain the probabilities
with which the samples are classified into their true classes. Generally, the lager the probabilities,
the better the classifiers. Various variants of AUC comprise the third group. AUC has become an
important performance measure [24–26]. The AUC of a binary classifier has been demonstrated to
have a Mann–Whitney–Wilcoxon statistic interpretation. To avoid using different misclassification cost
distributions for different classifiers, Hand [27,28] introduced the H-measure, an invariant alternative
to the AUC for evaluating classifiers. It is demonstrated to be a variation of the area under the cost
curve [29]. For evaluating classifiers in the multi-class case, various variants of AUC have been studied.
Fawcett [24,30] introduced two kinds of AUC of each class against the rest. Ferri [5] and Hand [31]
introduced two kinds of AUC of each class against each other. There are also some other variants,
such as the scored AUC [32], SAUC for short, the probabilistic AUC [33], PAUC for short, etc. The
last one should be put into the second group according to its definition. For computing AUC or its
variants, we also have to obtain the probabilities or scores with which the samples are classified into
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different classes. Different from the measures in the second group, these measures are mainly concerned
about whether the samples of one class are classified into their true classes with probabilities higher
than the probabilities with which the samples of other classes are misclassified into this class. The
fourth group involves ROC analysis [1,2,34,35], cost curve analysis [36], the projection-based framework
for performance evaluation [37], Brier curves [38] and some other visualization methods for classifier
evaluation. Compared with the measures in the first three groups, these methods may be taken as different
and fine-grained ways of evaluating classifiers. ROC analysis has been widely studied and employed,
especially in medical diagnosis [25,34,39–41]. It is strongly recommended for classifier evaluation [42],
for it is accepted that any system built with a single “best” classifier is brittle if the false positive
requirement can change. It is certain that analyzing classification models in a graphical, multi-objective
way sets forth an attractive direction for researchers to devote their efforts. The main challenge of these
methods is how to conduct such visualized and multi-objective analysis in the multi-class case.

Many systematic analyses and experiments have been conducted to compare different measures within
the same and different groups. Various measures defined for the two-class case were discussed and
compared in [5,6,43–51]. Recently, some of the generalized measures that were originally introduced
for the two-class case are also compared [46,52]. Ferri [5] and Sokolova [46] intensively compared
the measures within the same group. Some measures were shown to highly correlate with others. The
works enrich us with the relations between various performance measures. All these works show that
it is proper to employ different performance measures in different settings. Furthermore, the studies
are still attractive for finding new measures by considering some possible aspects of classification or by
considering some interesting aspects in a new way, e.g., the measure introduced in [53], and on evaluating
classifiers in some new settings, e.g., the cost curve analysis [36], the projection-based framework for
performance evaluation [37], etc.

3. Performance Evaluation of Classification Models

Generally, a proper performance measure has to be chosen for evaluating the key classification model
of an information system. For convenient discussion, we take as examples three typical classification
results in the format of Weka [54], which is a software package for machine learning. The simple
classification results of three classifiers, M1, M2 and M3, are shown in Tables 1–3. The simple results
can be taken as the classification results of the key classification model with different parameters when
deploying a real information system. By adjusting parameters, we may intend to tune the system for the
specific task or for working in the right status. After adjustments, we have to know if the system has been
adjusted expectedly to a better level. Then, we are confronted with the problem of what measures we
can trust for this purpose. In the following, we discuss what different measures may or may not measure
based on the three examples. Then, we discuss what we can expect from classifiers for introducing the
improved confusion entropy. Instead of reviewing all the measures, we mainly discuss and compare
some typical measures of the first three aforementioned groups.

Generally, the classification results of different classifiers can be separated into two categories: one
is that each sample is assigned a class label after classification; the other is that each sample is classified
into different classes with different probabilities. The classifiers, which generate the first category results,
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are called crisp classifiers, while others are called soft classifiers. For the first category, classification
results are usually summarized in confusion matrices. The classification results of the two categories
can be simply converted into each other. If the probability of one sample classified into a class takes one
and takes zero for all the other classes, the first category changes to the second category. On the other
hand, if we assign a sample the class label to which it is classified with the largest probability, the second
category is then converted to the first one. Some measures are computed directly based on probability
and are not concerned too much about how the samples have been classified into different classes. Some
other measures are computed based on a confusion matrix.

