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Abstract: A method of blind recognition of the coding parameters for binary  

Bose-Chaudhuri-Hocquenghem (BCH) codes is proposed in this paper. We consider an 

intelligent communication receiver which can blindly recognize the coding parameters of 

the received data stream. The only knowledge is that the stream is encoded using binary 

BCH codes, while the coding parameters are unknown. The problem can be addressed on the 

context of the non-cooperative communications or adaptive coding and modulations (ACM) 

for cognitive radio networks. The recognition processing includes two major procedures: 

code length estimation and generator polynomial reconstruction. A hard decision method 

has been proposed in a previous literature. In this paper we propose the recognition 

approach in soft decision situations with Binary-Phase-Shift-Key modulations and 

Additive-White-Gaussian-Noise (AWGN) channels. The code length is estimated by 

maximizing the root information dispersion entropy function. And then we search for the 

code roots to reconstruct the primitive and generator polynomials. By utilizing the soft 

output of the channel, the recognition performance is improved and the simulations show 

the efficiency of the proposed algorithm. 

Keywords: information dispersion entropy; blind recognition; channel coding; BCH 

codes; adaptive coding and modulation (ACM) 
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1. Introduction 

Channel coding, applied to reduce the errors in transmissions, is an important part in digital 

communications [1]. The binary Bose-Chaudhuri-Hocquenghem (BCH) codes are widely used for 

their powerful error-correcting capability [2], convenient design of encoders [3], and efficiency of 

decoding algorithms [4,5]. In traditional communication systems, the coding parameters are known by 

both the transmitters and receivers, but with the development of cognitive radios and intelligent 

techniques, blind recognition of the channel coding parameters is becoming available and realizable. 

Cognitive radio (CR) was introduced in [6] as a smart spectrum sharing technology, and it is becoming 

a hot research topic [7–10]. The adaptive coding and modulations (ACM) technique [11–14] is an 

important section of the CR to adapt the channel. In an ACM system, the transmitter chooses 

optimized coding and modulation parameters according to the channel quality. Thus at the reception, 

the receiver need to recognize those parameters before demodulation and decoding. Another 

application field of the blind recognition technique is non-cooperative communications [15,16]. In this 

case, a non-cooperative receiver does not known the modulation and coding parameters before 

recognizing them. In the future communications, the terminals are required to be as intelligent as 

possible to adapt themselves to a specific context and to blindly estimate the transmitter parameters for 

self-reconfiguration purpose, only with knowledge of the received data stream [17].  

To the best of our knowledge, most of the blind recognition algorithms proposed in the literature are 

focused on convolutional codes. In [18], a Euclidean-algorithm-based method was proposed to identify a 

1/2 rate convolutional encoder in noiseless cases. However, it is not suitable for noisy channels. In [19], 

another approach was presented to identify a 1/n rate convolutional encoder in noisy cases based on 

the Expectation Maximization algorithm. The authors of [20,21] developed methods for blind recovery 

of convolutional encoders in turbo code configuration. In [13] and [17], dual code methods for blind 

identification of k/n rate convolutional codes ware proposed for cognitive radio receivers.  

In this paper we consider the problem of blind recognition of the coding parameters for a cognitive 

receiver. The main focus is on the widely used BCH codes. Some previous literature reports [22–24] 

proposed and developed recognition algorithms for BCH codes in hard decision situations. In [22]  

and [23], the authors proposed a blind recognition algorithm for BCH codes based on Root Information 

Dispersion Entropy and Root Statistic (RIDERS). This algorithm can achieve correct recognition with 

a bit error rate (BER) of 10−2, but it is computationally intensive, especially when the code length is 

large. The authors of [24] improved that algorithm proposed in [22,23] to reduce the computational 

complexity, which made the recognition procedure faster. 

However, the previous works on blind recognition of BCH codes are all in hard decision situations, 

and are based on utilizing the algebraic properties of the codes in Galois Fields (GF). To achieve 

available recognition results, large amounts of training data are always required. With the development 

of sampling and signal processing techniques, the soft output of the channel has become available. 

Many soft-decision-based decoding algorithms have been applied to the error-correcting codes [25–30] 

and yield better decoding performances than hard decision algorithms. Some blind frame synchronization 

techniques for error correcting codes also utilize the soft output of the channel to improve the 

synchronization performances [31–34]. Inspired by the soft decision decoding algorithms, we develop the 
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RIDERS algorithm introduced by [22–24] in the soft decision situations in this paper. As an example we 

mainly discuss the problem of the soft decisions of BPSK modulation on AWGN channels. 

The remaining of this paper is organized as follows: Section 2 presents the code length and coding 

starting positions estimation approach. Section 3 gives the code roots recognition method. Section 4 

discusses the recognition of the primitive polynomial. In Section 5, we compare the computational 

complexity between hard decision and soft decision situations. Finally, the simulation results and 

conclusions are given in Section 6 and Section 7. 