Table 1. Classification result of M1. TCLS, true class label of a sample; PCLS, predicted
class label of a sample; MisCLS, misclassified class label of a sample.

No. TCLS PCLS MisCLS p(s, 1) p(s, 2) p(s, 3)

1 c1 c1 *0.947 0.051 0.002
2 c1 c1 *0.895 0.104 0.001
3 c1 c1 *0.998 0.001 0.001
4 c1 c3 + 0.372 0.228 *0.4
5 c1 c2 + 0.355 *0.612 0.033
6 c2 c2 0.101 *0.894 0.005
7 c2 c2 0.001 *0.984 0.015
8 c2 c1 + *0.489 0.281 0.23
9 c3 c3 0.07 0 *0.93

10 c3 c3 0.07 0 *0.93

Table 2. Classification result of M2.

No. TCLS PCLS MisCLS p(s, 1) p(s, 2) p(s, 3)

1 c1 c1 *0.729 0.098 0.173
2 c1 c1 *0.684 0.04 0.276
3 c1 c1 *0.684 0.04 0.276
4 c1 c3 + 0.217 0.1 *0.683
5 c1 c2 + 0.079 *0.896 0.025
6 c2 c2 0.217 *0.696 0.087
7 c2 c2 0.217 *0.696 0.087
8 c2 c1 + *0.684 0.04 0.276
9 c3 c3 0.04 0.276 *0.684

10 c3 c3 0.04 0.276 *0.684
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Table 3. Classification result of M3.

No. TCLS PCLS MisCLS p(s, 1) p(s, 2) p(s, 3)

1 c1 c1 *0.729 0.271 0
2 c1 c1 *0.684 0.316 0
3 c1 c1 *0.684 0.316 0
4 c1 c3 + 0.217 0 *0.783
5 c1 c2 + 0.079 *0.921 0
6 c2 c2 0.304 *0.696 0
7 c2 c2 0.304 *0.696 0
8 c2 c1 + *0.96 0.04 0
9 c3 c3 0 0.316 *0.684

10 c3 c3 0 0.316 *0.684

In the three tables, “TCLS” indicates the true class label of a sample, “PCLS” indicates the predicted
class label, and “+” in the “MisCLS” column means the corresponding sample is misclassified. p(s, i)

indicates the probability with which sample s is classified into class ci.
The results in the three tables are the second kind of result. If we are only concerned about which

class a sample is classified into, we then get the first kind of result. It is easy to notice that the confusion
matrices of the three classifiers, M1, M2 and M3, turn out to be the same, just as shown in Table 4, where
“Pci” indicates the predicted class label is ci, “Tci” indicates the true class label is ci.

Table 4. Confusion matrix of M1, M2 and M3.

Pc1 Pc2 Pc3

Tc1 3 1 1
Tc2 1 2 0
Tc3 0 0 2

Obviously, all measures based on the confusion matrix in the first group, including accuracy,
CEN, etc., will take the same value and cannot differentiate between the three classifiers. This also
implies that we can get no benefit from the adjustment of the system, though it is not a fact that can be
obviously noticed in the results. In addition, the probabilities with which the samples are classified into
their true classes are the same as in Tables 2 and 3. This implies some measures based on a probabilistic
understanding of error in the second group, such as MAPR, MPR, MAE, LogL, etc., cannot differentiate
between M2 and M3. It can be seen that MSE can differentiate and rank M2 ahead of M3. For the
different variants of AUC in the third group, the AUC values of AU1U (AUC of each class against each
other, using the uniform class distribution) and AUNU (AUC of each class against the rest, using the
uniform class distribution) are 0.97, 0.81, 0.74 and 0.96, 0.79, 0.71. That is, both AU1U and AUNU
rank M1 the best and M2 ahead of M3, which is the same as that of MSE. It may be hard to determine
whether M2 is better than M3. Some may prefer M2 to M3, while some others may take to the opposite.
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We can notice in Table 3 that all the samples of c3 are clearly separated from c1, and four out of five
samples of c1 are clearly separated from c3. In the next section, it is shown that the proposed measure
prefers M3 to M2.