2. Code Length Estimation and Blind Synchronization 

2.1. Introduction of the Recognition Algorithm in Hard Decision Situations  

In cyclic coding theories, the algebraic model of the encoding operation can be expressed as follows: 

( ) ( ) ( )c x m x g x   (1)  

or in systematic form [35]: 

( ) ( ) (( ( ) ) mod  ( ))n k n kc x m x x m x x g x      (2)  

Here ( )g x is the generator polynomial, ( )m x is the input information polynomial and ( )c x is the 

codeword polynomial, which are all defined over an extension field GF (2m) ( 1m  ). In Equation (2), 

n and k are the length of the codeword and input information, respectively, and k/n is the code rate. 

Obviously in Equations (1) and (2), the roots of g(x) are also the roots of c(x). We define the code roots 

to be the roots of the generator polynomial g(x) in this paper. The number of the elements in an 

extension field GF (2m) is 2m-1. We define the set of these elements as Gm. For a binary BCH code 

defined in GF (2m), the possible code roots, which form a root set A, are limited and included in Gm. A 

is a subset of Gm. We consider a sequence of M valid codewords C1, C2, …, CM and  

let cj(x) (1 j M  ) be the codeword polynomial of Cj. Initialize an integer vector [N1, N2, …, NM] to 

zeros and get all the roots of each codeword polynomial cj(x) when j increases from 1 to M. If the 

element (1 2 1)i mi    in GF(2m) is a root of cj(x), we let Ni = Ni + 1, where is a primitive element 

of GF (2m). Finally, the value of Ni (1 2 1)mi   reflects the probability of the element 

(1 2 1)i mi    being a code root. Note that not all the roots of a valid codeword polynomial c(x) are 

the code roots, but all the code roots must be the roots of c(x). The elements, which are the roots of 

c(x) but not the code roots, appear randomly in different codewords, because the information 

polynomials are not the same in different encoding operations. According to this fact, the probability 

of being a code root for an element in A should be larger than that in A , which is a complement of A 

in Gm, so the values of { | }i
iN  A  corresponding to the elements in A are generally larger than 

those corresponding to the elements in A , but this property is only true when the considered data 

blocks are valid codewords, i.e., the code length is correct and the codewords synchronization is 

achieved. When the code length or the coding starting positions are not correctly estimated, the 

property described above does not exist and the bits in the codewords can be considered to appear 

randomly. In this case, the authors of [22,23] proposed the following hypothesis: 
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Hypothesis 1: When the coding parameters are not correct, the probabilities of being codeword 

roots of the elements in Gm can be assumed to be uniform, i.e., the values of Ni is uniform no matter in 

A or A .  

Therefore, in the correct parameters cases, the entropy of the distribution of the roots should be 

lower than that in the incorrect parameters cases. Based on this fact, the authors of [22,23] introduced a 

root information dispersion entropy function (RIDEF) to describe the imbalance degree of the Ni on 

different i and proposed the correct coding parameters that maximize the RIDEF. The RIDEF is 

defined to be the difference between the entropy of the uniform distribution and the distribution of the 

code roots on all the elements in Gm as follows: 

1 1 1

1 1
log log log log

n n n

i i i i
i i i

H p p p p n
n n  

 
       

 
    (3)  

where n = 2m − 1 is the number of the elements in Gm. pi is the probability of i  being a root of the 

code, it is calculated as follows: 

2 1

1

,1 2 1m

mi
i

i
i

N
p i

N




   


 

(4)  

In the recognition procedure, we traverse all the possible values of code length and coding starting 

positions to find the ones that make H be the largest as the estimation of code length and 

synchronization positions.  

The RIDERS algorithm has good performance [22–24] in the parameter recognition of BCH codes. 

However, there are still some problems in the algorithm. Firstly, it is restricted to hard decision 

situations, which limits the recognition performance. Secondly, Hypothesis 1, as a basis of the 

algorithm, is not always true. In the following paragraphs we propose the recognition methods inspired 

by the RIDERS algorithm in soft decision situations. In the Appendix, we give the proof of the 

faultiness of Hypothesis 1.  

2.2. Principles of the Proposed Recognition Algorithm in Soft Decision Situations  

2.2.1. Calculation of pi in Soft Decision Situations 

To develop the application of this algorithm to be suitable for soft decision cases, we should modify 

Equation (4) to utilize the soft output of the channel. To calculate pi in Equation (4) in soft decision 

situations, we define the minimal parity check matrix (MPCM) min ( )iH  corresponding to the element
i  in GF(2m) as follows: 

 1 2 1 0
min ( ) ( ) , ( ) , , ( ) , ( )i i l i l i iH         (5)  

where l is the code length. According to the coding theories, if i is a root of a codeword
(1 )jC j M  , we have: 

min ( ) 0i
jH C    (6)  
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Soft outputs of the channel can provide more information about the reliability of each decision 

symbol. Instead of verifying whether i is a root of a codeword polynomial cj(x), we calculate