From the simple examples, one may realize that a proper measure is indeed necessary. In many
publications, AUC has been demonstrated to be more effective than accuracy, especially in addressing
the issue of class discrimination power, which has now been taken as one of the most important aspects
of classifiers. However, it has also been found that AUC may mislead classifier evaluation. Hence, we
are still confronted with the problem of choosing a proper measure. To this end, we reconsider what we
can expect from a classifier. The above classification results convey all the classification information of
the classifiers. Hence, what we can expect is three-fold, which is what has been done to group different
measures into the first three groups. We may expect, firstly, that samples are correctly classified as
much as possible, secondly, samples are classified into true classes with probabilities as high as possible,
and finally, samples of different classes are separated from each other as much as possible. Different
measures were originally defined to evaluate classifiers with different expectations. A measure may
rank one classification model higher, while another may furnish the opposite recommendation. Hence,
it is helpful to verify if some measure can inclusively measure more things than other measures. As
reviewed in Section 2, many experiments have been conducted to reveal the relations between different
measures. Though we are enriched with the many helpful comparisons, it is in fact hard to compare
and choose a superior one out of different measures, which can inclusively measure more things. The
idea for improving the original confusion entropy is to introduce a measure that tries to take all the three
aspects into consideration to evaluate classifiers. It is certainly necessary to experimentally verify if the
simply improved measure is indeed more effective than other measures. In the following sections, we
firstly introduce the new measure and then compare it with other measures.

4. Confusion Entropy Based on Probabilistic Confusion Matrix

Given a sample, s, its probability of being classified into class i by a classifier is denoted as p(s, i).
For a problem of n samples and m classes, we have

m∑
i=1

p(s, i) = 1. (1)

Generally, the predicted class label of sample s can be simply assigned as

argmax
i
{p(s, i)}. (2)

With all samples being assigned class labels, we can then get a confusion matrix [ai,j]. It indicates
that ai,j samples with true class label i are classified into class j. Based upon [ai,j], we can compute
the confusion entropy of the classifier under evaluation. Suppose there are ni samples for each class, i.
We have

n =
m∑
i=1

ni, (3)
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and for each class, i, we have

ni =
m∑
j=1

ai,j. (4)

Suppose Si denotes the set of samples with true class label i. For exploiting the information of
probabilities, we compute the probabilistic confusion matrix as follows. For each cell of the confusion
matrix, we compute:

pi,j =
1

ni

∑
s∈Si

p(s, j) (5)

Consequently, we obtain a matrix [pi,j], which we call the probabilistic confusion matrix of the
classifier. Apparently, for each class i, we have

∑
j

pi,j = 1. (6)

It is easy to notice that pi,j in Equation (5) has a clear probabilistic sense. It indicates that the samples
in Si with true class label i are classified into class j with an average probability pi,j .

Subsequently, we can compute the confusion entropy based on the matrix [pi,j]. First of all, we
compute the confusion entropy with respect to class j(j = 1, ...,m) as:

CENj = −
m∑

k=1,k 6=j

(P j
j,klog2(m−1)P

j
j,k + P j

k,jlog2(m−1)P
j
k,j) (7)

where:

P j
i,j =

pi,j
m∑
k=1

(pj,k + pk,j)
, i 6= j, i, j = 1, ...,m (8)

and:

P i
i,j =

pi,j
m∑
k=1

(pi,k + pk,i)
, i 6= j, i, j = 1, ...,m (9)

Finally, we compute the confusion entropy of the classifier as:

CEN =
∑
j

PjCENj (10)

where:

Pj =

∑
k

(pj,k + pk,j)

2
∑
k,l

pk,l
(11)

We call the confusion entropy computed based on [pi,j] the relative probabilistic confusion entropy,
rpCEN for short, of the classifier.

We can also compute pi,j in Equation (5) simply as:
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p
′

i,j =
∑
s∈Si

p(s, j) (12)

We call the confusion entropy computed based on [p
′
i,j] probabilistic confusion entropy, pCEN for

short. As one may notice, if class distribution is balanced, pCEN is equivalent to rpCEN. By computing
pCEN, the effect of class distribution can be reflected in the measure.

Let us take a further look at the computation of CENj in Equation (7) to investigate what the
simply improved measure computes for classifier evaluation. Obviously, CENj consists of two
parts with respect to row j and column j of the probabilistic confusion matrix. From the row part

(−
m∑

k=1,k 6=j

P j
j,klog2(m−1)P

j
j,k), we can see that CENj tends to be small if pj,j is large. pj,j will take a

large value if most samples of class j are correctly classified with high probabilities. This implies that the
improved confusion entropy tends to rank the classifier high if it classifies the samples of class j correctly
with high probabilities. Furthermore, the row part tends to be small if the distribution of probabilities,
with which the samples of class j are classified into other classes, is imbalanced. Extremely, if some
pj,k = 0, which means the samples of class j are clearly separated from class k, the row part tends to be
small. This implies that the improved measure tends to rank the classifier high if it unevenly separates
samples of different classes. Apparently, a similar observation can be obtained for the column part
of CENj . From the discussion, we can find that the improved measure takes into consideration three
aspects in classifier evaluation: accuracy, probability and class discrimination power.