, (1 2 1,1 )m
j ip i j M     , which is the probability of i  being a root of cj(x), and calculate pi in 

Equation (4) as follows: 

,
1

2 1

,
1 1

m

M

j i
j

i M

j i
i j

p

p

p





 





 (7)  

To calculate ,j ip , we transform the MPCM defined in Equation (5) to its binary form by replacing 

the symbol elements in min ( )iH  with their binary column vector patterns. For example, 3
min ( )H  , a 

BCH code corresponding to the element 3 in GF(23) with code length l = 7, is as follows: 

 3 18 15 12 9 6 3
min ( ) 1H         (8)  

Based on the primitive polynomial 3( ) 1p x x x   , because the symbol is a root of p(x), we have 
3 1 0    , and 3 1   . Other symbols are processed similarly. Finally, we can calculate all the 

symbols in 3
min ( )H  and get their binary vector patterns listed in Table 1. By replacing the symbols in

3
min ( )H  with the binary patterns, the MPCM can be written in its binary form as follows: 

3
min

1 1 1 1 1 0 0

( ) 1 0 1 0 0 1 0

0 1 1 0 1 1 1

Hb 
 
   
 
 

 (9)  

Table 1. Symbols in 3
min ( )H  and their binary vector patterns. 

Symbols Polynomial expressions Vector form 

1 1 001 

    010 
3  1   011 
6  2 1   101 
9  3  100 
12  2 1    111 
15    010 
18  2   110 

Note that the number of rows in min ( )iH  equals to m, which is the degree of GF(2m). And then the 

syndromes corresponding to the MPCM min ( )iH  and codeword (1 )jC j M  are calculated in 

binary forms as follows: 

, ,1 ,2 , min[ ,  ,  ,  ] ( )T i
j i j j j m jS S S Hb C  S   (10) 
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Let cj(x) be the codeword polynomial of Cj, if the element i corresponding to min ( )iHb  in 

Equation (10) is a root of cj(x), then we have , 0j i S . So the probability of , 0j i S can be considered 

as ,j ip in Equation (7) and calculated by the mean probabilities of , 0 (1 )j kS k m   : 

, , ,
1

1
( 0) ( 0)

m

j i r j i r j k
k

p P P S
m 

   S  (11) 

In Equation (11) and the remainder of the paper we use ( )rP  to depict the probability of the event . 

We assume that the transmitter is sending a binary sequence of codewords and using a BPSK 

modulation, i.e., let +1 and −1 be the modulated symbols of 0 and 1. The modulation operation from 

coded bit uc to modulated symbol us can be written as:  

1 2 ,         1,2,3,...u us c u    (12) 

We assume that the propagation channel is a Binary Symmetry Channel (BSC) which is corrupted 
by an AWGN with the variance 2

n 0 / 2N  . For each configuration, the information symbols in the 

codes are randomly chosen. A soft decision symbol ur  at the reception can be expressed as: 

,         1,2,3,...u u ur s w u    (13) 

where  1 2 3, , ,...w w w is an AWGN sequence. According to [30], it is easy to prove that the probability 

,( 0) (1 )r j kP S k m   can be calculated as follows: 

2
,

1

1 1
( 0) tanh( / ),   1

2 2

en

r j k u
u

P S r k m


      (14) 

where ne is the number of ones in the eth row of the binary MPCM min ( )iHb  (1 2 1)mi   . 

2.2.2. Adaptive Processing of MPCM 

Note that the matrix min ( )iHb  is not sparse, so a fault decision symbol has negative influences on 

many syndromes. Considering that the unreliable decision bits have higher probabilities of being error 

decisions than the reliable decision bits, the authors of [28] proposed an adaptive processing algorithm 
for the binary MPCM min ( )iHb  to reduce the influences of the unreliability decision bits when 

decoding the RS codes by utilizing the belief propagation (BP) algorithm. In this paper, we adopt that 
idea on the calculation of ,( 0)r j iP S . The detailed adaptive processing steps for a given binary 

MPCM min ( )iHb  and a codeword jC with the code length l are listed below: 

Step 1: Combine min ( )iHb  and Cj
T to form a new matrix *( )iH  as follows: 

1 2

11 12 1
*

21 22 2

1 2

( )

l

l
i

l

m m ml

r r r

h h h

H h h h

h h h



 
 
 
 
 
 
  





   


 (15) 
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where 1r  , 2r , …, lr are the soft decision bits of the codeword jC , { |1 ,1 }i jh i m j l     are the 

elements of min ( )iHb  in GF(2).  

Step 2: Replace each ru (1 )u l  in *( )iH   with their absolute values to form a matrix *( )i
rH  , 

adjust the positions of the columns in *( )i
rH  to make the first row in *( )i

rH   is ranked from the 

lowest to the highest and record the indexes. The absolute values of { |1 }ur u l  denote the reliability 

of the received soft decision bits.
 
As shown in Equation (16), 

1 2 li i ir r r   and 1 2, , , li i i are the 

column indexes of 
1 2
, , ,

li i ir r r in *( )iH  . 

1 2

1 2

1 2

1 2

1 1 1

*

2 2 2
( )

l

l

l

l

i i i

i i i

i
r i i i

mi mi mi

r r r

h h h

H h h h

h h h



 
 
 
   
 
 
  







   


 (16) 

Step 3: Transform *( )i
rH  by elementary operations to make the last m elements of the first column 

in *( )i
rH  has only one “1” at the top, as shown in Equation (17). The first row does not join the 

elementary transformation. 

1 2

*
1

( ) 0

0

li i i

i
r

r r r

x x
H x x

x x



 
 
 
 
 
 
 
 






   


 (17) 

This transformation limits the influences of the most unreliability decision bit to only one syndrome 

element, which is ,1jS in Equation (10). Furthermore, we continue the elementary transformation on 
*( )i

rH  to limit the numbers of “1” in the following some columns to one (except the first row), as 

shown in Equation (18):  

1 2 3 4

*

1 0 0

0 1 0
( ) 0 0 1

0 0 0

0 0 0

li i i i i

i
r

r r r r r

x x

x x
H x x

x x

x x

x x



 
 
 
 
 

  
 
 
 
 
  







   



 
(18) 

When the elementary transformation is unavailable, stop the operation. The number available 
operation times equal to the rank of min ( )iHb  . Then the last m rows in *( )i

rH  form a new matrix. We 

recovery its original column orders and call it min_ ( )i
aHb  . Because the transformation is elementary, 

the relationship min_ 0a jHb C  , in the hard decision situations still exists if Cj is a valid codeword, so 
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we can calculate the probability ,( 0)r j kP S  defined in Equation (14) according to min_ ( )i
aHb  . This 

replacement reduces the influences of the unreliable decision bits. 
If min_( ( ))i

arank Hb m  , the left m m area of min_ aHb forms an identity matrix. But if

min_( ( ))i
arank Hb m  , min_ aHb becomes the following style after the elementary transformations: 

min_

1 0 0

0 1 0

0 0 1

( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i
a

x x

x x

x x

Hb 

 
 
 
 
   
 
 
 
  





     




 
(19) 

In this case, only the first p rows are non-zeros, where min_( ( ))i
ap rank Hb  . The last m p rows 

have no contribution for the calculation of ,( 0)r j iP S
 
in Equation (11). So we modify Equation (11) 

and Equation (20): 

min_( ( ))

, , ,
1min_

1
( 0) ( 0)

( ( ))

i
arank Hb

j i r j i r j ki
ka

p P P S
rank Hb



 

   S
 

(20) 

Now based on Equation (20), Equation (14) and Equation (7), we can calculate the RIDEF defined 

in Equation (3). However, there is still a problem in the algorithm. Note that the element 2 1 1
m

   is a 

root of a codeword polynomial only if the code weight is even. This fact severely affects the 

assumption of uniformity of pi. As shown in Figure 1, in the case of recognition of BCH (63, 51), 
when we assume the code length is 31, the value of 31p is obviously larger than other p values, 

although the real code length is not 31 and 31 1  is not a root of the code. 

Figure 1. The problem of p31. 
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To avoid that, we drop the calculation of the probability ,( 0)r j iP S on the element 2 1 1
m

    when 

recognizing the code length. So we modify Equation (3) and Equation (7) to Equation (21) and 

Equation (22) respectively as follows: 

 
2 2

1

log log 2 2
m

m
i i

i

H p p




    (21) 

,
1

2 2

,
1 1

m

M

j i
j

i M

j i
i j

p

p

p





 




  
(22) 

Considering that not all the rows in the parity check matrix min_ ( )i
aHb  have the same value of ne 

[in Equation (14)], and this affects the comparability of ,( 0)r j kP S  among different rows. For the 

uniformization reasons, so we modify Equation (14) to: 
1

2 2
,

1 1

1

2

1 1

1 1
[ 0] sign tanh( / ) tanh( / )

2 2

1 1
                sign( ) tanh( / )

2 2

e e e

e e e

n n n

r j k u u
u u

n n n

u u
u u

P S r r

r r

 



 

 

 
    

 

  

 

 
 

(23) 

2.2.3. Summary of the Recognition Steps 

According to Equation (20), Equation (21), Equation (22) and Equation (23), we propose the code 

length estimation and blind synchronization in the following steps for the convenience of computer 

program automatic processing: 

Step 1: According to some prior information, set the searching range of the degree m, i.e., set the 

minimal and maximal degree mmin and mmax. 
Step 2: Design a window W which has a length L at least 5 (2 1)maxm  , i.e., 5M  in Equation 

(22). 

Step 3: Full fill the window W with the received soft decision bits. 

Step 4: Set the initial degree m = mmin. 

Step 5: Set the code length l = 2m −1. 