Table 5. Probabilistic confusion matrix of M1.

Pc1 Pc2 Pc3

Tc1 0.714 0.199 0.087
Tc2 0.197 0.72 0.083
Tc3 0.07 0 0.93

Table 6. Probabilistic confusion matrix of M2.

Pc1 Pc2 Pc3

Tc1 0.479 0.235 0.286
Tc2 0.373 0.477 0.15
Tc3 0.04 0.276 0.684

Table 7. Probabilistic confusion matrix of M3.

Pc1 Pc2 Pc3

Tc1 0.479 0.365 0.156
Tc2 0.523 0.477 0
Tc3 0 0.316 0.684
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For understanding the improved confusion entropy and its practicability, let us consider again the
classification results of classifiers M1, M2 and M3 shown in Tables 1–3. The probabilistic confusion
matrices of M1, M2 and M3 are shown in Tables 5–7. The values of rpCEN of M1, M2 and M3 are
0.0932, 0.3071 and 0.2648, respectively. Hence, the improved measure can differentiate between the
three classifiers. By further investigating into the four confusion matrices, we can see that Table 4
shows how many samples of one class have been classified into all classes, whereas Tables 5–7 show the
average probabilities with which the samples of one class have been classified into all classes. Hence the
probabilistic confusion entropy tends to be more effective than the confusion entropy for evaluating the
three classifiers. In addition, the simply improved measure inherits the merits of confusion entropy, for
it also evaluates the distribution of probabilities, with which samples are classified into other classes.

Table 8. General view of the measures from different groups. ACC, classification accuracy;
RCI, relative classifier information; NMI, normalized mutual information; AU1U, AUC of
each class against each other, using the uniform class distribution; AU1P, AUC of each class
against each other, using the a priori class distribution; AUNU, AUC of each class against
the rest, using the uniform class distribution; AUNP, AUC of each class against the rest,
using the a priori class distribution; PAUC, Probabilistic AUC; SAUC, Scored AUC; MSE,
mean squared error; MAE, mean absolute error; pCEN, probabilistic confusion entropy;
rpCEN, relative probabilistic confusion entropy; CEN, confusion entropy; rCEN, relative
confusion entropy.

Measure Threshold Calibration Ranking Frequencies Distribution

ACC Yes No No Yes No
RCI (NMI) Yes No No No Yes

AU1U No No Yes No No
AU1P No No Yes Yes No
AUNU No No Yes No No
AUNP No No Yes Yes No
PAUC No Yes Yes No No
SAUC No Yes Yes No No
MSE No Yes Yes Yes Yes
MAE No Yes Yes Yes No
pCEN Yes Yes No Yes Yes
rpCEN Yes Yes No No Yes
CEN Yes No No Yes Yes
rCEN Yes No No No Yes

The above simple examples are certainly insufficient for revealing the inherent characteristics of
probabilistic confusion entropy. In the next section, we compare probabilistic confusion entropy
with other measures on some benchmark datasets for further demonstrating its effectiveness. Before
comparison, it is helpful to make a general view of the measures in different groups. Akin to the
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analysis in [5], Table 8 shows whether or not the measures from different groups are influenced by
changes in the three traits: changes in class thresholds, changes in calibration that preserve the ranking,
changes in ranking that do not cross the class thresholds (but usually affect calibration) and changes in
class frequency or distribution. Besides, the table also shows whether or not the different measures are
influenced by changes in distribution of classification probabilities.