Step 6: Set the initial synchronization position t at 0, which is the starting position of W. 

Step 7: Assume the code length is l and the synchronization position is t and calculate H . Note 

that the window W has more than one assumed codewords, we calculate the H on all the codewords 
and compute the mean of them as ( , )H l t . 

Step 8: If t < l, then let t = t + 1 and go back to Step 7; if t = l, then jump to Step 9. 

Step 9: If l < 2m − 1, then let l = l + 1 and go back to Step 6; if l = 2m − 1, then jump to Step 10. 

Step 10: If m < mmax, then let m = m + 1 and go back to Step 5; if m = mmax, then jump to Step 11. 
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Step 11: Compare all the calculated ( , )H l t , select the maximum one and get the corresponding 

values of l, t and m as the estimated code length, synchronization position and the degree of the GF of 

the being recognized codes, respectively. 
By traversing all the possible l and t, finally we can search out the parameters pair ˆ ˆ( , )l t  that 

maximizes the RIDEF H . l̂ and ˆˆ ( )t kl k  are the estimated code length and synchronization 

positions. 

3. Code Roots Recognition and Generator Polynomial Reconstruction 

3.1. Principles of the Code Roots Recognition  

As mentioned in Section 2, for a given valid codeword Cj, the elements in A have higher 

probabilities of being the code roots of Cj than the elements in A , where A is the set of the roots of the 

generator polynomial. So after the code length and synchronization position estimation, we can 

compare the Log-Likelihood Ratios (LLR) of ( 0)r iP S on different elements in GF (2m) from 1  to 
2 2m

   and choose the elements which make the LLR of ( 0)r iP S  be obviously higher as the 

estimated code roots. Finally, we propose a method to judge whether the element 2 1 1
m

   , be a root 

of the code.  

In Equation (24), we define the LLR of ( 0)r iP S as follows, which is also written as ( )iL  : 

 
min( ( ))

, ,
1 1 1min

1
( ) ( 0) [ ( 0)] ( 0)

( ( ))

irank HbM M
i

r i r j i j ki
j j k

L L P L P L S
rank Hb




  

 
      

  
  S S

 
(24) 

where: 

1

, 2
,

1 1,

( 0)
( 0) log 2artanh sign( ) tanh( / )

( 0)

e e e
n n n

r j k
j k u u

u ur j k

P S
L S r r

P S


 

       
  
 

 
(25) 

But for a computer, the “previous higher” is difficult to follow. For the realization of the computer 

automatic recognition of the code roots, we propose the procedure includes the following steps: 

Step1: Let l be the estimated code length, calculate the LLRs to form a vector: 
2 2 2( ), ( ), , ( )

m

lL L L L        . 

Step2: Rank the vector lL from the lowest to the highest, in order to form a new vector lRL , and 

record the indexes. 
Step3: Calculate dL, which is the difference of lRL : ( ) ( 1) ( )   (1 1)lR lRdL i L i L i i l      . 

Step4: Find the maximum of dL, record the corresponding value of i. 
Step5: Select the (i + 1)th to the lth elements in lRL , get their positions in the vector lL and find 

corresponding GF elements  1 2, ,j j   as the estimated roots. 

As an example, we consider a BCH (63, 51) code which is corrupted by an AWGN with SNR  

Es/N0 = 5 dB, and the corresponding hard decision BER is 10−2.19. The recognizing procedure is shown 

in Figure 2.  
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Figure 2. Code roots recognition of BCH (63, 51). (a) Original LLRs. (b) Rank the vector 

lL  to form lRL  (c) dL: the difference of lRL  (d) Insert  2 1m

L    into lL . 

 

Figure 2a is the original LLRs calculated in Step 1. By ranking the original LLRs from the lowest 

to the highest according to Step 2, we can get lRL as shown in Figure 2b. We can see that the change 

between (39)lRL and (40)lRL is the largest, i.e., the difference (50)dL on 50i  in Figure 2c is the largest. 

Thus, we propose ( ) ( 50)lRL i i  as the LLRs of the generator polynomial roots, which are 1 , 3 and 

their conjugate roots.  

3.2. Discussion of the Element 2 1m

   

Up to now, we have estimated the code roots from the set  1 2 2 2, , ,
m

    but the element 2 1m

  is 

ignored. To verify whether the element 2 1 1
m

   is a root of the code, a method is calculating the LLR

 2 1m

L   according to its MPCM: 

     1 2 1
2 1 2 1 2 1 2 1

min ( ) 1
s sm m m mn l n l

H    
   

      
 


 

(26) 

But obviously, we have  2 1 2 1 2 1
min min min_( ) ( ) ( ) 1 1 1

m m m

aH Hb Hb        , because 
2 1 1

m

   . The MPCM is an overall-ones vector which provides very little information for the 

calculation of the LLR. We propose to create a new MPCM for the element 2 1m

  simply by the NOT 

of the minimal check matrix of one of the estimated roots. To get high reliability, we choose the root 

that has the highest LLR. 