As discussed in Section 3, what one may expect from a classifier is three-fold. The widely used
classification accuracy is a representative measure that can be employed to evaluate if samples are
correctly classified as much as possible. Classification accuracy and those measures in the first group
are obviously influenced by the changes in class thresholds. It is easy to find that all kinds of confusion
entropies are sensitive to such changes, for they are all defined based on confusion matrices. This also
implies that confusion entropy can in some sense measure what classification accuracy may measure.
Generally, the measures that exploit the classification probabilities can be expected to measure if
samples are correctly classified with high probabilities. The measures in the second group are likely
influenced by the second kind of changes. Obviously, the original confusion entropy does not take
into consideration whether or not samples are classified into true classes with a high probability. For
ameliorating the deficiency, probabilistic confusion entropy is introduced. In contrast to the above two
kinds of expectation in classifier evaluation, it is in some sense hard to measure how well samples of
different classes are separated apart from each other. For the two-class case, AUC and many of its
variants, which are computed based on ranking, have been widely studied and recommended to evaluate
if samples of one class are well separated from the other class. It is reasonable to expect that samples are
classified into true classes with higher probabilities than the samples from other classes. However, AUC
has no corresponding definition in the multi-class case. Confusion entropy is introduced for measuring
how samples of different classes are mixed. It can be found in [3]; confusion entropy tends to rank the
classifier high if samples are unevenly classified into different classes. This implies confusion entropy
measures if samples of different classes are well separated in a way different from that of the measures
based on ranking. It is similar to RCI (NMI), which measures if different class samples are classified
unevenly to a certain class. It is not difficult to find from their definitions that both MAE and MSE are
influenced by the changes in ranking. In addition, one can find that MSE is also sensitive to the changes
in distribution of classification probabilities. As for changes in class frequency, if class distribution is
uneven, the measures that are sensitive to such changes tend to rank the classifiers higher if the majority
class can be better classified. Relative confusion entropy is defined to avoid to the possible effects of
uneven class distribution.

From Table 8, we can see that, CEN, rCEN, pCEN and rpCEN, together with RCI (NMI), are indeed
different from the others in measuring the properties of classifiers, for they are all sensitive to changes
in the distribution of classification probabilities. As one can find in [3], the measure of confusion
entropy was shown to be more precise than accuracy, for it exploits the class distribution information of
misclassifications of all classes. It was also shown to be more precise than RCI (NMI), for it takes into
consideration the accuracy of classifiers, as well. Therefore, we do not compare probabilistic confusion
entropy with the measures based on a threshold and a qualitative understanding of error in the first group.
From the above simple examples, it is easy to notice that the improved confusion entropy can measure
things that some of the measures in the second group cannot measure. However, we can see that MSE
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and the two variants of AUC can also differentiate M2 and M3, though in an opposite way to pCEN. It is
not difficult to find that MSE will deterministically rank the two classifiers, which are similar to M2 and
M3. Hence in the experimental section, we compare probabilistic confusion entropy with MSE and MAE
in the second group. AUC has been strongly recommended for the sake of its capability of measuring
the class discrimination power of classifiers. Recently, Vanderlooy et al. [55] demonstrated on two-class
problems that AUC is more powerful than many of its variants, such as SAUC and PAUC. Additionally,
in [5], it was also reported that SAUC and PAUC are closely related to MAPR (Macro Average Mean
Probability Rate). Therefore, in this paper, we only compare probabilistic confusion entropy with the
four variants of AUC generalized for the multi-class case in the third group, for verifying if the improved
measure is effective for classifier evaluation.

5. Experimental Comparison

5.1. Rules for Comparing Different Performance Measures

Different from the comparison of classification models, it is difficult to compare performance
measures, for no meta-measure can be employed to determine whether or not a performance measure
is superior to others. In [55], Wanderlooy et al. proposed an experimental way to compare different
measures. Suppose two measures, m1 and m2, are under comparison. The rationale of the win-loss-equal
statistics is as follows.

First of all, a dataset is randomly partitioned into three parts, 50% as the training set, 10% as the
validation set and 40% as the test set. Subsequently, a certain number (such as ten) of new training sets
are generated by randomly removing three features from the training set. From the ten training sets, ten
different classifiers can be induced with a learning algorithm. From the ten induced classifiers, the two
best classifiers are selected respectively by m1 and m2 using the validation set. Then, the two selected
classifiers are evaluated by a measure (AUC in [55]), which is called here the arbiter measure, on the
test dataset. Finally, the true best classifier, which is chosen formerly by one (such as m1) of the two
measures, is obtained. m1 is called the winner and m2 the loser. If m1 and m2 give the same result,
m1 and m2 are taken to be equal. The procedure is repeated a certain number of times, such as 2,000.
Finally the win-loss-equal statistics of m1 vs. m2 can be obtained and shown as a bar ranging from −1
to 1. The length from 0 to 1 of the bar represents the fraction of wins (m1 wins m2). The length from
−1 to 0 represents the fraction of losses. The length of equals is given by one minus the total length of
the bar. The win-loss-equal statistics can be conducted on different datasets. One measure is taken to be
superior if it wins in most of the win-loss-equal statistics.

It can be seen, by win-loss-equal statistics, the compared measures are verified if they could choose
the correct classifiers. If one measure chooses in the training stage the classifier that appears to be
the best in the testing stage, this measure is then taken to be superior to the compared ones. Hence,
win-loss-equal statistics is a relatively fair way to compare different measures. However, by investigating
the comparison process, one can find that the win-loss-equal statistics may be affected by the arbiter
measure that is used to choose the true best classifiers. In other words, if one of the compared measures
is used as the arbiter measure, this measure tends to win in the win-loss-equal statistics. Hence, for fairly
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comparing measures, we conducted experiments in the same way, but selected the true best classifiers
with both the proposed measure pCEN and each of the compared measures as arbiter measures.

5.2. Experimental Comparison Between pCEN and MAE, MSE and the Variants of AUC

Though it was shown that confusion entropy is capable of measuring if samples of different classes
are well separated from each other, it is necessary to investigate if the improved confusion entropy still
possesses such a capability. The four variants of AUC are AUNU, AUNP, AU1U and AU1P. The first
two variants are 1-vs.-others version of AUC. Their original definitions can be found in [24,30]. The last
two variants are the 1-vs.-1 version of AUC. Their original definitions can be found in [5,31]. AU1P and
AUNP also exploit the probabilities with which samples are classified into all classes. The definitions of
the four variants are as follows.

The AUC of class j over class k is defined as:

AUC(j, k) =
1

nj.nk

n∑
s=1

f(s, j)
n∑

t=1

f(t, k)I(p(s, j), p(t, j)) (13)

where f(s, j) = 1 if sample s indeed belongs to class j, otherwise f(s, j) = 0. I(p(s, j), p(t, j)) = 1

if p(s, j) > p(t, j) and I(p(s, j), p(t, j)) = 0.5 if p(s, j) = p(t, j), otherwise I(p(s, j), p(t, j)) = 0.
p(s, j) is the probability with which sample s is classified into class j. AUNU is defined as:

AUNU =
1

m

m∑
j=1

AUC(j, rj) (14)

where rj is the class formed by all classes, but class j. AUNP is defined as:

AUNP =
m∑
j=1

P (j)AUC(j, rj) (15)

AU1U is defined as:

AU1U =
1

m(m− 1)

m∑
j=1

m∑
k=1,k 6=j

AUC(j, k) (16)

AU1P is defined as:

AU1P =
1

m(m− 1)

m∑
j=1

m∑
k=1,k 6=j

P (j)AUC(j, k) (17)

Mean absolute error (MAE) and mean squared error (MSE), which was first introduced by Brier [56],
are two well-known performance measures for probabilistic models. The definitions of the two measures
are as follows:

MAE =
1

m.c

c∑
j=1

m∑
i=1

|f(i, j)− p(i, j)| (18)

MSE =
1

m.c

c∑
j=1

m∑
i=1

(f(i, j)− p(i, j))2 (19)
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The 19 datasets are all from the UCI machine learning data repository [57]. For conducting the
experiment effectively and efficiently, we chose the datasets with sufficient attributes and not many
samples. The description of the datasets is listed in Table 9. In line with the comparing method reported
in [55], we conducted the experiment as follows. First of all, each dataset was randomly partitioned into
three parts, 50% as the training set, 10% as the validation set and 40% as the test set. Subsequently, ten
new training sets were formed by randomly removing three features from the training set. Ten different
classifiers were trained with the same learning algorithm, i.e., J48 unpruned and with Laplace correction
implemented in Weka [54], where J48 is the java version of C4.5 [58]. The best classifiers were then
selected according to rpCEN, pCEN and the four AUC variants using the validation set. Next, the six
selected classifiers were evaluated by rpCEN as the arbiter measure on the test dataset. We finally
obtained the true best classifier. For each measure, we calculated the regret of rpCEN, i.e., the difference
between the rpCEN of the true best classifier and that of the best classifier the measure selected. For each
two compared measures, if the regret value of the first measure is smaller than that of the second measure,
the first measure is taken to be the winner. The procedure was repeated 2,000 times. For each round, we
compared rpCEN and pCEN with the four variants of AUC in pairs and determined which measure was
the winner. The win-loss-equal statistics with regard to each pair of measures can be obtained for each
of the datasets. For fairly comparing the measures, we also conducted experiments in the same way, but
selected the true best classifiers by pCEN and each of the four variants of AUC as arbiter measures.