The parity check matrix of a code, which has k + 1 roots include 2 1m

  , has a form as shown in 

Equation (27): 
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1

1

1

1 1 1 1

n n
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n n
k k k

H
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  

  

 

 

 

 
 
 
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 
 
 
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

    



 
(27) 

We choose one of its first k rows and its last row to form a new matrix 'H  as follows: 

1 2 1 1
'

1 1 1 1 1

n n
i i iH

    
  
 


(28) 

Then we transform 'H to its binary pattern as follows: 

1

1

'

1

1 1 1 1

bin

x x x

x x x

H

x x x

 
 
 
 
 
 
 
 




    



(29) 

We define _'bin fH to be any single row of 'binH except the last row, and _'bin lH to be the last row. For 

each valid codeword C, we have ' 0binH C  . Thus, we have _ _( ' ' ) 0bin f bin lH H C   . Because all 

the elements in the last row of 'binH are 1, the XOR and NOT operation is equivalent. Therefore, 

_NOT( ' ) 0bin fH C  . As a result, the NOT of any row in the MPCM of one of the estimated roots is 

still a valid MPCM when the code has a root 2 1m

  . 

Based on the new MPCM, we calculate the LLR on 2 1m

  , and insert it into the vector lL  referred in 

Step1. Then we re-rank the LLRs and estimate the code roots according to the previous steps. Finally, 

we can write the generator polynomial based on all of the estimated code roots as: 

1 2( ) ( )( ) ( )pg x x x x      (30) 

where 1 , 2 , …, p are the estimated code roots. In the example of the recognition of BCH (63, 51) 

code referred previous as shown in Figure 2, we insert 2 1( )
m

L   into lL and draw the stems of the LLRs 

in Figure 2(d). Re-execute the code roots recognition steps, it is easy to verify that the element 2 1m

  is 

not a root of the code and the case of Figure 1 does not appear in this algorithm. Thus the generator 

polynomial is as follows: 
2 4 8 16 32

3 6 12 24 48 33

12 10 8 5 4 3

( ) ( )( )( )( )( )( )

           ( )( )( )( )( )( )

           

g x x x x x x x

x x x x x x

x x x x x x

     

     

      

     

      
(31) 

4. Primitive Polynomial Recognition 

In Section 2 and Section 3, the primitive polynomial of the being recognized code is not considered. 

But in fact, the corresponding primitive polynomial should be given when discussing an extension 

field GF(2m), because there are more than one primitive polynomials in GF(2m) and the calculation 
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rules based on different primitive polynomials are not the same. However, we propose a theorem that a 

binary cyclic codeword based on a primitive polynomial is also a valid binary cyclic codeword based 

on another primitive polynomial. According to this, we can choose any one primitive polynomial p(x) 

randomly and estimate the code length and code roots based on p(x). Then, we can recognize the actual 

primitive polynomial according to the root properties of the BCH codes. 

Theorem 1: A binary cyclic codeword Cr, which is encoded based on a primitive polynomial 1( )p x

over GF(2m), is also a valid binary cyclic codeword based on another primitive polynomial 2 ( )p x over 

GF(2m) with the same number of code roots. 

Proof. The coefficients of a generator polynomial ( )g x of a binary cyclic code is in GF(2) and can 

be factored into the product of some minimal polynomials over GF(2): 

1 2( ) ( ) ( ) ( )pg x m x m x m x  (32) 

Let GF1(2
m) and GF2(2

m) be extension fields based on two different primitive polynomials p1(x) and 

p2(x), respectively, then GF1(2
m) and GF2(2

m) have the same structure. Each minimal polynomial 

( )im x  (1 )i p  can be factored in the extension fields GF1(2
m) and GF2(2

m) both. We define and 
to be the roots of 1( )p x and 2 ( )p x , respectively. According to Theorem 2.18 in [36], let e1 and e2 be 

the smallest integers such that
12 1

e

  and
22 1

e

  , respectively, then we have: 

   
1 1 2 1

2 2

0 0

( )
j j

e e

i
j j

m x x x 
 

 

     (33) 

Since a minimal polynomial has only one distinct root, then according to Equation (33), we have  

e1 = e2, i.e., each minimal polynomial has the same number of conjugate roots, even if it is based on 

different primitive polynomials. Consequently, a codeword, which is based on a primitive polynomial

1( )p x , is also a valid codeword based on any other primitive polynomial 2 ( )p x , and the number of 

code roots and error-correcting capabilities are the same. Therefore, when recognizing the parameters 

of a binary cyclic code, we can just randomly choose a primitive polynomial provisionally. In order to 

reduce the computational complexity, we recommend choosing the primitive polynomial with the 

smallest number of terms. 