Table 9. The nineteen datasets.

Datasets Samples Attributes Classes

allbp 2,800 29 3
allhypo 2,800 29 5
allrep 2,800 29 4
anneal 798 38 6
ann 3,772 21 3
calendarDOW 200 32 6
DNA -nominal 2,000 60 3
nursery 11,947 8 5
landsat 4,435 36 6
soybean 307 35 19
vehicle 564 18 4
horse 299 21 3
pendigits 7,494 16 10
segment 1,500 20 7
audiology 199 71 24
flag 194 30 8
Agaricus 8,123 23 7
connect-4 5,960 42 3
car 1,717 7 4
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First of all, for simply showing the effectiveness of pCEN in comparison with the measures based on
a threshold and a qualitative understanding of error, we simply present in Figure 1 the win-loss-equal
statistics of pCEN vs. ACC and pCEN vs. CEN using pCEN, ACC and pCEN and CEN to choose
the best classifiers. For comparing rpCEN and pCEN with the four variants of AUC, we present the
win-loss-equal statistics using rpCEN and pCEN to choose the true best classifiers in Figure 2. From
Figure 1, we can find that the probabilistic confusion entropy expectedly outperformed the accuracy
and the confusion entropy on almost all of the datasets, which confirms the above discussion. From
Figure 2, we can see that the relative probabilistic confusion entropy and probabilistic confusion entropy
outperformed the four variants of AUC on almost all the datasets except for the third one. From Figure 3
and Figure 4, we can find that the four variants of AUC outperformed the two probabilistic confusion
entropies on most of the datasets. The results shown in Figure 2 to Figure 4 obviously indicate that
choosing the true best classifiers by a measure tends to rank the measure higher than the other measures.
Nevertheless, as one may notice on some of the datasets, the four variants, when they were employed to
choose the true best classifiers, did not appear to be as good as the two probabilistic confusion entropies,
when the two measures were used to choose the true best classifiers. Hence, we can still determine
that the two probabilistic confusion entropies are more effective than the four variants of AUC from the
results shown in Figure 2 to Figure 4.

The win-loss-equal statistics using AUNU and AUNP to choose the true best classifiers are pictured
in Figure 3. The win-loss-equal statistics using AU1U and AU1P to choose the true best classifiers are
pictured in Figure 4

For further revealing how the compared measures performed, we calculated the average regrets of the
2,000 rounds for all the datasets. For each dataset, we ranked the six compared measures. The best was
ranked the first and the worst the sixth. The rank results using rpCEN and pCEN to choose the true best
classifiers are pictured in Figure 5. The rank results with respect to AUNU, AUNP, AU1U and AU1P are
pictured in Figure 6.

Figure 1. Win-loss-equal statistics of pCEN vs. ACC (the left two) and pCEN vs. CEN (the
right two). For each pair, the left figure corresponds to the results obtained using pCEN to
choose the true best classifiers, the right corresponds to that using the compared measure.
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Figure 2. Win-loss-equal statistics of rpCEN, pCEN vs. AUNU, AUNP, AU1U and AU1P
using rpCEN (the upper two) and pCEN (the lower two) to choose the true best classifiers.
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Figure 3. Win-loss-equal statistics of rpCEN, pCEN vs. AUNU, AUNP, AU1U and AU1P
using AUNU (the upper two) and AUNP (the lower two) to choose the true best classifiers.
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Figure 3. Cont.
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Figure 4. Win-loss-equal statistics of rpCEN, pCEN vs. AUNU, AUNP, AU1U and AU1P
using AU1U (the upper two) and AU1P (the lower two) to choose the true best classifiers.