According to the basic character of the BCH codes, a generator polynomial has 2t roots with 

consecutive degrees (the 2t roots do not form all the code roots, but include all the distinct roots), 

where t is the correction capability of the codes. In other words, if is a primitive element in GF(2m), 
the generator polynomial g(x) of a BCH code for correcting t errors has  , 2 , 3, …, 2t as its roots [3]: 

( ) 0,   1, 2,..., 2ig i t   (34) 

After the estimation of code roots based on a randomly chosen primitive polynomial p(x) and the 

estimated degree m, we can calculate the number of roots and the correction capability t. Then, we can 

traverse all the primitive polynomials over GF(2m) and get the one that makes the code roots be in 

accordant with the character of BCH codes as the primitive polynomial of the being recognized code. 
As an example, we still consider the BCH(63, 51) code referred in Section 3. The codewords are 

encoded based on the primitive polynomial 6
1( ) 1p x x x    and the code roots are , 2 , 4 , 8 , 16 , 

32 , 3 , 6 , 12 , 24 , 48 , and 33 . The first six ones and the last six ones are two groups of 
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conjugate roots. Here is a primitive root in GF(26) based on the primitive polynomial 1( )p x , i.e., 

1( ) 0p   . But in the recognition procedure, we do the calculations over GF(26) with another primitive 

polynomial 6 5
2 ( ) 1p x x x    and let the symbol  be a root of 2 ( )p x . As a result, we can get the code 

roots 15 , 30 , 60 , 57 , 51 , 39 , 31 , 62 , 61 , 59 , 55 , and 47 after the recognition as shown in 

Figure 3. It is easy to verify that the estimated code roots also form two groups of conjugate roots, thus 

the error-correction capability t equals two. Now we traverse all the other primitive polynomials and 

find the one under which the code roots are in accordant with the characters of BCH codes. 

Figure 3. Recognizing the BCH(63, 51) codes using a primitive polynomial different from 

that of the encoder. 

 

5. Computational Complexity 

In the proposed soft decision recognition algorithm, the most complex computation is the 

calculation of pi. The major computational consumption appears in Equation (23), which includes the 

ne
th root calculations, productions and tanh function in the real number field. While, the hard decision 

algorithm only has production and addition calculations over GF(2). However, our proposed algorithm 

utilizes the soft decision outputs of the channel, which can provide more information about the 

reliability decision bits, so require very lower calculation times of pj,i than the hard decision one, which 

can also reduce the total computational complexity in the recognition procedure. 

6. Simulations 

The simulation results of the proposed blind recognition algorithm are shown in this section. In the 

simulations, we assume that the propagation channel is a Binary Symmetry Channel (BSC) which is 

corrupted by an AWGN with the variance 2
n 0 / 2N  . For each configuration, the information symbols 

in the codes are randomly chosen and the modulation mode is BPSK. All the simulations have the 

same settings of the observation window with length L = 3,000 bits and the searching range of the code 

length is 7–127. 

When applying the algorithm to BCH(63,45) codes, the simulation results of the code length 

estimation are shown in Figures 4–6. The signal is corrupted by an AWGN with the SNR Es/N0 = 5 dB. 
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In Figure 4, we draw the stems of pi on different elements i taken from GF(2m) when the code length 

and synchronization positions are correct. It is shown in Figure 4 that the values of pi on the code roots 

are obviously higher than those on the other elements. And we also draw the stems on a fault code 

length and synchronization position in Figure 5.  

Figure 4. Values of pi on correct code length and synchronization positions. 

 

Comparing with Figure 4, the values of pi in Figure 5 is uniform, so the information entropy of pi on 

correct coding parameters should be lower and the corresponding dispersion entropy function is 

higher. As shown in Figure 6, we draw the stems of RIDEF on different code length l and coding 

starting positions t when the start position t = 0 of the observation window is at the fortieth bit of a 

codeword. In the figure, the value of pi in the case of l = 63 and t = 23 is the highest, thus we consider 

the parameters l = 63 and t = 23k ( )k   as the estimated code length and synchronization positions. 

The result is in accordance with the simulation settings. 

Figure 5. Values of pi on incorrect code length and synchronization positions. 
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Figure 6. Code length and synchronization positions estimation of BCH(63, 45) codes. 

 

The performance of the algorithm is affected by the channel quality. In Figure 7, we draw the 

performance of the proposed algorithm when applied to code length and synchronization positions 

recognitions for several different binary BCH codes, including the shortened codes. The curves depict 

the false recognition probabilities (FRP) of the code length and coding starting positions estimations 

on different SNRs. We also compare the performance of our proposed recognition algorithm with the 

hard-decision-based RIDERS algorithm proposed in [22–24]. The PFR of our proposed algorithm fall 

rapidly when SNR increases, and it is much lower than that of the previous hard decision algorithms 

on each single SNR value. 

After the code length and synchronization position estimation, the generator polynomial can be 

recognized by searching for the code roots according to the steps proposed in Section 3. Figure 8 

shows the performance of the proposed generator polynomial recognition algorithm when applied to 

several different binary BCH codes, which are BCH(63, 51), BCH(63, 39) and BCH(30, 20). The 

curves show the false recognition probabilities on different noise levels. As Es/N0 rises, the curves fall 

rapidly. When Es/N0 is above 5 dB, no false recognition occurred during our 200,000 instances of 

simulation. We also compare our proposed algorithm with the previous hard-decision-based 

recognition algorithms proposed by [22–24] in the figure. It shows that the recognition performance is 

improved obviously in soft decision situations. A gap of 1–2 dB exists between the two groups of curves. 
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Figure 7. Performances of code length estimations for some binary BCH codes. 

 

Figure 8. Performances of code roots estimations for some binary BCH codes. 

 
7. Conclusions 

A soft-decision-based blind recognition method for binary BCH codes with BPSK modulations on 

AWGN channels is proposed aiming at the non-cooperative communications and ACM techniques. 

The code length estimation and block synchronization are achieved by checking the minimal parity 

check matrix. After that, the code rate and generator polynomials are reconstructed by searching for 

the code roots. To the best of our knowledge, this paper is the first publication in literature which 

introduces an approach for complete-blind recognition of binary BCH codes in soft decision situations. 

Simulations show that our proposed blind recognition algorithm yields better performance than that of 

the previous hard-decision-based ones. 
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Appendix: Proof of the faultiness of the Hypothesis 1 

In this Appendix, we present that the Hypothesis 1 proposed in [22–24] is not always correct. The 

proof is shown below: 

Proof. We can consider a codeword C with length n and the binary pattern of one of the MPCM 

min ( )iHb  , where (0 2 1)i mi     is an element in Gm. We let c(x) be the codeword polynomial of C. 

If i is a root of c(x), then we have ( ) 0ic    and min ( ) 0iHb C   . There are m rows in min ( )iHb  and 

we define (1 )j j m h  to be the jth row of min ( )iHb  . Then the equation min ( ) 0iHb C   means the 

productions of all the rows with the codeword C equal to zeros, as shown in Equation (35): 

1

2
min

0

0
( ) 0

0

i

m

C

C
Hb C

C



 
     

  



h

h

h
 

(35) 

So we can calculate the probability of i being the root of c(x), i.e., the probability of 

min ( ) 0iHb C   as follows: 

 min 1 2( ) 0 0, 0,..., 0i
r r mP Hb C P C C C           h h h (36) 

Let (1 )jlh l n  and lC  be the lth element in the vector jh and C and we define the checking 

indexing set jS for jh and Cl as follows:  

{ | 1}j l jlC h S  (37)

Obviously, when the number of nonzero elements in jS is even, we have: 

0j C h  (38)

And when the number of nonzero elements in jS is odd, we have: 

1j C h  (39)

When the code length and synchronization positions are not estimated correctly, the restriction 

among the elements in C does exist. So the elements in the codewords can be considered to appear 

randomly. In this case, the probabilities of the number of nonzero elements in jS being odd and even 

are all about 0.5. When min ( )iHb  is full rank, the rows of min ( )iHb  is linearly independent, so we can 

calculate Equation (36) as follows: 

 min
1

( ) 0 0 (0.5)
m

i m
r r j

j

P Hb C P C


         h  
(40)

But if min ( )iHb  is not full rank, the calculation of Equation (36) is not correct. We define the 

maximum linearly independent vector group MI of the row vectors set  |1j j m H= h as follows: 

MI is a subset of H and meets the following conditions: 

(1) The vectors in MI is linearly independent; 

(2) Any vector in H can be obtained by linear combinations of the vectors in MI.  
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And it is easy to prove that the number of vectors in MI is the rank of min ( )iHb  . 

According to the condition 2 of the definition of MI, if all the vectors in  |j j MIh h  make 

0j C h , then also for all the vectors in  |j j Hh h , we have 0j C h , so the calculation of 

Equation (36) should be: 

 
   min

min

( )
( )

min
1

( ) 0 0 (0.5)

i

i
rank Hb

rank Hbi
r r jt

t

P Hb C P C





         h
 

(41) 

where   min|1 ( )i
jt t rank Hb  h  are the vectors in MI, i.e., a maximum linearly independent 

vector group of the rows of min ( )iHb  . 

According to Equation (41), Hypothesis 1 is true only if all the min ( )iHb  , where 1 2 1mi   , 

have the same rank. But unfortunately, this condition cannot always be met. For example, when 

considering the BCH(63, 51) codes, we have the following results: 

 
 
 

1
min

9
min

63
min

( ) 6

( ) 3

( ) 1

rank Hb

rank Hb

rank Hb







 

 

 

 

 

(42)

Therefore, we have: 
6

1
min

3
1

min

1
1

min

1
( ) 0

2

1
( ) 0

2

1
( ) 0

2

r

r

r

P Hb C

P Hb C

P Hb C







           
          


          

 

 
(43)

so we find that the Hypothesis 1 is not correct. 
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