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AUNU

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AUNP

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AU1U

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AU1P

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AUNU

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AUNP

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AU1U

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AU1P

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AUNU

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AUNP

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AU1U

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
rpCEN vs AU1P

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AUNU

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AUNP

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AU1U

−1 0 1
0

2

4

6

8

10

12

14

16

18

20
pCEN vs AU1P



Entropy 2013, 15 4986

Figure 5. The ranks of rpCEN, pCEN, AUNU, AUNP, AU1U and AU1P using rpCEN (the
left) and pCEN (the right) to choose the true best classifiers.
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Figure 6. The ranks of rpCEN, pCEN, AUNU, AUNP, AU1U and AU1P using AUNU (the
upper left), AUNP (the upper right), AU1U (the lower left) and AU1P (the lower right) to
choose the true best classifiers.
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From Figure 5 and Figure 6, we can also find that the measures tended to be ranked higher when
they were employed to choose the true best classifiers. Nevertheless, it is easy to find that the relative
probabilistic confusion entropy and the probabilistic confusion entropy obviously outperformed the four
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variants of AUC. When rpCEN was used to choose the true best classifiers, no variant of AUC was
ranked ahead of the two probabilistic confusion entropies on all datasets. Their average ranks turned out
to be larger than 1 but smaller than 2. In comparison, though each variant of AUC was ranked higher on
average than the other three variants and the two probabilistic confusion entropies when it was employed
to choose the true best classifiers, all the other measures were ranked higher on some of the datasets.
Besides, the average rank of each variant turned out to be larger than 2, even when it was employed to
choose the true best classifiers.

Figure 7. Win-loss-equal statistics of rpCEN and pCEN vs. MAE and MSE using pCEN
(the upper left), rpCEN (the upper right), MAE (the lower left) and MSE (the lower right) to
choose the true best classifiers.

Experiments were similarly conducted to compare probabilistic confusion entropy with MAE and
MSE. The win-loss-equal statistics of rpCEN, pCEN vs. MAE and MSE are shown in Figure 7. First of
all, it can be noticed in Figure 7 that pCEN, rpCEN and MSE appear to be superior respectively when
they were used to choose the true best classifiers, though pCEN and rpCEN appear to be a little bit more
superior to MSE. In contrast to this result, pCEN and rpCEN appear to be similar to MAE when each
of the four measures, including MSE, was used to choose the true best classifiers. Besides, pCEN and
rpCEN appear to be superior to MSE when MAE is used to choose the true best classifiers. For further
investigating the relation between pCEN and rpCEN and MSE and MAE, the rank results with respect
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to the four measures are pictured in Figure 8. From the figure, it also can be seen that pCEN, rpCEN and
MSE appear to be superior respectively when they were used to choose the best classifiers. Additionally,
in comparison, pCEN and rpCEN appear to be superior to MSE, for they were not ranked higher than
3, even when MSE or MAE was used to choose the true best classifiers. MAE ranks pCEN and rpCEN
higher than MSE. It is obvious to see that pCEN and rpCEN is superior to MAE, even when MAE was
used to choose the true best classifiers.

Figure 8. The ranks of rpCEN, pCEN, MAE and MSE using pCEN (the upper left), rpCEN
(the upper right), MAE (the lower left) and MSE (the lower right) to choose the true best
classifiers.
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The results shown in Figure 5, Figure 6 and Figure 8 indicate that the improved confusion entropy was
capable of evaluating classifiers consistently for different datasets. It is more stable than the compared
measure. Hence, the improved probabilistic confusion entropy is more reliable for classifier evaluation.
All the results show that the two probabilistic confusion entropies are effective for evaluating classifiers.

6. Conclusions

In this paper, the measure of confusion entropy is improved for evaluating classification models of
information systems. For exploiting the probabilities of samples that are classified into different classes,
we propose to compute the probabilities of one class samples classified into all classes and obtain a
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probabilistic confusion matrix. We then propose to compute confusion entropy based on a probabilistic
confusion matrix. The simply improved measure still possesses the merit of taking into account both
the classification accuracy and class discrimination power of classifiers. Furthermore, the improved
measure can also be expected to differentiate whether or not samples are classified into true classes
and are separated from other classes with high probabilities. Mathematical analysis shows that the
improved measure is superior to the measures based on a threshold and a qualitative understanding
of error. The analysis also shows that most measures based on a probabilistic understanding of error,
e.g., macro average mean probability rate, mean probability rate, mean absolute error, LogLoss, etc., are
incapable of evaluating the class discrimination power of classifiers. Finally, the experimental results on
19 benchmark datasets show that the improved measure is more effective than the four variants of AUC,
MAE and MSE. Furthermore, the results also show that the improved measure does not stand or fall over
different datasets.
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